in the Kekulé model and the delocalised model of benzene.

19 This question is	about benzene.
---------------------	----------------

(a)	Over time, the Kekulé and delocalised models have been used to describe the bonding and
	structure of a benzene molecule.

(i) Describe, in terms of orbital overlap, the similarities and differences between the bonding

	[3]
(ii)	Experimental evidence led to the general acceptance of the delocalised model over the Kekulé model.
	Describe two pieces of evidence to support the delocalised model of benzene.
	[2]

© OCR 2019

(b) Benzene can be used as the starting material for the synthesis of compounds **D** and **E**, shown below.

In the diagrams $\mathrm{C_6H_5}$ is a phenyl group.

$$H_2N - C - COOH$$
 C_6H_5
 $C - COOH$

compound D

compound E

Compounds **D** and **E** can be converted into polymers.

(i) Draw two repeat units of these polymers.

Two repeat units of polymer formed from D

Two repeat units of polymer formed from E

[3]

(ii) State the type of polymer formed from compounds D and E.

From compound **D**

From compound **E**[1]

© OCR 2019 Turn over

In the synthesis of compounds **D** and **E**, benzene is first reacted with ethanoyl chloride, CH₃COC*l*, to form phenylethanone, shown below.

phenylethanone

The reaction takes place in the presence of aluminium chloride, $\mathrm{A}l\mathrm{C}l_3$, which acts as a catalyst.

In the mechanism for this reaction,

- ethanoyl chloride first reacts with aluminium chloride to form the $CH_3-C^+=O$ cation the $CH_3-C^+=O$ cation then behaves as an electrophile.

Complete the mechanism for the reaction.

Include equations to show the role of the AlCl₃ catalyst, relevant curly arrows and the structure of the intermediate.

Formation of electrophile

Regeneration of catalyst

(iv) Complete the flowchart for the synthesis of compounds **D** and **E** from phenylethanone.

