
Java Programming AP Edition 
U4C12 Exception Handling and I/O

EXCEPTION OVERVIEW

ERIC Y.  CHOU, PH.D.           IEEE SENIOR MEMBER



Exceptions



Introduction 
Exception Handling enables a program to deal with exceptional situations 
and continue its normal execution. 
Runtime errors occur while a program is running if the JVM detects an operation that is
impossible to carry out. For example, if you access an array using an index that is out of
bounds, you will get a runtime error with an ArrayIndexOutOfBoundsException. If you
enter a double value when your program expects an integer, you will get a runtime 
error with an InputMismatchException.

In Java, runtime errors are thrown as exceptions. An exception is an object that 
represents an error or a condition that prevents execution from proceeding normally. 
If the exception is not handled, the program will terminate abnormally. How can you 
handle the exception so that the program can continue to run or else terminate 
gracefully? This chapter introduces this subject and text input and output.

Exception Classes are information classes like Class class returned by getClass().



Issues Involves Exceptions
The exception handling in java is one of the powerful 
mechanism to handle the runtime errors so that 
normal flow of the application can be maintained.

• Why it happens and where does it happens? 

• How to raise an exception and how to catch it?

• How to handle it?  



Exception-Handling Overview
Exemplary Run-Time Errors 

• Show runtime error  (Quotient.java) occurs when 
division by 0. 

• Fix it using an if statement (QuotientWithIf.java) 
(check and prevent the division by 0 to happen)

• Using method to quarantine the division error 
(QuotientWithMethod.java)

• Introduce try-catch (QuotientWithException.java)



Exception Advantages
Handle run-time errors with Exceptions. 
(QuotientWithException.java)

Now you see the advantages of using exception handling. It enables 
a method to throw an exception to its caller. Without this capability, 
a method must handle the exception or terminate the program.



Exception throws 
and catch
Exception classes are 
information class which contains 
types of exception and the other 
information.



From the Method to Exception Handling
The method quotient returns the quotient of two integers. If number2 is 0, it cannot return a value, 
so the program is terminated. This is clearly a problem. You should not let the method terminate 
the program—the caller should decide whether to terminate the program.

How can a method notify its caller an exception has occurred? Java enables a method to throw an 
exception that can be caught and handled by the caller. Listing 12.3 can be rewritten, as shown in 
QuotientWithException.java.

If number2 is 0, the method throws an exception by executing

throw new ArithmeticException("Divisor cannot be zero");

The value thrown, in this case new ArithmeticException("Divisor cannot be zero"), is called an 
exception. The execution of a throw statement is called throwing an exception. The exception is an 
object created from an exception class. In this case, the exception class is  
java.lang.ArithmeticException. The constructor ArithmeticException(str) is invoked to construct an 
exception object, where str is a message that describes the exception.



Exception Handling
When an exception is thrown, the normal execution flow is interrupted. As the 
name suggests, to “throw an exception” is to pass the exception from one 
place to another. The statement for invoking the method is contained in a try 
block and a catch block. The try block contains the code that is executed in 
normal circumstances. The exception is caught by the catch block. The code 
in the catch block is executed to handle the exception.

Afterward, the statement after the catch block is executed. The throw 
statement is analogous to a method call, but instead of calling a method, it 
calls a catch block. In this sense, a catch block is like a method definition 
with a parameter that matches the type of the value being thrown. Unlike a 
method, however, after the catch block is executed, the program control does 
not return to the throw statement; instead, it executes the next statement 
after the catch block.



Exception Handling 
like calling a method

The identifier ex in the catch–block header

catch (ArithmeticException ex)

acts very much like a parameter in a method. 

Thus, this parameter is referred to as a 

catch–block parameter. The type (e.g., 

ArithmeticException) preceding ex 

specifies what kind of exception the catch 

block can catch. Once the exception is 

caught, you can access the thrown value 

from this parameter in the body of a catch 

block.

In summary, a template for a try-throw-catch 

block may look like this:

try {

Code to run;

A statement or a method that may throw an

exception;

More code to run;

}

catch (type ex) {

Code to process the exception;

}

An exception may be thrown directly by using a 

throw statement in a try block, or by invoking

a method that may throw an exception.



Handling InputMismatchException

Errors when input data type mismatched 
(InputMismatchException.java)

By handling InputMismatchException, your program will continuously 
read an input until it is correct.


