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Aims of this lecture

Endocrine effects of WAT

Immunomodulatory effects of WAT expansion
Significance of BAT

Importance of limiting visceral WAT expansion

Strategies to increase BAT
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Adipose tissue

Adipose tissue, distributed throughout the body, is
capable of expanding to accommodate excess energy.

Two major types of adipose tissue: WAT and BAL.

Anatomically, WAT comprises two major depots,
subcutaneous adipose tissue and visceral adipose
tissue around internal organs.

VAT- concentrated in the abdominal cavity-further
subdivided into mesenteric, omental, perirenal, and

peritoneal depots. 7
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* Key physiological functions of WAT :insulation and
energy storage.

e |n obesity, excess VAI is closely linked to metabolic
complications, such as Insulin Resistance and Type 2
diabetes .

e Mesenteric and omental adipose tissues- particularly
Important for hepatic insulin resistance and steatosis as
liver is directly exposed to adipokines via the portal vein.
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Types of adipose tissue

Localization

Morphology

Cell composition

Function

Uncoupling protein
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Spherical
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Types of adipose tissue

e WAT 95% adipose mass
e BAT 1-2%

e Beige adipose difficult to quantify
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e Brown color of BAT - attributed to high mitochondrial
density, critical for heat generation and lipid oxidation.

e Though BAT in humans is mainly limited to neonates and
Is gradually replaced by WAT with aging, studies have
shown that BAT is viable and functional in human adults.
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Adipose tissue histology
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e Adipose tissue comprises mature adipocytes, preadipocytes, endothelial cells, fibroblasts, mast cells, and immune-system cMsutI‘lthH
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FIGURE 3 | Major cell types involved in obesity-induced inflammation and insulin resistance; adipocytes, pre-adipocytes, dendritic cells, T cells, anN 1utrition
macrophages.
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Adipose tissue functions

e Specialised energy storage organ
 Endocrine function: regulating energy homeostasis

e Thermal regulator
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Adipose tissue

Adipose tissues secrete various hormones, cytokines, and
metabolites (termed as adipokines) that control systemic energy
balance by regulating appetitive signals from the central nerve
system as well as metabolic activity in peripheral tissues.

In response to changes in the nutritional status, the adipose tissue
undergoes dynamic remodeling, including quantitative and qualitative
alterations in adipose tissue-resident cells

Anatomic location significant.

Cell type is significant. v,
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Adipose tissue innervation

e Adipocytes modulate whole body metabolism through secretion of
endocrine and paracrine factors that modulate local immune cell cytokine
secretion, endothelium blood flow and neuronal signaling to the brain.

e Adipocytes, immune cells and endothelial cells within adipose tissues
secrete factors such as leptin, TNFa and VEGF that regulate local sensory
nerve fibers.

e Adipocyte lipid metabolism communicates with local sensory nerve fibers,
sending signals to the CNS, and conversely, sensory nerve fibers secrete
factors that may regulate adipocytes and other adipose cells.

e |ncreased lipolysis in white adipose tissue in response to sympathetic
activation can cause sensory nerve fibers to regulate the metabolic activity
of distant brown adipose tissue depots. /
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Figure 1: Adipose Signaliag to Local Nerve Fibers Regulates Systemic Metabolism.,
(A) Sensory nerves relay infarmation from the white adipase tissne (WAT)

microenvironment to the central nervous system. (B) The central nervous system (CNS)
mtegrates adipose tissue signals to orchesirate a response to the adipose tissue
microenvironment. The CNS comwveys its response via sympathetic cutflow back into the
periphery. (C) The sympathetic nerve innervating WAT releases signaling factors that
influence the adipose tisine microenvironment, (D) The antonomic nervous system ako
affects other metabolic crgans in order to promote whole-body homeostasis. Whether
adipose metabolic cues are conveyed to CNS to coatrol sympathetic outflow into liver,
muscle and pancreas (represented in red lines) is still unknown, Thus, the adipose tissue
microenvironment may have a role in regulating systemic metabolism through signalmg to
local nerve fibers. The dipicted cartoon illustrates a gencral concept. The scele i wheeh the
diagrams were drawn is not anatomically accurate.
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Figure 4: Central Integration of Adipose Signals and Obesity-mediated Dysregulation.

(A) Afferent sensory nerve fibers imnnervating white adipose tissue depots anse from dorsal
root ganghia (DRG) proximal to the spinal cord. The DRG also projects to the brain via the
dorsal horn of the spinal cord, relaying sensory information from the periphery to the central
nervous system for integration. (B) The hypothalamus is a primary area for metabolic
regulation in the central nervous system, influencing thermogenesis and food intake, as well
as other cntical homeostatic functions throughout the body. Projections into the preoptic
area (POA), as well as resident temperature-sensitive neurons, relay critical
thermoregulatory information to the dorsomedial hypothalamic nucleus (DMH), a core
component of the orexinergic system and thermoregulatory function of the hypothalamus.
The paraventricular hypothalamus (PVN), which is proximal to the third ventricle (3V), is
involved food intake, thermoregulation and neuroendocrine functions through projections to
the pituitary. The arcuate nuclens (ARC), along with the ventromedial nucleus of the
hypothalamus (VMH) and lateral hypothalamus (LH), are also involved in appetitive
behavior and food reward. The suprachiasmatic nucleus (SCN) is a cnitical area for
regulating circadian rhythm. All of these centers play direct or indirect roles in influencing
hypothalamic thermogenic regulation. Hypothalamic inflammation has been linked to
metabolic dysregulation and obesity-related insulin resistance through excessive gliosis,
leading to neuronal damage, particularly noted within arcuate nucleus. The hypothalamus
sends sympathetic projections to periphery either directly through the intermediolateral
nucleus of the spinal cord (IML), or via relay through the raphe pallidus nucleus (RPa) or
the rostral ventrolateral medulla (RVLM) to the IML. The IML houses the preganglionic
neurons responsible for synapsing onto the catecholaminergic postganglionic sympathetic
fibers mnervating the target tissues.
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Systemic Metabolism

Figure 6: Integrating peripheral signals in adipose tissue.
(A) Much like the integration of adipose signals within the brain, neuro-adipose signal
integration also occurs within the peniphery. Examples include modulation of the adipose
tissue microenvironment via interaction with immune cell populations, endothelial cells, and
adipose stem cells (ASCs). Responses of adipose tissue to sympathetic nervous system
(SNS) cues allows for the rapid adaptation and remodeling that is required to mamntamn
systemic metabolic homeostasis. (B) Sympathetic nerve fibers engage in unique mteractions
with adipose tissue cell populations. (1) Norepinephnine (NE) release from sympathetic
termunals leads to adipose macrophage polanzation from a proinflammatory (M1) to an anti-
inflammatory, altematively-activated (M2) profile. Sympathetic neuron-associated
macrophages (SAMs) localize around sympathetic synapses and take up secreted NE
through the solute carrier family 6 member 2 (Sle6a2) NE transporter. Monoamine oxidase
A (MAOA) catalyzes the degradation of NE within the SAMs. (2) NE release from
sympathetic nerve endings stimulates the B2 adrenergic receptor (B2AR) of the endothelial
cells of the vasculature, leading to vascular endothelial growth factor (VEGF) secretion from
the endothelium. VEGF stimulates angiogenesis and neunite outgrowth, dnving increased
irigation and innervation of the adipose tissue. (3) Adipose-denived stem cell (ASCs) Bl
adrenergic receptor (B1AR) activation by sympathetic NE dnives beige adipocyte
differentiation. These beige adipocytes have an enhanced thermogenic capacity relative to
white adipocytes and a brown-like adipokine expression profile, which may include
neurotrophic factors such as nerve growth factor (NGF), brain-denived neurotrophic factor
(BDNF) and neuregulin-4 (NRG4). These factors can drive increased sympathetic
inervation and arborization. (4) The sympathetic cotransmitter adenosine triphosphate
(ATP) 1s cleaved by regulatory T-cells (Tregs) into adenosine via CD73 and CD39-mediated
degradation to create the anti-inflammatory “purinergic halo™ surrounding the Tregs. The
adenosine interacts with the adenosine A2A receptor to drive beige adipocyte thermogenesis
through mitochondnal uncoupling protein 1 (UCP1) upregulation. Sympathetic-derived ATP
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Abstract: Adipose tissue is an extremely active crgan, and plays a fundssnental role i the
genesis of comorbiditios associated with obesity. Since the discovery of loptm, an mnportant focus
Bas been sesigned 10 adipose tiasoe &4 2 key cegan in the pathogenesis of metabolic disorders.
The influcece ca the geneses of comorbiditses associsted with obessty s durectly related o
the pattern of adipokine secretion, the bacactive molecules prodeced on adipose tissue. The
imbalance of adipokines consequent 10 the expansion of adipose tissue has been mnplicated =
the development of the low-grade chromic inflammation seen in obesity. Adipokines act = a
paracring, sstocring, and endocrine fashion, infleencing cytokine and chemokane secretions and
hormonal and growth factoes, as well as sterfening with actions of insulin sad lipid and glocose
metabolism. The main adipokines inchede leptin, adiponectin, resistin, temor-nocrosis factor,
interleukin 6, chemoking (C-C motif) ligand 2, interleukin 10, and transformimg growth factoe-f3.
The imbalance between peo- and anti-flammatory adipokines on adpose tissue results in msuln
resistance and the development of metabolic syndrome, type 2 diabetes, and cardiovascullar
discase. However, mot all obese individuals develop these comorbiditaes or metabolic changes.
Metabolically normal obese or metabolically healthy obese individuals have been the focus of
rescarch b of their abs of comaorbeditics. The profile of adspokmes in adiposs tissue
of these indnadwals can be protective for the development of insulin ressstance and metabolic
disorders. This review cenphasizes the roles of adipokines, the signaling pathways ivolved i
the pathogenesis of mflammation and msslin resistance, and the profile fosnd in metabolacally
bealthy obese mdnviduals.

Keywords: adipokines, adipose tissue, obesity, metabolically healthy obese

Introduction

For a long time, adiposc tissuc was considered a deposit of encrgy. Nowadays, it is
well known that the key role of adipose tissuc in metabolism is as an endocrine organ
responsible for the secretion of bioactive molecules termed “adipokines.™' Adipokines
have hormone function, act as growth factors that modulate insulin resistance, and
act on the fat and glucose metabolism and participate in pro and anti-inflammatory
responses.™ Deregulated adipokine expression caused by excessive adiposity and
adipocyte dysfunction seen in obesity has been linked to the pathogenesis of several
discases through altered immune respoases.’

Adipose tissue comprises mature adipocytes, preadipocytes, endothelial cells, fibeo-
blasts, mast cells, and immune-system cells.* Adipose tissue is not a uniform organ,
and sccretes different patterns of adipokines, depending on its location.” Changes in
specific adipokine profile lead to metabolic disturbances that play a central role in the
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Main adipokines and their
functions

Table | Main adipokinas and their functians

Adipckine Main functions Changes in obese individuals
compared to eutrophic individuals
Leprin Foad-intzk= control and ncrezsed energy expenditure'™ T expression and sacretion (adipocytes) '
Leptin res stance and hyperleptinemia'”
Intlammatory ce | activation'”
Adiponactin [ insulia sensitivity L expression and sacretion (acipose tissue)
T fatty acid oxidation L scrum evels2
| free fatty ackd uptake
1 glucose secraticn in the liver
T glucose uptake (adipose tssus)
T adipagenesis (adipose rissise)
[ glucose retasolism
T free fatty acid oxidztion (musclz)*?
Ant-inflammatory, antiatherogenic, and articiabetic actong“
Resistin I insulin resistance T serum ‘evels (mce)”
T secradon of proinflammatory cytoldnes Coruwroverslzl resuts In humans™
T adhesion molecules®#
TNF | insulin signzling™ T expressicn anc secrecon in adipose tissue
T lipolysis in adipose tissuz®
[ ifammation ™
. L6 L Insulln signaling Incrwase:] exoaression and secrelion in
L nwetabolic actions. irmsulinermwdiated (live:) adipose tssue, increased serum |evels®
T release of free farty acids (acipose tissoe)®
CCL2 T macrophage infiltrazion T serum ‘evels
T inflammation (adipose tissue) ™ T expression in acipose tissue™
. IL-1C | macrophage activity T serum evels In obess
L proinflammatory cytokine synthesis™ L levels in metabolic syndrame (wormen)®
TGF3 l growth and activation of immune cells Expression correlates pos tively with

L macraphage activarior
L T- and B-cell zctivation™

obesity ir anmal models and humans™

Abbreviations: THF, tumor-necromis factor; I interleulan: CTL, cremeckine (C-C motrf) igand; TGF, transforming growth factor.
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WAT

White adipose tissue is unigue in its plasticity, it can adapt quickly to
nutrient deprivation and hyper-nutrition alike.

The flexibility of WAT is largely due to the hypertrophic and hyperplastic
changes in adipocytes. WAT plasticity has an important role in
determining metabolic health

Metabolically active tissue : regulates the storage and release of lipids.

Free fatty acids-major fuel source during times of energy scarcity and
high energy demands.

Dysregulated fatty acid release contributes to dyslipidemia —> ectopic
fat deposition into various organs. p
\
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Why does adipose tissue
contains immune cells?
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Introduction

Summary

The expansion of adipose tissse (AT) in cbesity is accompanied by the
accumulation of mmune cells that contridute to a stite of low-grade,
chroric inflammation  and  dysregulated metabolisom Adipose  tissne
macrephages (ATMs) represent the most abundant class of leukocytes in
AT and are invohved in the regulation of several regulalory physiological
processes, such as tissue remodeling and insulin sensitivity. With progres-
sive chesity, ATM; are key mediators of mata-inflammation. insulin resis-
tance and imparment of adipocyte fanction. While macrophage
recrutment from slood monocytes is a critical component of the genera-
tion of AT inflammation, new studics have revealed a role for ATM pro-
liferation in the carly stapes of obesity and in sustaining AT
inflammation. In «ddition, studies have revaled a more complex range of
macrephage activition states than the previous MI/MI model, and the
existence of different macrophage profiles between human and animal
modds. This review will summarize the current understanding of the reg-
ulatory mechanisms of ATM fanction in rdation to obesity, type 2 dia-
betes, depot of origin, and to other leukooytes such as AT dendritic cells,
with hopes of emphasizing the regulatory nodes that an potentially be
targeted to preven! and treat obesity-related metabolic disorders.

Keywords: adipos tissue; infhmmation; irsulin resistarce; macrophages;
MMe; obesity.

environmenial  cues”®  Nevertheless, the mechanisms

underpinnirg the specialired transcriptional and sigmling

The incidence of obesity and associated co-morbidities
[type 2 diabetes (DM), lver and cardiovasculas discases,
and cesmain forms of cancer] remains on the rise ' Obesity
results from a chroric imbalance between calonc intake
and energy expenditure that is charactenized s a Jow-
grade, chronic inflammatory disesse that contiibutes to
metabaic dysfunctian and  inalin  resistance  (IR).?
Although the molecelar basis underpinning this inflam-
mation is not fully understood, there is consmsus that
macrophage activation in adipose tissue (AT) precedes
the development of IR and contributes to a pro-inflam-
matory state.™* Iherefore, deapheamg macrophage biol-
ogy and pathophysiclogy in the cbese setting remains a
unique challenge to the ficld of immunology anc metabo-
Bsm rescarch, Transcriptional profling has advanced the
underdanding of the plagicity of macmphages miggeting
a complex cdlular programming in response 10 iress sig-
nals” and has emphasized the corcept that macrophages
can quickly adopt unique propertics depending en micro-

© 2018 John Wikey & Sons Ltd, immunology, 155, 407-417

profiles in macrophages during obesity-induced AT
inflammation are not fully resolved. In this review, we
will sumnurize what i known about adipose tssue
macrophage (ATM) biolegy in the setting of obesity and
metabolic discase in a rapidly moving field of
investigation.

ATM-driven inflammation links obesity to IR

Obesity is characterized >y a chronic low-grade indam-
mation that is causally inplicated in the development of
IK. IK 15 a central mechanism m obeity-assocated ds-
cases, such s DM and metabolic syndrome. It is deined
as the decline to a normal physiological response to insu-
lin, resulting in a reduction in glucose disposal as well as
failure 1o wpprec lipalyie and hepate ghivaw prodoc.
tion, and occurs promirently in AT. Numerous studies
support the role of ATMs and derived inflammatory
mediators in  the impirment of insulin  sigmling
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ATMO

ATM® numerically dominant type of immune cells in WAT. Obesity enhances
M® numbers —> obesity-related immune imbalances.

ATMO -:distinct roles and beneficial effects on WAT homeostasis eg. healthy
lipid storage.

Dynamic cells -adapt quickly in phenotype and metabolism to changing
environments eg. fasting and over nutrition.

Stimulate healthy lipid storage thus prevent adverse ectopic lipid storage(e.g.
hepatic steatosis).

Anti- and pro-inflammatory signals may be involved in maintaining WAT
homeostasis.

Protective role - anti-inflammatory and clearing dead adipocytes. \ /

Nutrition



anti-inflammatory 0 \-o-'mﬂammamw
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CION )
L vetmd) white adipose tissue
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(2]
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ATMO < interspersed between adipocytes
‘go lower inflammatory molecular signature

Figure 1

Obesity-associated impaired immune balance in white adipose tissue. (A) Obesity is associated with an impaired immune balance toward pro-
inflammatory in WAT. All fat depots are affected, but mostly the viscWAT. (B) ATM® amount is low in lean SCWAT (~13% of SVF). However, M® are
numerically the dominant type of immune cells representing half of the immune cells. M® increase in obese WAT, for example in human scWAT from 13
to 20% of the SVF (36). (C) The roles of ATM® in lean (left) and obese (right) WAT. The number of M® is low and they are interspersed between adipocytes
in WAT of lean subjects, contrasting the higher number and local accumulation of M® in crown-like structures during obesity, which is fostered by
proliferation, high immigration and low emigration. The low inflammatory profile (surface markers, cytokine expression and secretion, e.g. IL4, IL10) in
lean subjects transforms into higher inflammatory status (e.g. TNFa, IL6, IL1B) during obesity.
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Macrophage subtypes

Lean adipose tissue Obese adipose tissue

anti-inflammatory = pro-inflammatory anti-inflammatory <= pro-inflammatory

- e
'%“" ’ {3 @ INKT:% %

=
M1ATM neutrophil M2ATM  eosmophil M1 ATM neutrophu

MOATM  eosinoghil ® @ ® @ QQ? .‘Q
4 Y

v: @ CD8 Tcell Th1 cell Th2 cell Treg cell

Th2 cell Treg cell

A |
! !

Energy homeostasis Adipose tissue dysfunction

Th1 cell

CD8T cell

FIGURE 4 | Balance of immune responses in the regulation of adipose tissue function. Lean adipose tissue harbors various anti-inflammatory immune cells,
such as eosinophils, M2 macrophages, Th2 cells, INKT cells, and Treg cells, These immune cells help in maintaining insulin sensitivity and store extra energy in the
form of TGs. In obese adipose tissue, the numbers of pro-inflammatory immune cells, including neutrophils, M1 macrophages, mast cells, Th1 cells, and CD8

T cells, are greatly elevated. Simultaneously reduced number of anti-inflammatory immune cells accelerates pro-inflammatory response and adipose tissue

dysfunction.
H M Keuper Inflammatory control of 8:6 R105-R121

REVIEW

On the role of macrophages in the control of
adipocyte energy metabolism

Michaela Keuper
Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden \’

Correspondence should be addressed to M Keuper: michaela.keuper@su.se
Nutriti
etworl




Adipose tissue and
Inflammation

e Dysregulation of a homeostatic mechanism may arise
from and result in the overproduction or underproduction
of potent signaling molecules.
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How does dysregulation
occur?

* In humans, SAT develops during weeks 14-24 of fetal
gestation through hyperplasia.

* During the first year after birth, adipocyte hyperplasia
and hypertrophy both occur. Adipocyte number then
appears to remain stable until adolescence, when
hyperplasia occurs once again.

e Very little is known about the developmental period of VAT
except that it is rarely formed before birth and that the

total amount of VAT remains small until adolescence.
4
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In obese humans, both SAT and VAT masses- markedly
Increased.

Childhood obesity : WAT mass expansion is
accompanied by adipocyte hyperplasia.

Adult humans : increase in WAT mass (that triggers
metabolic disorder-primarily due to adipocyte hypertrophy

4
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FIGURE 3 | Actin cytoskeleton and insulin-stimulated GLUT4 translocation control in adipocytes. In adipocytes, cytosolc and cortical actin organization s

invoived in GLUTA4 storing vesicie (GSV) transport by insulin stimudation, When adipocytes are hypertrophied, enlarged uniocular ipid droplets and axpanded ol

volume may impede cortical actin dynamics, resulting in impropéer/deficent transiocation of GSVs, This indicates the importanca of the adipocyte cytoskeleton in the
reguiation of adipocyte ghucosa metabolsm In response to insulin,
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Hypertrophic adipocytes

e First: Hypertrophic adipocytes show necrotic abnormalities.
Increase in dead adipocytes in obesity proposed to impede
adipose tissue function and induce inflammation.

e Second: Hypertrophic adipocytes -increased expression and
secretion of pro-inflammatory cytokines.

Raised pro-inflammatory cytokines
serine phosphorylation of insulin receptor substrate-
development of insulin resistance.

In addition, pro- inflammatory cytokines recruit more immune cellsf
Nutrition



 Third: adipocyte hypertrophy induces local adipose
tissue hypoxia because of a relative deficiency of vas-
culature. Hypoxia results in expression of angiogenic
factors upregulation of inflammatory associated genes.

 HIF alpha accelerates adipose tissue fibrosis and
augments the local inflammatory response in the obese
adipose tissue

4
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 Basal lipolysis is elevated in hypertrophic adipocytes
increasing the leakage of free fatty acids. Large
amounts of FFAs released from the obese adipose tissue
are taken up by other tissues, such as the liver and
muscle, which can cause ectopic lipid accumulation

and lipotoxicity.

e Saturated fatty acids (palmitic or stearic acids) , activate
TLR4 signaling cascade ( plays an essential role in innate
immunity), leading to chronic inflammation as well as

Insulin resistance.

e Adipocyte hyper-trophy also impairs insulin-dependent
glucose uptake because of a defect in GLUT4 trafficking.
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Macrophages In obesity

e Suggested that M1 macrophages phagocytize dead
adipocytes and M2 macrophages reconstruct ECM
and resolve the activation of M1 macrophages after
removal of dead adipocytes.

e tight regulation of phagocytosis and tissue repailr.

e |n obesity, balance between M1 and M2 ATMs shifted by
increase in M1 macrophage number. This may interrupt
the normal process of dead cell clearance, whereas
further stimulating a pro-inflammatory response.
4
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FIGURE 5 | Invariant natural killer T (iNKT) cell-mediated regulation of anti-inflammatory response in the adipose tissue. Adipocytes secrete vanous
inflammation-inducing factors including FFAS upon excess energy intake, such as HFD. In addition, antigen presentation by CD1d on adipocytes could activate INKT
cells, which rapidly secrete great quantities of cytokines, such as IL-4, IL-2, and IL-10. IL-4 produced by INKT cells induces macrophage polarization into M2 type
and arginase expression. IL-2 secretion by INKT cells promotes Treg cell function in the adipose tissue. Activation of anti-inflammatory responses mediated by INKT
cells could play a crucial role in the suppression of excessive pro-inflammatory response in the adipose tissue upon HFD.
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GASTROENTRROLOGY 20071312169 - 2180

Obesity, Inflammation, and Insulin Resistance

Weight gain and obesity are major risk factors for
conditions and discases ranging from insulin resis-
tance and type 2 diabetes mellitus to atherosclerosis
and the sequelae of nonalcoholic fatty liver disease. A
chronic, subacute state of inflammartion often accom-
panies the accumulation of excess lipid in adipose
tissue and liver (hepatic steatosis), evidenced by
changes in both inflammartory cells and biochemical
markers of inflammation. These changes can be seen
in the involved tissues and systemically, in terms of
elevated circulating levels of inflammatory markers.
The link between obesity and inflimmation has
therefore raised the important question of whether
obesity-induced inflammation plays a pathogenic role
in the development and progression of these disor-
ders. We review the rapidly expanding body of animal
and clinical data that support potential roles for in-
flammation in the pathogenesis of insulin resistance
and type 2 diabetes mellitus,

ammals have evolved mechanisms to store energy

during periods of plenty, which helps to guarantee
survival dunng penods of drought and famine. Excess
nutnent is stored as triglycenide, primanily in the adipose
ussue bur in other tissues as well. In addition to the
beneficial effects of nutnent storage, however, the long-
term storage of excessive amounts of lipid can have a
negative impact on health, espeaally under conditions of
longer life span and decreased physical actvity. The ad-
verse health consequences of weight gain and obesity are
especially prominent following prolonged peniods of pos-
itive energy balance and may be most pronounced when
foods are energy dense because of high proportions of
simple carbohydrates and saturared fats, such as occurs
today in developed Western societies. As a consequence of
sustained overnutrition, obesity has become epidemic in
industrialized countries and is increasingly common in
developing countries worldwide. The prevalence rates are
continuing to rise, most rapidly in developing countries,
and obesity is occurrning in all groups at younger ages.

STEVEN E. SHOELSON, LAURA HERRERO, and AFIA NAAZ
Josin Datotes Conter and Department of Modone, Harvard Medical School, Boston, Massachusetts

The World Health Organization estimartes thar globally
there are >1 billion overweight adults, 300 million of
whom are obese.! Since 1980, obesity rates have risen
more than 3-fold in some areas of North America, the
United Kingdom, Eastern Europe, the Middle East, the
Pacific Islands, Australasia, and China. Very wormsome
are the concurrent and parallel increases in the preva-
lence of pathologic conditions associated with obesiry,
which include type 2 diabetes mellitus (T2D), cardiovas-
cular disease (CVD), hypertension, hypercholesterolemia,
hypertriglycenndemia, nonalcoholic fatry liver disease
(NAFLD), arthnitis, asthma, and certain forms of cancer.
We review the growing evidence that supports the hy-
pothesis that a subacute state of chronic inflammation
associated with obesity provides a molecular link to some
of these parthologic conditions,

Adipose Tissue

In addition to containing adipocytes, adipose tis-
sue 15 well vasculanized and innervated and contamns a
connective tissue matrix and numerous immune cells
including macrophages.?? White adipose tissue (WAT) 1s
most familiar as the type of far in which mglycende is
stored and from which lipids are mobilized for systemic
utilization when other nissues require energy. WAT is
often subdivided into subcutancous and abdominal de-
pots, whose physiologies may be distnguished and
whose roles in pathology may also be distinct. This 1s
contrasted with brown adipose tissue, whose main func-
tion 1s thought to be nonshivering thermogenesis, a pro-

Abbreviaions used in this paper CRP, Creactive protein; CVD,
cardiovascular disease; FFA, free fatty acids; HFD, high-fat diet; INX3,
inhibitor of NK-A8 kinase i IL-6, interleuking; IRS-1, insulin receptor
sebstrate-1; INK, c-Jun NH2-terminal kinase; MCP-1, moaccyte che-
moattractant profein-1: NAFLD, nonalkcoholic fatty liver disease; PALL,
plasminogen activator inhibitor-1: PPARYy, peroxisome prolferator:
Dctivated receptory; SAA, serum amylold A; TNF-o, tumor mecrosis
factor«; TZD, thiazolidinedione; T20, type 2 diabetes mellitus.

© 2007 bty he AGA Institute
0016-5085,/07/$32.00
doi:10.1053/) gastro 2007.03.059
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JCI The Journal of Clinical Investigation

Altered adipose tissue and adipocyte function
in the pathogenesis of metabolic syndrome
C. Ronald Kahn, ..., Guoxiac Wang, Kevin Y. Lee

J Chn tvest. 2019,129(10).2990-4000. hitps.vdei.orgM0.1172JCNM29187.
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Figure 2. Adipose tissue development and remodeling in health and disease. From left to right, the figure illustiates the conversion of areadipocytes to matuie \Q”r
edipocytes followed by adipose expansion due to prezdipocyte proliferation and hyperplasia of adipocytes followad by adipocyte hypertrophy, adipose tissue Nutriti Ol’l
inflemmation, and changes in adipogyte hormone leading to insulin resistance. In lipodystrophy this process is also disruptad, leading to insulin resistance.
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Figure 3. Adipocyte hormones in intertissue
communication. The figure illustrates different
classes of adipocyte hormones and their varied
effects on metabolism and the development of
insulin sensitivity or resistance. BCAA, branched-
chain amino acids; GOF, growth differentiation
factor ; Nrg4, neuroregulin 4.
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Pro-inflammatory cytokine
action on Insulin Receptor

In the IR state, proinflammatory cytokines activate
several serine kinases. These kinases have been shown
to inhibit insulin action by promoting the
phosphorylation of serine residues of the insulin
signaling pathway, including serine phosphorylation of
insulin receptor substrate-1(IRS-1).

In contrast with tyrosine phosphorylation of IRS-1 in
the Insulin sensitive state, serine phosphorylation
impairs normal insulin signaling.
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Flg. 1. The insulia signalirg pathway and s impainment in insulin resistance. Acivation of the insulin reczpror results in paraliel and belanced insulic signalinz 1o the PISK-Akt
patbway (retabolic arm] and the Ras-MAPK patbway (rusogenic ammn), thus premoting cardiovaseular and endcthelial growtl. cell mesabolism and healthy vascular function (left
pancl). “Metabolic™ effects refer to gluzose transpert, glycozen and procein synthesis. protection fram apoptesis, exidative sticss and inflanivation and ichibirion of lipolysis: on the
other hand, non-metabolic, proRferative, mitogenic, pro-niflammatory and pro-ztherogenic effects of msulin re medialed by the ctvation of Ras, Kal an¢ MAPK. lisulir resis-
tance. mainly cansed by hyperglycemia and hyperlipidemia. 1s claracrenzed by a specific impainvent m PB3K-dspendent signaling and consequent campensatory hyprinsulinenua to
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PKB/Akt and MAPK/ERK phosphorylation is highly induced by inositols: Novel potential insights in endothelial dysfunction in preeclampsia; Rossella D'Oriaa, Luigi Laviola et. al
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Mechanisms of obesity-induced inflammation and insulin
resistance: insights into the emerging role of nutritional

strategies

Maeve A. McArdle*, Orla M. Finucane, Ruth M. Connaughton, Aoibheann M. McMorrow and

Helen M. Roche

Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College Dublin,

Dublin, Republic of Ireland

Inflammasome 15t hit

FIGURE 4| Cross-talk between insulin and inflammatory signaling
pathways Infammatory signaling pathways activated by SFA or by
pro-infammatory cytokinee IL18, ILE, and TNF« initate a cascade of evente
that promcte the release of further inflammatory mediators, These signaling
events corverge at tha NFxB and MAPK pathways, resultirg ir the
translocation of transcription ‘actors to the nucleus, transcr ptional activation,
and cy'okine production. he inflammascme 1S activated through a twe-hit
process, with obesity the first hit ocours whan TLR< is activated by SFAs and
this results in pro-IL-1§ production, A™P or ceramides than grovde the second

nit. The NLRP3 inflammasome acts on pro-caspase-1 causing the release of
saspase-1; caspase-1 ther acts upon pro-ll-13 cleaving this precursor to the
active |1 form. Ineulin eignaling promotee glucoee uptake by promoting the
translocation of GLUT4 to the cell surface plasma memtrane. Inflammetory
signaling pathways can alter the phosphorylation status of IRS-1. IR3-1 s
srucial in the insulin signalng pathway, tyrosine phosphorylation is asscciated
Wwith an Insulin sensitive state. IKKE and JNK can promote senna
ohosphorylation of IRG-1 and this phasphorylation state is linked to insulin
resistarce and reduced glucose untake.
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The Journal of Clinical Investigation

Insulin sensitivity: modulation by nutrients and
inflammation

Simon Schenk, ..., Maziyar Saberi, Jerrold M. Olefsky

J Clin Invest. 2008;118(9):2992-3002. hitps:/doi.org/10.1172/JCI34260.
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Filgure 1

Falty acid metabolism ard insulin action in skeletal muscle or liver. Cbesily resulls in an
increased flux of free fatty acids into the circulation and uptake by the myocyte or hepatocyta.
Activatec fatty acids (i.e.. fatty acyl-CoAs) are “metabolized” primarily via one of wo pathways,
oxidation or storage. When fa'ty acid flux axceeds the ahility of these pathwzays to dispose
of fetty acyl-CoAs, Intermediaries of fatty acid metabollsm (e.g., DAG, PA, LPA, ceramide)
accumulate. In tumn, these fatty acid intermediates can aclivate a number of different serire
kinases tha: can negatively regulate insulin action. Ceramide can also impair insulin acticn
through inferactions with PKB/Akt. An nability to completaly oxidiza fatty acids through f-oxi-
daiior, which leads 10 &n accumulation cf acyicarritines, has a so been hypothesized to cause
insulin resisiance, although the precise mechanisms leading to insulin resistance are, to dats,
un<ncwn. AGPAT, acylglycerol-3-ohosphate acyltrars’erase; PAP, PA phosohohydrolase.
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Mechanisms of obesity-induced inflammation and insulin

resistance: insights into the emerging role of nutritional

strategies

Maeve A. McArdle*, Orla M. Finucane, Ruth M. Connaughton, Aoibheann M. McMorrow and

Helen M. Roche

Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College Dublin,

Dublin, Republic of Ireland

Liver
Hepatic insulin resistance leads to
increased hepatic gluconeogenesis
and lipogenesis. Accumulation of
FFAs in the liver result in hepatic
steatosis and contribute to disrupted
insulin  signaling. Kuppfer cell
activation and additional macrophage
infiltration exacerbate the obese
hepatic environment.

Adipose Tissue
White adipose tissue (WAT) ,
is a lipid storage organ that
expands with obesity.

Skeletal Muscle

Skeletal muscle is the main
target for glucose uptake in the
body. This can be insulin-
dependent or independent.
Glycogenesis follows glucose
uptake. Defective glycogen
synthesis is linked with insulin
resistance. Dysregulation of
fatty acid metabolism in
skeletal muscle, 1is also
associated with  defective
insulin signaling.

FIGURE 1 | Metabolic tissues implicated in obesity-induced
insulin resistance. Adipose tissue, liver, and skeletal muscle are
involved in glucose uptake, glucose production, and glucose
processing. These tissues therefore are paramount in obesity and

Composed of adipocytes and
a stroma-vascular fraction it
also functions as an endocrine
organ; and secretes: leptin,
adiponectin, TNF-a, IL-1p,
IL-1RA, IL-6, MIF, IL-10.
WAT expansion and immune
cell infiltration are crucial
events driving insulin
resistance. WAT participates
in insulin-stimulated glucose
uptake, and releases FFAs
following lipolysis.

the progression of insulin resistance. A combination of defective
fatty acid storage and metabolism together with immune cell
infiltration and a pro-inflammatory tissue milieu result in
dysregulation of insulin signaling.
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The Journal of Clinical Investigation

Insulin sensitivity: modulation by nutrients and
inflammation

Simon Schenk, ..., Maziyar Saberi, Jerrold M. Olefsky

J Clin Invest. 2008;118(9):2992-3002. hitps:/doi.org/10.1172/JCI34260.
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imsulin ros stance n adl:»q'to; and Ivar, exacorbalion ol he |'ﬂ3mabf}' state, and eystorﬂc neuin rasisianco. Wirh 0N$|?y, thera is also
incroased lat socumulation within skolotal muscio, and theso intermuscular fal dopots bocores infitraled with proinflammatory racrophagas,
which may cause paracring-| ke ivsulin resistance in skelatal muscle, In paralel with thesg inflammalicn-related charges, altorations in fatty
2cd metabolism can leac 1o the accumrulaton of falty acd intermeciatos wit he hver and skalctal muscle. whach can cause insulin resistance
via mochanieme outlined ir Figure 1. In adcition, falty acids can earve as ligands 'c bioadly actvalc inflammadory pathmaye in Kuptfor cole and
ATMa (e.g., Via TLA2TLR4 aignaling pathways).
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Metabolically healthy Obese

e 20-30% of obese adults do not express the adverse
metabolic phenotype typically associated with obesity.

e MHO have high levels of insulin sensitivity but may not
display symptoms of hypertension, dyslipidemia, or
chronic inflammation and have significantly smaller

omental adipocytes than metabolically unhealthy
individuals.

e In contrast, MONW, raised insulin, TAG, FFA, low HDL
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Brown adipose tissue
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Significance of beige and brown fat

Unlike WAT, BAT functions prominently in thermoregulation through
lipid oxidation-mediated heat generation.

Although both BAT and muscles harbor high levels of mitochondria,
BAT is specialized for heat generation rather than for ATP synthesis
by high expression of mitochondrial uncoupling protein 1 (UCP-1).

The adipose tissues express high levels of B-adrenergic receptors
that mediate cold-induced lipolysis

After cold exposure,large amounts of lipids from WAT flow into BAT.
Concurrently, B-adrenergic signaling in BAT activates the expression of
peroxisome proliferator- activated receptor y coactivator 1a which
stimulates the expression of UCP-1 and mitochondrial genes. p
\
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On the role of macrophages in the control of
adipocyte energy metabolism
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Strategies to increase
brown fat
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INTERVENTION AND PREVENTION

Adiponectin Changes in Relation
to the Macronutrient Composition
of a Weight-Loss Diet

Suzanne S, Summer’, Bonnie J. Brehm?, Stephen C, Benoit® and David A, D’Alessio*

Table 1 Baseline characteristics of study participants

Cobornt1 Cohort 2 Combined cohorte

Low-lat Low-carbohydrate Low-fat Low-carborydrate Low-fal Low-carbohydrale

=20 in=22) (=19 (n=20) (r=30) =42
Age, vears 42.6(+1.9 43.5(1.5 2021232 44 G [£2 4) 41.9(£1.8) 44.5(=1.4)
Race 7 (35% 4(16%) 2111%) 5 [25%) 9 [23%) 9(219;)
Heigrt(m) 1.7 (£C.01) 1.7 (x0.01) 1€12001) 17 [2001) 1.6 (2007 1.7(£3.01
Weight (k) 2.3 (1.3 €1.21.3 902 iz2.0) 906 (+2.4) 91.3(=1.2) 20.9(1.4)
BMI (kg'n¥, 31.0(£L.9] 33.1(20.9) 33.41205) 328 [206) 33.8 [£0.4) 33.2(£0.4)
Body fal ky) 37.8 (.6, 373010 36.7 1208) 379 (x1.3) 37.3(0.5) 37.6(=1.8)
LBM ka) 51.0(+1.1] £0.4(1.3 504114 496 (+1.2) S50.7 (=0.9) 53.0(2.9)
Serum adincrectin CR(+1.T) 0.3(+1.0 8.7 40 5) 101[+09) 020 (+1.0) 12.0(22.7)
(meg/mi)
FPG (mg'dh JC B (+1.9 C5.d(+2.3 5AC (42 6) BO6 [+3E) Q1.4 (+1.6) 92.7(+2.2)

Al sbjects are farrale. Values are mean = s.eum, except for ‘he vanzble race, which is presertad as number and percent o subjects whe were Afrcan American Al
cther subjects wese whte,
FPG., s i e na glucoses L3N, ks Lody niass,

Table 2 Mean daily intake cf macronutrienta: baseline vs. postintervention

Low.fat (0 = 5€) o _aw-cashahycrata (n =42)
Baszine Postintervention Bazeline Fostintervention
Ictal enargy (keal 10/86 287 U) 13422 (=630p 1,373.3 (87,3 1,401,6 |=81.8p
Carbohydiale g 250.1 '+17.5) 1TOS [+10 7y 221.5(+13.5 95,7 (=117
Portion of snergy intake 0% 50% 4% 27%
Fat () 79.1 25.0) 463 [+3.4) 755 (+4.58) 756 =5.4p
Portion of energy intake 56% 3% 35% 49%
Pretor. 'g) .7 123.1) 618 [43.4) 74, (3.0 81.7 =4.8p
Portion of snergy intake 1£% 19% 1595 24%

Veluea are means L 3.2m.
P < 0001 compered to baaaline, W < 2.001, differonca betwean groupa. 1 < C.05 compared to bascling. P < 0.1 dfiererce between groupa
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ARTICLES nature pubdlishing group
INTERVENTION AND PREVENTION

Adiponectin Changes in Relation
to the Macronutrient Composition
of a Weight-Loss Diet

Suzanne S, Summer’, Bonnie J. Brehm?, Stephen C, Benoit® and David A, D’Alessio*

Table 3 Body weight and body fat: baseline vs. postintervention

Low-fat (n = 39) Low-carbohydrate (n = 42)
Baseline Postintervention Baseline Postintervention
Body weight (kq) 91.30+1.2) 86.3(+1.4r 90.9{+1.4) B1.8(+1.4p
Body fat (xq) 7. 30+0.5) 34.7 (+1.4F 37.6(+0.8) 3Z.1 (+0.9p»°

VIS Jre rosan L sean.
WP = 0.001 compared to bascine. P < 0.05, differenos betwieen groups.

14

10 [

Adliporactin (mog'ml)

LF LG
Diet

Figure 2 Changes in serum adiponectin. by diet. Data are presented as
means = s.e. *FP < 0.01 as compared to baseline. Gray bars, baseline:
black bars, postintervention.
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Food Ingredients Involved in
White-to-Brown Adipose Tissue
Conversion and in Calorie Burning

Hamza El Hadi, Angelo Di Vincenzo, Roberto Vettor and Marco Rossato*

Internal Madicing 3. Dapariment of Medicine, Univarsity of Padus, Padua, laly
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Food Ingredients Involved in
White-to-Brown Adipose Tissue
Conversion and in Calorie Burning

Hamza El Hadi, Angelo Di Vincenzo, Roberto Vettor and Marco Rossafo*
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FIGURE 3 | S siuruiry o the resdenisme: rnobasd i the slimubiton oof benan sefpopeneses. milorynenisd bigenesss snd srerpy wogsecis m by sorm dietay
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browr adpoganess. | he adseneric stmuabon i beown adinocytes can be also promoted by the raducton of degradaton of (d) cAME and (e) norepinedtnre
thrugh disect inhibition of FDEs and COMT activity, espacthvaly TSPME, transient meapicr porential cacdion channal melstatin 8; LICPT, uncoupling preter 1
TPY1. transient recaptor pctantal vanilcid 1; SNA. sympachetic nerve activity: AVMPK, adenosire monophosphace-activatad protein kinase. SIST1, sitine";

PGC 1x, porowisome profforaior astrsated roocptor gamma coadtiviver 1 alpka; COMT, catadhel O metyd transkerase oAMP. oysho adenosne monsghosphate;
FLEz, phosgrodieetarseee; PURAS, polyuneaturated fatty acice; Ac acetyl group; SAME, oydic adancene monophoephate; k=, energy a<pandiun FEARG/y
paroxisnma prolfarator-activated racaptor aphaigamma; PRKA, pmter kirsse 4. PROMI6; PR-doman oortaining 16, (+), stimuiation: <), inhibifion: 1, increasa
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Open Cell Research (2017) 27:1309-1326.
ORIGINALARTICLE www.nature.com/cr

Intermittent fasting promotes adipose thermogenesis and
metabolic homeostasis via VEGF-mediated alternative
activation of macrophage

Kyoung-Han Kim""*", Yun Hye Kim* ", Joe Fun Son', Ju Hee Lee””*, Sarah Kim®, Min Seon Choe',

Joon Ho Moon®, Jian Zhong®, Kiya Fu’, Florine Lenglin®, Jeong-Ah Yoo®, Philip J Bilan®, Amira Klip",

Andras Nagy™°, Jae-Ryong Kim', Jin Gyoon Park®, Samer MI Hussein’, Kyung-Oh Doh'", Chi-chung Hui',
Hoon-Ki Sung™*

“In this study, we establish a new IF regimen to investigate
the impact of IF under isocaloric conditions and
demonstrate that IF improves glucose homeostasis and
prevents diet-induced metabolic dysfunction without
caloric intake reduction. Mechanistically, we found that
WAT is pivotal for mediating IF-induced metabolic benefits
via browning of WAT through adipose-VEGF-mediated
alternative activation of adipose macrophage (M2
macrophage). Our study unveils a novel mechanism by
which IF promotes whole-body homeostasis through
browning of WAT by VEGF-mediated macrophage
switching.”
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Figure 3 Fasting induces adipose-VEGF aexpression. (A) MA piot haghighting significantly altered miRNA expression of ad-
pose-dernved factors in PWAT of HFD-IF mece, compared to that of HFD-AL mice. Vegla, Cfd, Nrgd, Adipoq, and Lep en-
code vascular endothelial growth factor, adipsin, neureguin 4, adiponectin, and leptin, respectively. (B) gPCR validation of
adpose-derived factors m PWAT (HFD, ALIF. n = 6/8). (C) mRNA expression levels of Vegfa, Cld. Nrgd, Adipog, and Lep n
PWAT at feading and 24 h of fasting (n = 5 per group). (D) Vegfa mRNA expression in PWAT at different fasting durabons (n

56 per group). (E) Vegra miRNA expression in PWAT at feeding, 24 h of 1asting, 6 h of redeadng, fastng with B3-AR anag-
orest, SRSG230A (5 mgkg, 1p ), and fastng with non-specfic B-AR antagonist, Propranolol (5 mg’kg, ip., n = 5 per group)
(F) Vegfa mRNA expression m PWAT ot feeding and 24 h of fasting with treatments of velede or clodronate (n = 5) (G) A
representative macroscopic image ilustrating increased vasculanzation in IWAT of HFD-F mece, compared to HFD-AL mice
Black and white amows ndicate IWAT of HFD-AL and HFD-IF mica, respectively. (H) Represaniative microscopic images
of adpocytes and blood vessels, visualzed with penipin and PECAM-1 antibodies, respectively, in whole-mount PWAT (1)
Quantification of vessel densbes m PWAT. Data are mean £ SEM, one- or two-wary ANOVA with Student-Newman-Keuls post
hoc analysis and two-talled unpaired Student’s rHest; *P < 0.05 vs HFD-AL or Fed. * < 0.05 vs Fast (24 h)
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Figure 4 Adipose-VEGF is required for IF-mediated metabolic benefits. (A) Body weight measurements of aP2-Cre, Vegfa™™
mice (VEGF**?) subjected to AL and IF under HFD feeding (VEGF**-HFD, AL/IF: 1 = 5/6). (B) Tissua weight of IWAT, PWAT,
and BAT in VEGF**-HFD-AL and -IF mica. (C) H&E-stained sachons of IWAT, PWAT, and BAT show no noticeable differenc-
©5 botween VEGP*.HFD-AL and -IF mice. (D) Lep mRNA expression of PWAT in VEGF*.HFD mice. (E) Plasma leptin
levels. (F) GTT n VEGF*.HFD mice. (G) HOMA-IR in VEGF*.HFD mice. (H) Gene expression analysis revealed that IF
increasad sympathatic activation (Adrb3), but did not affect brown'beige adipocyte maker expression (1L.e., Ucp?) n PWAT of
VEGF* mica. (1) No changes in Ucp? expression in BAT of VEGF** mice upon IF. Data are mean + SEM; two-tailed un-
paired Student’s e8!, *P < 0.05 vs VEGF*.HFD-AL. Lop, leptin
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Figure 6 Fasting and adpose-VEGF nduce allemative activation of macrophage. (A) M1/M2 macrophage marker gene
exprosson analysis in HFD-AL and -IF mice. (B) M1/M2 macrophage marker gene expression in VEGF*“.HFD-AL and -IF
mica. (C) M1/M2 macrophage marker gene expression after mtermittant adipose-VEGF upregulabon in VEGF***" mica_ (D)
M1/M2 macrophage marker gene expresson analysis in fed and fasted (24 h) mice. (E) Representative images of M2 marker
Cd206-stamed colls in whole-mount PWAT of fed and fasted (24 h) mice. (F) M1/M2 macrophage marker gene eagpression
analysis after acute adipose-VEGF upregulation in VEGF**™ mica_ (G) Type 2 cytoline gene exprassion in fed and fasted
(24 h) mca. (H) Type 2 cytoking gene axprassion afler acute adpose-VEGF upregulabon (48 h) in VEGF***=™ muce (1) Rep-
resentative images of M2 macrophages and Ucp! expression in WAT after acute adpose VEGF upregulation n VEGFP™ ™
mice with treatments of vehicle or clodronate. Values are mean £ SEM (post HFD-AL: n = 7 and post HFDAF. n = 9), two
taled unpaired Student’s rtast, *P < 0.05 vs HFD-AL, VEGF*-HFD-AL, VEGF ™ or fed mice. See also Supplementary
informabon, Figure S7
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Figure 7 VEGF expression in human WAT corredates with M2 macrophage and WAT brownng. (A) A corredabion heatmap
of VEGFA gene with unsuperised heerarchical clustenng of M1/M2 macrophages- and begetrown adipocyte-associsted
genas in human WAT. A hestogram of VEGFA gene expression level (RPKM) 1s shown on the top of the heatmap. (B) Rep-
resentative scatter plots showing coredabon of VEGFA with ILTRT & ABHDS (M2), CIDEA & NUDFSZ (beige), and NR3C2
& ITGB7 (M1) genes. (C) Summary of VEGFA correlabon with M2, beige, and M1-associated genes. Permutabion Pvalues
with the GSEA are shown. (D) Schematic model of IF-mediated VEGF expresson underlying adipose themogenesss and M2

macrophage polanzation. GSEA, gane set ennchment analysis.
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Plasticity of adipose tissue in response to @ o
fasting and refeeding in male mice

Hao-Neng Tang'”, Chen-Yi Tang', Xiao-Fei Man', Shu-Wen Tan', Yue Guo', Jun Tang', Ci-la Zhou!
and Hou-De Zhou'

“fasting induced preferential mobilization of lipids from the mesenteric adipose
tissue depot, whereas refeeding induced preferential restoration of adipose tissue
from the inguinal depot. These findings confirmed that long-term fasting and
refeeding could lead to a reduction of the'metabolically harmful’ visceral adipose
tissue, as well as highlighting the role of plasticity of adipose organs on different
anatomical sites of adipose tissue when subject to environmental changes.”
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Summary

Adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis.

WAT is a key energy reservoir for other organs and brown adipose tissue accumulates lipids for cold-
induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and
adipokines that control systemic energy balance by regulating appetitive signals from the central
nerve system as well as metabolic activity in peripheral tissues.

Changes in the nutritional status result in dynamic remodeling of adipose tissue.

Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues,
accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes.

Stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive
processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are
dysregulated in obese adipose tissue remodeling.

Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade
inflammation and metabolic disorders, such as insulin resistance.
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