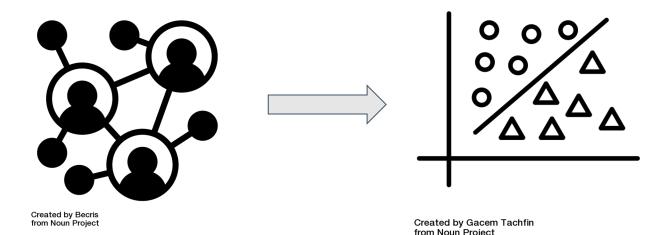
Neural Message Passing

Overview

- High-level intuition
- General equations with examples
- Coded example

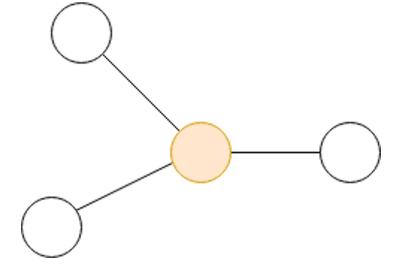
Background

- Our goal is to assign our nodes meaningful coordinates (i.e., "embeddings")
 - Coordinates allow us to create decision boundaries for classification problems
- An embedding of a node should consider its connections
 - I.e., nodes that share many connections should have similar embeddings



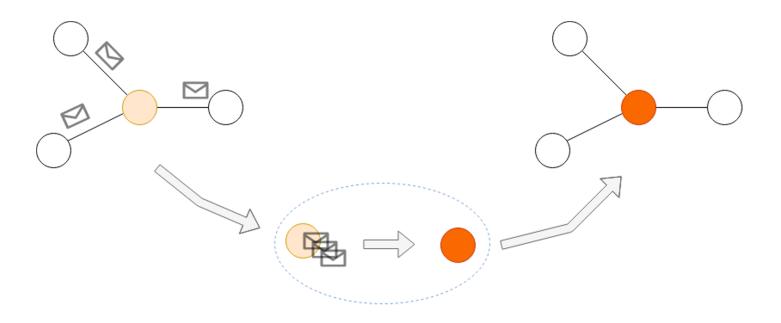
Motivating Example

- To make things concrete, let's use the following setup:
 - Nodes: people
 - Node features: age, net worth
 - Edges: in phone contacts
 - Edge features: number of phone calls in last year
- Will focus on one node in a small subgraph, but process is for all nodes



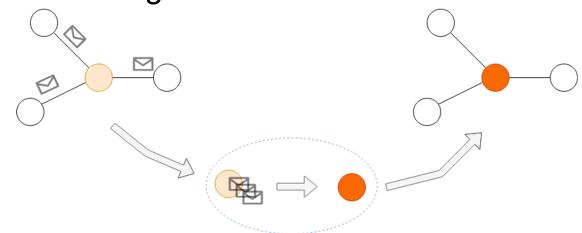
Intuition

- Goal: to calculate "neighborhood-aware" embeddings for nodes
- Approach:
 - Messages are sent between nodes via the edges
 - Nodes use these messages to update its embedding

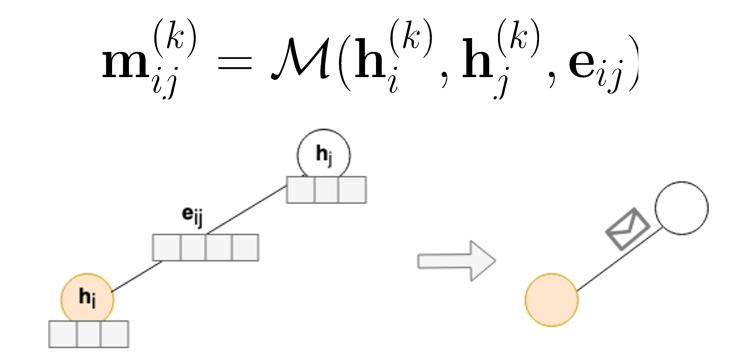


Framing of the problem

- There are three main functions:
 - The Message function, which computes the message using node/edge features
 - The **Aggregation** function, which combines the set of messages into a fixed-length vector that represents the neighborhood
 - The **Update** function, which computes the new node embedding using the aggregated messages and the old node embedding



Message function



 $\mathcal{M}(\mathbf{h}_{i}^{(k)},\mathbf{h}_{j}^{(k)},\mathbf{e}_{ij})$

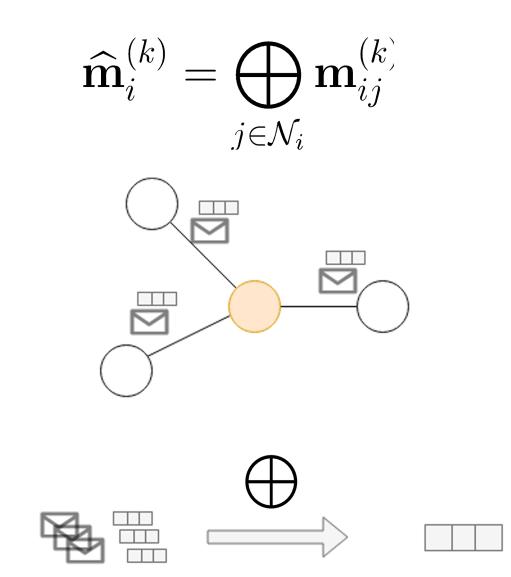
Message function examples $\mathbf{m}_{ij}^{(k)} = \mathcal{M}(\mathbf{h}_i^{(k)}, \mathbf{h}_j^{(k)}, \mathbf{e}_{ij})$ $\mathbf{m}_{ij}^{(k)} = \mathbf{h}_j^{(k)}$ $\mathbf{m}_{ij}^{(k)} = \frac{1}{c_{ij}} \mathbf{h}_j^{(k)}$ $\mathbf{m}_{ij}^{(k)} = a\left(\mathbf{h}_i^{(k)}, \mathbf{h}_j^{(k)}\right)\mathbf{h}_j^{(k)}$

Neighbor Copy

Structurally Normalized

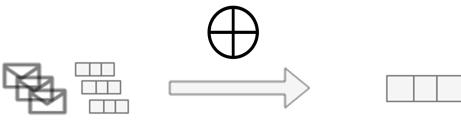
Attention

Aggregation function



Aggregation function

• Fixed-length representation regardless of neighborhood size



 Permutation invariant: gives the same answer regardless of how you order the inputs

Aggregation function examples $\widehat{\mathbf{m}}_{i}^{(k)} = \bigoplus \mathbf{m}_{ij}^{(k)}$ $j \in \mathcal{N}_i$ $\widehat{\mathbf{m}}_{i}^{(k)} = \sum \mathbf{m}_{ij}^{(k)}$ Sum $j \in \mathcal{N}_i$ $\widehat{\mathbf{m}}_{i}^{(k)} = \frac{1}{|\mathcal{N}_{i}|} \sum_{j \in \mathcal{N}_{i}} \mathbf{m}_{ij}^{(k)}$ Average $\widehat{\mathbf{m}}_{i}^{(k)} = \max_{j \in \mathcal{N}_{i}} \left(\mathbf{m}_{ij}^{(k)} \right)$ Max

Update function

 $\mathbf{h}_{i}^{(k+1)} = \phi\left(\mathbf{h}_{i}^{(k)}, \widehat{\mathbf{m}}_{i}^{(k)}\right)$ $\mathbf{h}_{i}^{(k)}$ $\mathbf{f}_{i}^{(k)}$ $\mathbf{f}_{i}^{(k)}$ $\mathbf{h}_{i}^{(k)}$ $\mathbf{h}_{i}^{(k+1)}$

Update function examples

$$\mathbf{h}_{i}^{(k+1)} = \phi\left(\mathbf{h}_{i}^{(k)}, \widehat{\mathbf{m}}_{i}^{(k)}\right)$$

$$\mathbf{h}_{i}^{(k+1)} = \sigma \left(\mathbf{W}^{(k+1)} \widehat{\mathbf{m}}_{i}^{(k)} \right)$$

$$\mathbf{h}_{i}^{(k+1)} = \sigma \left(\mathbf{W}_{\text{self}}^{(k+1)} \mathbf{h}_{i}^{(k)} + \mathbf{W}_{\text{neigh}}^{(k+1)} \widehat{\mathbf{m}}_{i}^{(k)} + \mathbf{b}^{(k+1)} \right)$$

$$\mathbf{h}_{i}^{(k+1)} = \sigma\left(\mathbf{W}^{(k+1)} \text{CONCAT}\left(\mathbf{h}_{i}^{(k)}, \widehat{\mathbf{m}}_{i}^{(k)}\right)\right)$$

Architecture examples - GCN $\mathbf{h}_{i}^{(k+1)} = \sigma \left(\mathbf{W}^{(k+1)} \widehat{\mathbf{m}}_{i}^{(k)} \right)$ $\widehat{\mathbf{m}}_{i}^{(k)} = \sum_{j \in \mathcal{N}_{i}} \mathbf{m}_{ij}^{(k)} = \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(k)}$ Aggregation Message

$$\mathbf{h}_{i}^{(k+1)} = \sigma \left(\mathbf{W}^{(k+1)} \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(k)} \right)$$

Examples in code - DGL

 $=\sigma \left(\mathbf{W}^{(k+1)} \mathbf{CONCAT} \right)$

 $\mathbf{h}_{i}^{(k)}, \frac{1}{|\mathcal{N}_{i}|} \sum_{j \in \mathcal{N}} \mathbf{h}_{j}^{(k)}$

import dgl.function as fn

class SAGEConv(nn.Module): """Graph convolution modul

Parameters

in feat : int Input feature size.

out_feat : int Output feature size.

.....

def __init__(self, in_feat, out_feat): super(SAGEConv, self).__init__() # A linear submodule for projecting the input and neighbor feature to the output. self.linear = nn.Linear(in_feat * 2, out_feat)

 $\mathbf{h}_{i}^{(k+1)}$

def forward(self, g, h): """Forward computation

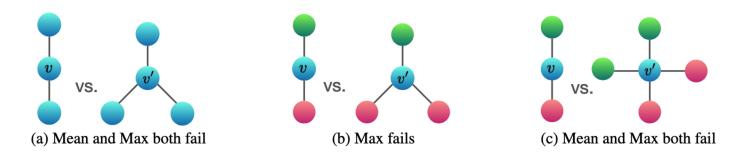
Parameters

g : Graph The input graph. h : Tensor The input node feature. with g.local_scope(): g.ndata['h'] = h # update_all is a message passing API. g.update_all(message_func=fn.copy_u('h', 'm'), reduce_func=fn.mean('m', 'h_N')) h_N = g.ndata['h_N'] h_total = torch.cat([h, h_N], dim=1) return self.linear(h_total)

https://docs.dgl.ai/tutorials/blitz/3 message passing.html

Limitations

 The aggregation function applied to pair-wise messages has limited ability to distinguish certain structures[^]



 Repeating message passing multiple times will cause the well-known "over-smoothing" problem, which makes the node embeddings become a self-similar blob

^ Xu, Keyulu, et al. "How powerful are graph neural networks?." *arXiv preprint arXiv:1810.00826* (2018).

Additional Resources

- Gilmer, Justin, et al. "Neural message passing for quantum chemistry." *International conference on machine learning*. PMLR, 2017. (<u>arXiv</u>)
- Battaglia, P. et al. "Relational inductive biases, deep learning, and graph networks." *ArXiv* abs/1806.01261 (2018): n. pag. (arXiv)