Question	Scheme	Marks	AOs
3 (i)	$x\sqrt{2} - \sqrt{18} = x \Longrightarrow x\left(\sqrt{2} - 1\right) = \sqrt{18} \Longrightarrow x = \frac{\sqrt{18}}{\sqrt{2} - 1}$	M1	1.1b
	$\Rightarrow x = \frac{\sqrt{18}}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$	dM1	3.1a
	$x = \frac{\sqrt{18}\left(\sqrt{2} + 1\right)}{1} = 6 + 3\sqrt{2}$	A1	1.1b
		(3)	
(ii)	$4^{3x-2} = \frac{1}{2\sqrt{2}} \Longrightarrow 2^{6x-4} = 2^{-\frac{3}{2}}$	M1	2.5
	$6x - 4 = -\frac{3}{2} \Longrightarrow x = \dots$	dM1	1.1b
	$x = \frac{5}{12}$	A1	1.1b
		(3)	
(6 marks)			

Notes

(i)

M1: Combines the terms in *x*, factorises and divides to find *x*. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$

Alternatively squares both sides $x\sqrt{2} - \sqrt{18} = x \Longrightarrow 2x^2 - 12x + 18 = x^2$

- **dM1:** Scored for a complete method to find *x*. In the main scheme it is for making *x* the subject and then multiplying both numerator and denominator by $\sqrt{2} + 1$ In the alternative it is for squaring both sides to produce a 3TQ and then factorising their quadratic equation to find *x*. (usual rules apply for solving quadratics)
- A1: $x = 6 + 3\sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3\sqrt{2}}{1}$ as an intermediate line. In the alternative method the $6-3\sqrt{2}$ must be discarded.

(ii)

M1: Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4. Eg $2^{ax+b} = 2^c$ or $4^{dx+e} = 4^f$ is sufficient for this mark. Alternatively uses logs (base 2 or 4) to get a linear equation in x. $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow \log_2 4^{3x-2} = \log_2 \frac{1}{2\sqrt{2}} \Rightarrow 2(3x-2) = \log_2 \frac{1}{2\sqrt{2}}$. Or $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 3x - 2 = \log_4 \frac{1}{2\sqrt{2}}$ Or $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 4^{3x} = 4\sqrt{2} \Rightarrow 3x = \log_4 4\sqrt{2}$ **dM1:** Scored for a complete method to find *x*.

Scored for setting the indices of 2 or 4 equal to each other and then solving to find x. There must be an attempt on both sides.

You can condone slips for this mark Eg bracketing errors $4^{3x-2} = 2^{2\times 3x-2}$ or $\frac{1}{2\sqrt{2}} = 2^{-1+\frac{1}{2}}$

In the alternative method candidates cannot just write down the answer to the rhs.

So expect some justification. E.g. $\log_2 \frac{1}{2\sqrt{2}} = \log_2 2^{-\frac{3}{2}} = -\frac{3}{2}$

or $\log_4 \frac{1}{2\sqrt{2}} = \log_4 2^{-\frac{3}{2}} = -\frac{3}{2} \times \frac{1}{2}$ condoning slips as per main scheme or $3x = \log_4 4\sqrt{2} \Longrightarrow 3x = 1 + \frac{1}{4}$

A1: $x = \frac{5}{12}$ with correct intermediate work