Topic 10: Basic Geometry

Notes:

Types of Angles and their Properties:

1. There are 4 types of angles:

2. Two angles $\angle x$ and $\angle y$ are said to be **complementary** angles if $\angle x + \angle y = 90^\circ$. They do not need to be next to each other.

3. Two angles $\angle x$ and $\angle y$ are said to be **supplementary angles** if $\angle x + \angle y = 180^\circ$. They do not need to be next to each other.

Geometrical Properties of Angles:

4. Adjacent angles on a straight line (adj. $\angle s$ on a str. line) If \mathcal{ACB} is a straight line, then $\angle a + \angle b = 180^{\circ}$.

5. Vertically opposite angles (vert. opp. $\angle s$) For any 2 intersecting straight lines, $\angle a = \angle b$ and $\angle c = \angle d$.

6. Angles at a Point ($\angle s$ at a point)

For angles at the same point, $\angle a + \angle b + \angle c + \angle d + \angle e = 360^{\circ}$.

7. Parallel Lines and the Alternate, Corresponding and Interior angles:

Given any 2 parallel lines cut by a transversal, we have:

- (a) Alternate angles e.g. $\angle a = \angle \mathscr{V}$ (alt. $\angle s$, $\mathcal{WX} // \mathcal{YZ}$)
- (b) Corresponding angles e.g $\angle c = \angle \&$ (corr. $\angle s$, $\mathcal{WX} // \mathcal{YZ}$)
- (c) Interior angles e.g. $\angle b + \angle d = 180^{\circ}$ (int. $\angle s$, $\mathcal{WX} // \mathcal{YZ}$)

Note:

- A traversal is any line that cuts 2 lines.
- Conversely, we can use either (a), (b) or (c) to prove 2 lines are parallel.