4 (a)	$\frac{1}{\sqrt{4-x}}=(4-x)^{-\frac{1}{2}}=4^{-\frac{1}{2}} \times(1 \pm \ldots \ldots$	M1	2.1
	Uses a "correct" binomial expansion for their $(1+a x)^{n}=1+\operatorname{nax}+\frac{n(n-1)}{2} a^{2} x^{2}+$	M1	1.1 b
	$\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{2}\left(-\frac{x}{4}\right)^{2}$	A1	1.1 b
	$\frac{1}{\sqrt{4-x}}=\frac{1}{2}+\frac{1}{16} x+\frac{3}{256} x^{2}$	A1	1.1b
		(4)	
(b) (i)	States $x=-14$ and gives a valid reason. Eg explains that the expansion is not valid for $\|x\|>4$	B1	2.4
		(1)	
(b)(ii)	States $x=-\frac{1}{2}$ and gives a valid reason. Eg. explains that it is closest to zero	B1	2.4
		(1)	
(6 marks)			

(a)

M1: For the strategy of expanding $\frac{1}{\sqrt{4-x}}$ using the binomial expansion.
You must see $4^{-\frac{1}{2}}$ oe and an expansion which may or may not be combined.
M1: Uses a correct binomial expansion for their $(1 \pm a x)^{n}=1 \pm n a x \pm \frac{n(n-1)}{2} a^{2} x^{2}+$
Condone sign slips and the " a " not being squared in term 3 . Condone $a= \pm 1$
Look for an attempt at the correct binomial coefficient for their n, being combined with the correct power of $a x$
A1: $\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{2}\left(-\frac{x}{4}\right)^{2}$ unsimplified
FYI the simplified form is $1+\frac{x}{8}+\frac{3 x^{2}}{128} \quad$ Accept the terms with commas between.
A1: $\frac{1}{\sqrt{4-x}}=\frac{1}{2}+\frac{1}{16} x+\frac{3}{256} x^{2} \quad$ Ignore subsequent terms. Allow with commas between.
Note: Alternatively $(4-x)^{-\frac{1}{2}}=4^{-\frac{1}{2}}+\left(-\frac{1}{2}\right) 4^{-\frac{3}{2}}(-x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2} 4^{-\frac{5}{2}}(-x)^{2}+.$.
M1: For $4^{-\frac{1}{2}}+\ldots$. M1: As above but allow slips on the sign of x and the value of n A1: Correct unsimplified (as above) A1: As main scheme
(b) Any evaluations of the expansions are irrelevant.

Look for a suitable value and a suitable reason for both parts.
(b)(i)

B1: Requires $x=-14$ with a suitable reason.
Eg. $x=-14$ as the expansion is only valid for $|x|<4$ or equivalent.

$$
\text { Eg ' } x=-14 \text { as }|-14|>4 \prime \quad \text { or } \quad \text { ' I cannot use } x=-14 \text { as }\left|\frac{-14}{4}\right|>1^{\prime}
$$

Eg. ' $x=-14$ as is outside the range $|x|<4$,
Do not allow ' -14 is too big' or ' $x=-14,|x|<4$ ' either way around without some reference to the validity of the expansion.
(b)(ii)

B1: Requires $x=-\frac{1}{2}$ with a suitable reason.
Eg. $x=-\frac{1}{2}$ as it is 'the smallest/smaller value' or ' $x=-\frac{1}{2}$ as the value closest to zero' (that will give the more accurate approximation). The bracketed statement is not required.

