Question	Scheme	Marks	AOs
3 (i)	$x \sqrt{2}-\sqrt{18}=x \Rightarrow x(\sqrt{2}-1)=\sqrt{18} \Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1}$	M1	1.1b
	$\Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$	dM1	3.1a
	$x=\frac{\sqrt{18}(\sqrt{2}+1)}{1}=6+3 \sqrt{2}$	A1	1.1b
		(3)	
(ii)	$4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 2^{6 x-4}=2^{-\frac{3}{2}}$	M1	2.5
	$6 x-4=-\frac{3}{2} \Rightarrow x=\ldots$	dM1	1.1b
	$x=\frac{5}{12}$	A1	1.1b
		(3)	
(6 marks)			

Notes

(i)

M1: Combines the terms in x, factorises and divides to find x. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$
Alternatively squares both sides $x \sqrt{2}-\sqrt{18}=x \Rightarrow 2 x^{2}-12 x+18=x^{2}$
dM1: Scored for a complete method to find x. In the main scheme it is for making x the subject and then multiplying both numerator and denominator by $\sqrt{2}+1$
In the alternative it is for squaring both sides to produce a $3 T Q$ and then factorising their quadratic equation to find x. (usual rules apply for solving quadratics)

A1: $x=6+3 \sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3 \sqrt{2}}{1}$ as an intermediate line.
In the alternative method the $6-3 \sqrt{2}$ must be discarded.
(ii)

M1: Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4 .
Eg $2^{a x+b}=2^{c}$ or $4^{d x+e}=4^{f}$ is sufficient for this mark.
Alternatively uses logs (base 2 or 4) to get a linear equation in x.
$4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow \log _{2} 4^{3 x-2}=\log _{2} \frac{1}{2 \sqrt{2}} \Rightarrow 2(3 x-2)=\log _{2} \frac{1}{2 \sqrt{2}}$.
Or $\quad 4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 3 x-2=\log _{4} \frac{1}{2 \sqrt{2}}$
Or $\quad 4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 4^{3 x}=4 \sqrt{2} \Rightarrow 3 x=\log _{4} 4 \sqrt{2}$
dM1: Scored for a complete method to find x.
Scored for setting the indices of 2 or 4 equal to each other and then solving to find x. There must be an attempt on both sides.
You can condone slips for this mark Eg bracketing errors $4^{3 x-2}=2^{2 \times 3 x-2}$ or $\frac{1}{2 \sqrt{2}}=2^{-1+\frac{1}{2}}$
In the alternative method candidates cannot just write down the answer to the rhs.
So expect some justification. E.g. $\log _{2} \frac{1}{2 \sqrt{2}}=\log _{2} 2^{-\frac{3}{2}}=-\frac{3}{2}$
or $\log _{4} \frac{1}{2 \sqrt{2}}=\log _{4} 2^{-\frac{3}{2}}=-\frac{3}{2} \times \frac{1}{2}$ condoning slips as per main scheme
or $3 x=\log _{4} 4 \sqrt{2} \Rightarrow 3 x=1+\frac{1}{4}$
A1: $x=\frac{5}{12}$ with correct intermediate work

