Test – Complex Numbers

- **Part I** <u>no</u> calculator on questions 1-5
- **1.** Write each completely simplified expression in the form a + bi, where $a, b \in \mathbb{R}$.

(a)
$$\frac{2-4i}{1+3i}$$
 (b) $\frac{2}{i}\left(\frac{1}{\sqrt{3}}-\frac{3i}{\sqrt{3}}\right)^{\frac{1}{2}}$

- 2. Given that $\frac{w+4}{w-2} = i$, find w in the form a+bi, where $a, b \in \mathbb{R}$.
- 3. Given that $p, q \in \mathbb{R}$ and that x = 1 + 2i is a solution of the equation $x^3 + px^2 + qx + 20 = 0$ find the value of p and the value of q.
- 4. Find all complex solutions to $z^5 + 32 = 0$. Express the solutions in modulus-argument form, i. e. in the form $z = r \operatorname{cis} \theta$
- 5. Find $(-1-i)^{11}$ in Cartesian form a+bi, where $a, b \in \mathbb{R}$.
- **Part II** calculator allowed on questions 6-10
- 6. If $w_1 = k k\sqrt{3}i$ and $w_2 = 4i$, where k is a real constant, express w_1 and w_2 in the form $r \operatorname{cis} \theta$, and hence find an expression for $\left(\frac{w_1}{w_2}\right)^3$ in terms of k and i.
- 7. Find the four 4th roots of -16 and express them exactly in Cartesian form a + bi, where $a, b \in \mathbb{R}$
- 8. (a) Show that $(a-1)(a^2+a+1) = a^3-1$
 - (b) Given that $z = e^{i\left(\frac{2\pi}{3}\right)}$
 - show that $z^3 = 1$ and $1 + z + z^2 = 0$; and
 - express each of the following expressions in terms of z (write in **simplest** form)

(i)
$$z^8$$
 (ii) $(1-z)^2 + 4z$

- 9. (a) By using de Moivre's theorem, or otherwise, find the roots of the equation $z^4 + 4 = 0$ and express them in Cartesian form.
 - (b) Hence, or otherwise, express $z^4 + 4$ as the product of two quadratic polynomials in z with real coefficients.
- 10. (a) Use de Moivre's theorem to prove that $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$.
 - (b) Hence, find the exact solutions of the equation $3x 4x^3 = \frac{1}{2}$.