CIRCULAR & ROTATIONAL MOTION

Circular vs Rotational Motion

- Object travels along a circular path (circumference of a circle whose center lies outside of the object).
- A point on a rotating object is in circular motion.
- Typically uses the **tangential description of motion**.

Rotational Motion

- Object rotates about its own center (a point or axis that passes through the object).
- Typically uses the **angular description of motion**.
- All points on the object have the same angular motion.

Circular Motion (Tangential Description)

Variables		SI Unit
S	tangential position	m
Δs	tangential displacement	m
v _t	tangential velocity	<u>m</u> s
a_{t}	tangential acceleration	$\frac{m}{s^2}$

$$s_{\rm f} = s_{\rm i} + v_{\rm ti}t + \frac{1}{2}a_{\rm t}t^2$$

 $v_{\rm tf}^2 = v_{\rm ti}^2 + 2a_{\rm t}(s_{\rm f} - s_{\rm i})$

Kinematic equations with constant acceleration

• Circular motion typically uses the tangential desciption of motion.

- The value of the position will continue to increase past 1 revolution (or decrease in the negative direction).
- Tangential motion is sometimes referred to as the "linear" motion of an object in circular motion because the displacement, velocity and acceleration are directed along a **tangent line**.

- At a point on a curve, the **tangent line** passing through it matches the curvature or "slope" of the curve.
- For a circle, a tangent line only touches one point.

• For an object in circular motion, the instantaneous direction of the motion is always tangent to the circle.

Rotational Motion (Angular Description)

- Rotational motion typically uses the angular description of motion.
- Can also be used to describe the angle that is "swept out" by an object in circular motion.
- All points on a rotating object have the same angular motion because they rotate together (but they may have different tangential motions depending on their distance from the center).
- The value of the position will continue to increase past 1 revolution (or decrease in the negative direction).

Converting Between Tangential & Angular Descriptions

1 circumference → 2π radians
1 circumference → 360°
1 circumference → 1 revolution
1 circumference → 1 cycle

Acceleration: $a_t = \frac{\Delta v_t}{\Delta t} \frac{m}{s^2}$ $a_t = r \alpha$ $\alpha =$

- In some cases, we need to convert from one description to another.
- This conversion is based on the definition of a radian, or the relationship between the circumference and the number of radians in a circle.

Δω

Δt

rad

Circular & Rotational Motion - Study Guide

✤ physicslab.app