CIRCULAR \& ROTATIONAL MOTION

Circular vs Rotational Motion

Circular Motion

- Object travels along a circular path (circumference of a circle whose center lies outside of the object).
- A point on a rotating object is in circular motion.
- Typically uses the tangential description of motion.

Rotational Motion

- Object rotates about its own center (a point or axis that passes through the object).
- Typically uses the angular description of motion.
- All points on the object have the same angular motion.

Circular Motion (Tangential Description)

- Circular motion typically uses the tangential desciption of motion.
- The value of the position will continue to increase past 1 revolution (or decrease in the negative direction).
- Tangential motion is sometimes referred to as the "linear" motion of an object in circular motion because the displacement, velocity and acceleration are directed along a tangent line.

- At a point on a curve, the tangent line passing through it matches the curvature or "slope" of the curve.
- For a circle, a tangent line only touches one point.

- For an object in circular motion, the instantaneous direction of the motion is always tangent to the circle.

$$
\omega=\frac{\Delta \theta}{\Delta t}
$$

Angular velocity

Variables		SI Unit
$\boldsymbol{\theta}$	angular position	rad
$\boldsymbol{\Delta} \boldsymbol{\theta}$	angular displacement	rad
$\boldsymbol{\omega}$	angular velocity	$\frac{\mathrm{rad}}{\mathrm{s}}$
$\boldsymbol{\alpha}$	angular acceleration	$\frac{\mathrm{rad}}{\mathrm{s}^{2}}$

$\underset{\text { "theta" "omega" "alpha" }}{\boldsymbol{\theta}} \underset{\operatorname{RPM}:}{\boldsymbol{\omega}} \underset{\text { revolutions }}{\text { minute }}$

$$
\begin{aligned}
& \theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \\
& \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha\left(\theta_{f}-\theta_{i}\right)
\end{aligned}
$$

Kinematic equations with constant acceleration

- Rotational motion typically uses the angular description of motion.
- Can also be used to describe the angle that is "swept out" by an object in circular motion.
- All points on a rotating object have the same angular motion because they rotate together (but they may have different tangential motions depending on their distance from the center).
- The value of the position will continue to increase past 1 revolution (or decrease in the negative direction).

Converting Between Tangential \& Angular Descriptions
Conversion
(Angular variable must use radians)

Circumference: $\quad C=2 \pi r$

1 circumference $\longleftrightarrow 2 \pi$ radians
1 circumference $\longleftrightarrow 360^{\circ}$
1 circumference $\leftrightarrow 1$ revolution
1 circumference $\longleftrightarrow 1$ cycle

(Angular variable must use radians)			
Tangential description \longleftrightarrow Angular descriptio			
Position:	s m	$s=r \theta$	($\boldsymbol{r a d}$
Displacement:	$\Delta s=s_{f}-s_{i} \mathrm{~m}$	$\Delta s=r \Delta \theta$	$\Delta \theta=\theta_{f}-\theta_{i} \mathrm{rad}$
Velocity:	$v_{t}=\frac{\Delta s}{\Delta t} \frac{m}{s}$	$v_{t}=r \boldsymbol{\omega}$	$\boldsymbol{\omega}=\frac{\Delta \theta}{\Delta t} \frac{\mathrm{rad}}{\mathrm{s}}$
Acceleration:	$a_{t}=\frac{\Delta v_{t}}{\Delta t} \quad \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	$a_{t}=r \alpha$	$\alpha=\frac{\Delta \omega}{\Delta t} \frac{\mathrm{rad}}{\mathrm{s}^{2}}$

- In some cases, we need to convert from one description to another.
- This conversion is based on the definition of a radian, or the relationship between the circumference and the number of radians in a circle.

