
Answer **all** the questions.

1 Fig. 1.1 shows a student's diagrams of two plant cells. Each cell was observed using a different type of microscope. The cells are not drawn to scale.

(i) Cell B in Fig. 1.1 was observed using an electron microscope.

Give one piece of evidence from Fig. 1.1 that supports this.

......[1]

(ii) Give one way that an image produced by a laser scanning confocal microscope differs from that produced by an electron microscope.

......[1]

(b) Meiosis is a type of nuclear division.

Fig. 1.2 shows a photomicrograph of plant cells undergoing meiosis.

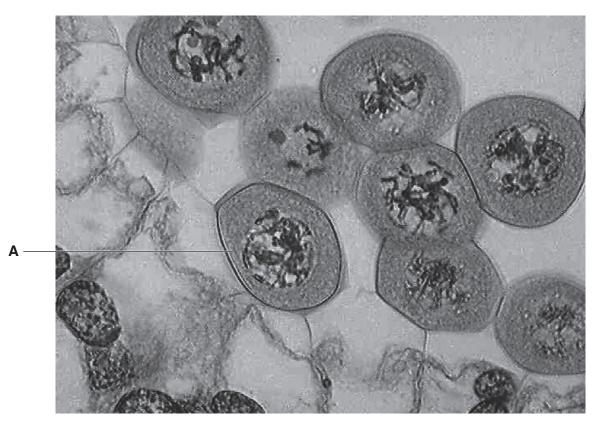


Fig. 1.2

- (i) Identify the stage of meiosis 1 shown in the cell labelled **A**.
- (ii) Based only on your observations of Fig. 1.2, state two reasons for your answer in (b)(i).

.....[1]

- 4
- (iii) Another stage of meiosis is metaphase 1.

Explain how the organisation of homologous chromosomes during metaphase 1 increases genetic variation.

[3]

(c) The use of stem cells is being evaluated for the treatment of certain human diseases.

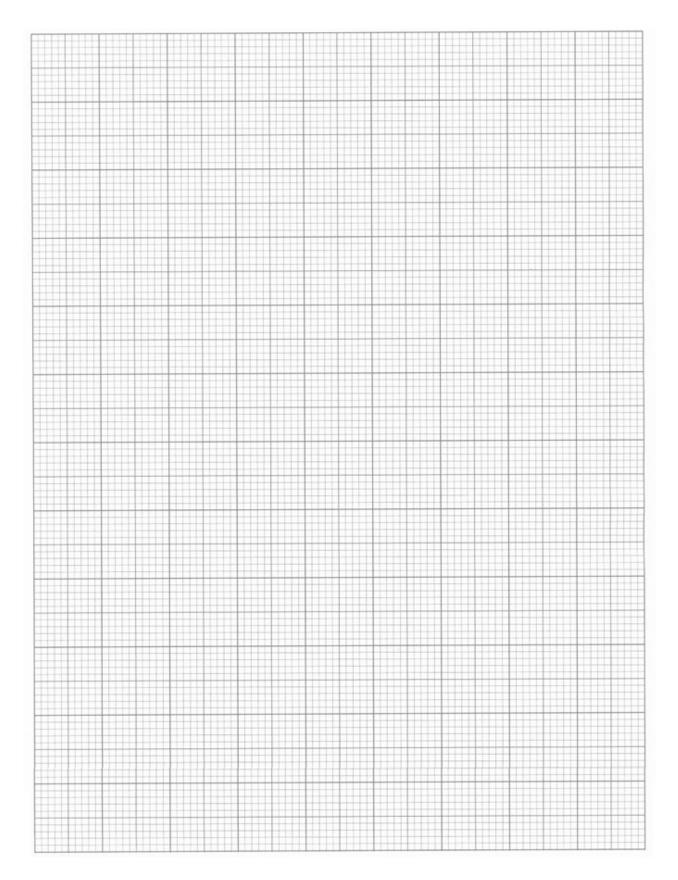
Name **two** potential sources of human stem cells and for **one** source, describe an ethical issue associated with the use of stem cells.

[4]

22 Biological processes can be investigated using models.

The effect of cell size on diffusion can be investigated using cubes of agar jelly to represent cells of different sizes.

A student used cubes of agar jelly containing universal indicator, which changes colour at different pH.


- Five different sizes of cubes were cut from a larger block using a scalpel.
- Cubes were placed in a beaker containing hydrochloric acid (enough to cover the cubes) and a stopwatch was started.
- After 2 minutes the cubes were removed, rinsed with distilled water and blotted dry.
- Acid absorbed at the outside continued diffusing towards the centre of the blocks.
- The time taken for the blocks to turn entirely red was recorded.

The results are shown in Table 22.1 on the insert.

(a) What was the role of the universal indicator in this experiment?

.....[1]

(b) (i) In the space provided on page 16, plot a graph of mean time taken to turn red against surface area to volume ratio. [4]

	(ii)	Describe the pattern shown by your graph.	
			[1]
	(iii)	An identical procedure was carried out on a cube of unknown size. This cube turned red after 21.5 min.	
		Use your graph to estimate the surface area to volume ratio of this unknown cube.	
		Answer	[1]
	(iv)	Suggest how the original procedure could be modified in order to improve the accuracy of your answer to part (iii).	
			[1]
(c)		he data in Table 22.1, on the insert , to calculate the rate of diffusion of acid in Cube on the outer surface to the centre of the cube.	
		Answer	[3]

(d) (i) Explain which of the mean values, A - E, is likely to be the least accurate. You should process data from the table to support your answer.

[2]

(ii) Identify one limitation in the practical procedure that may have caused the results to be inaccurate **and** explain which cube's results are most likely to have been affected by this limitation.

Limitation	
Is more likely to affect cube because	
	[3]

(e) The procedure described above involved the use of model cells. Hydrogen ions from the acid were able to travel freely to the centre of the agar jelly cubes.

The rate of movement of molecules from the plasma membrane towards the centre of **living** cells is often **greater** than that seen in the procedure the student carried out even if the cells are kept at the same temperature.

Suggest a reason for this observation.

	۱	
 		 [1]
		 1-1

SECTION B

Answer all the questions.

21 Fig. 21.1 shows some of the apparatus used in an experiment investigating water potential in potato tuber tissue.

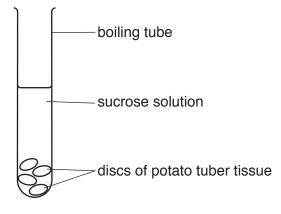
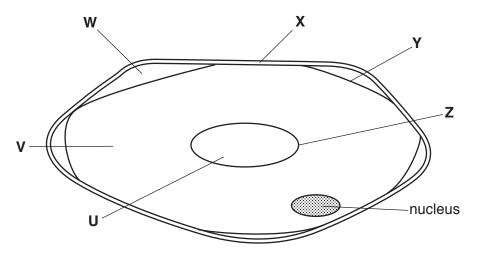


Fig. 21.1

The discs were placed in boiling tubes containing sucrose solutions of different concentrations for four hours. The percentage change of mass was then calculated.

The results are shown in Table 21.2.

Concentration of sucrose solution (mol dm ⁻³)	Change in mass of potato discs (%)
0.00	+18.00
0.10	+12.50
0.20	+ 2.50
0.30	- 3.00
0.40	- 8.00
0.45	-11.50


Table 21.2

(a) (i) State two details of the procedure that must be followed to obtain valid results.

1 2 [2] (ii) Explain how a student could use the data in Table 21.2 to determine the water potential of the potato tuber tissue.

[3]

(b) Fig. 21.3 shows a diagram of a cell from a potato tuber disc that was placed in 0.45 mol dm⁻³ sucrose solution.

(i) Identify the parts of the cell labelled X, Y and Z.

X	
Υ	
Z	

(ii) What will be found at W in the immersed cell?

[3]

(c) Halophytes are plants that have the ability to live in soils with a very low water potential. In the UK these plants form part of salt marsh communities.

Suggest **and** explain how the root hairs of halophytes are able to absorb water by osmosis from the soil of the salt marsh.

 	 	•••••
 	 	[2]

22 Many multicellular organisms need to be able to convert monosaccharides into polysaccharides and back again.

Mammals convert the monosaccharide glucose into a highly branched polysaccharide called glycogen, which gets stored in liver cells.

(a) Explain why mammals store glycogen instead of glucose.

[3]

(b) Humans use the enzyme α -amylase to break down polysaccharides in food for absorption into the blood.

The gene for human α -amylase is found on chromosome 1.

The gene is transcribed in the nucleus and translation occurs on the rough endoplasmic reticulum in cells of the salivary gland.

Describe how the molecule is prepared and secreted by cells of the salivary gland after translation has taken place.

[3]

17 (a) Chromista are photosynthetic protoctists that live in water.

Chromista are different from other photosynthetic organisms because they contain the pigment chlorophyll *c*.

Chlorophyll *c* is not found in plants.

(i) Outline the importance of photosynthetic pigments in photosynthesis.

(ii) The wavelengths of light absorbed by chlorophyll *c* are different from those wavelengths absorbed by chlorophyll *a* and chlorophyll *b*.

Suggest why Chromista need pigments that are different from those of other photosynthetic organisms.

 (b) Fig. 17.1 is a diagram of the chloroplast found in a Chromista cell.

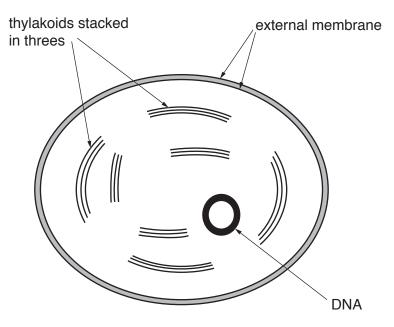


Fig. 17.1

Outline the structural differences between the Chromista chloroplast in Fig. 17.1 and the chloroplasts found in flowering plants.

•••••	 ••••••	••••••	••••••	 [2]

- 16
- (c) Fig. 17.2 is a diagram of part of the plasma membrane of a Chromista cell.

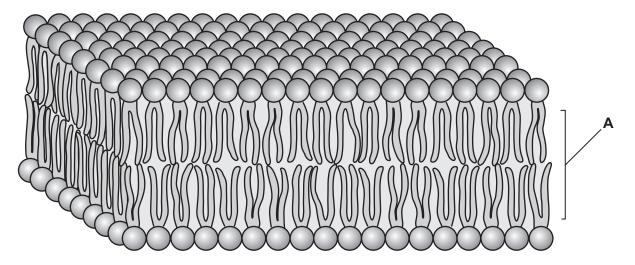


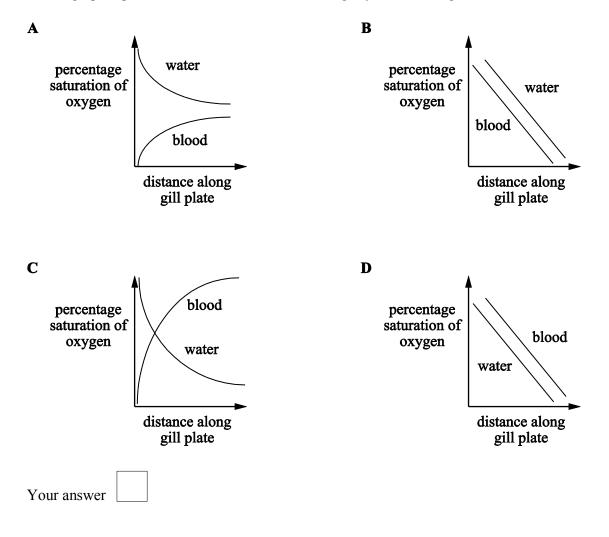
Fig. 17.2

(i) State and explain how one property of region A in Fig. 17.2 contributes to the stability of the plasma membrane.

	[2]
(ii)	There are differences between the plasma membrane and membranes within cells.
	Outline the role of membranes within cells.
	[2]

SECTION A

2


You should spend a maximum of 20 minutes on this section.

Answer **all** the questions.

- 1 Which statement explains the significance of mitosis in the development of whole organisms?
 - A Mitosis can be controlled at certain points in development, which will change body plans.
 - **B** Sex cells are produced by mitosis, which allows new organisms to be produced.
 - C Mitosis limits the total number of cells in an organism, which will change its shape.
 - **D** Budding in yeast is an example of mitosis, producing new multicellular organisms.

```
Your answer
```

2 Which graph represents the counter-current exchange system in fish gills?

[1]

3 Cells require vitamins and minerals in order to function correctly. These vitamins and minerals need to cross the plasma membrane.

Vitamins are either fat soluble or water soluble. Vitamins A, D, E and K are fat soluble.

Which of the following combinations enter a cell by facilitated diffusion?

- **A** vitamin A and calcium ions
- **B** vitamin C and calcium atoms
- **C** vitamin C and calcium ions
- **D** vitamin A and calcium atoms

Your answer

[1]

4 Animals receive different stimuli from their environment. Their synapses can manage multiple stimuli, often resulting in one response (such as a muscle twitching).

This action of the synapse is an example of

- A spatial summation
- **B** all or nothing response
- **C** temporal summation
- **D** cell signalling

Your answer

- [1]
- 5 The kidneys of a healthy individual filter 178 dm³ day⁻¹ of fluid from the glomeruli into the renal capsules. However, only 1.5 dm³ day ⁻¹ of urine is produced.

What percentage of the filtrate is reabsorbed back into the blood?

- A 176.5
- **B** 0.8
- **C** 11.8
- **D** 99.2

Your answer

- 6 The following mechanisms are used to move water through plants:
 - i) diffusion
 - ii) osmosis
 - iii) mass flow.

Which row correctly identifies the mechanism used at each point of the transpiration stream?

	Into root cells	Across root via symplast pathway	Up the stem in the xylem	Across leaf via apoplast pathway	Out of leaf via stomata
Α	osmosis	osmosis	mass flow	mass flow	diffusion
В	diffusion	osmosis	osmosis	mass flow	diffusion
С	diffusion	osmosis	osmosis	mass flow	osmosis
D	osmosis	osmosis	mass flow	mass flow	osmosis

Your answer

[1]

7 Citrate synthase catalyses the conversion of oxaloacetate into citric acid in the Krebs cycle. It exhibits product inhibition.

Which of the following is the correct description of citrate synthase?

	Type of respiration involved in	Location of enzyme	Inhibitor
A	anaerobic	cytoplasm	citric acid
В	aerobic	mitochondria	citric acid
С	aerobic	mitochondria	oxaloacetate
D	anaerobic	cytoplasm	oxaloacetate

Your answer

8 Which of the following describes the process that happens during **repolarisation** of a neurone during the action potential?

5

	Sodium channels	Potassium	Membrane
		channels	potential
Α	closed	open	decreasing
В	open	closed	decreasing
С	open	closed	increasing
D	closed	open	increasing

Your answer

- [1]
- 9 An unknown solution of a single sugar was tested. The results were recorded in Table 9.1.

Colours observed after testing	
Benedict's test for reducing sugars	Benedict's test for non-reducing sugars
blue	brick red

Table 9.1

Identify the unknown sugar.

- A fructose
- **B** lactose
- C sucrose
- **D** glucose

Your answer

- [1]
- **10** An anticodon sequence of five successive tRNA molecules involved in protein synthesis was analysed and found to have the following percentage base composition.

Adenine 40; Cytosine 27; Guanine 13; Thymine 0; Uracil 20 %

Which row shows the percentage base composition of the template strand of the original DNA molecule?

	Adenine	Cytosine	Guanine	Thymine	Uracil
Α	40	27	13	20	0
В	20	13	27	40	0
С	20	13	27	0	40
D	40	27	13	0	20

Your answer

11 Fig. 11.1 shows the heat flow through the skin of an athlete during vigorous exercise. Exercise starts at 400 seconds.

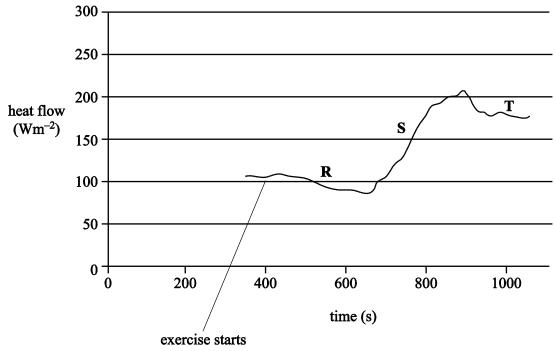


Fig. 11.1

Blood flow can be directed to those parts of the body that make the greatest demands.

	R	S	Т
Α	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin to avoid excess heat	to release excess heat	loss of excess heat and the
	loss		need for oxygen in the
			muscles
В	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin and towards the	to release excess heat	heat loss and excess heat
	muscles to supply more		created in the muscles
	oxygen for respiration		
С	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin to avoid excess heat	to gain heat from the	heat loss and excess heat
	loss	environment	created in the muscles
D	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin and towards the	to gain heat from the	loss of excess heat and the
	muscles to supply more	environment	need for oxygen in the
	oxygen for respiration		muscles

Which row gives the best explanation of the stages in **Fig. 11.1**?

Your answer

Statement 1: Insulin injection.

Statement 2: Regular cardiovascular exercise.

Statement 3: Glucagon injection.

- A 1, 2 and 3
- **B** Only 1 and 2
- C Only 2 and 3
- **D** Only 1

Your answer

[1]

- 13 Which of the following statements is/are true?
 - **Statement 1:** Microtubules are part of the '9+2' formation in bacterial flagella.
 - **Statement 2:** Microtubules can be prevented from functioning by a respiratory inhibitor.
 - **Statement 3:** Microtubules are involved in moving chromosomes from the equator to the poles of the cell during mitosis.
 - A 1, 2 and 3
 - **B** Only 1 and 2
 - C Only 2 and 3
 - **D** Only 1

Your answer

14 Blood vessels are adapted for their function.

Which of the following statements is/are true?

Statement 1: The walls of arteries near the heart contain a lot of elastic fibres so that they can stretch and recoil to maintain blood pressure. Statement 2: The walls of the venules contain little muscle. **Statement 3:** The walls of arteries contain a lot of muscle fibres to contract and generate pressure in the blood. Α 1, 2 and 3 B Only 1 and 2 С Only 2 and 3 Only 1 D Your answer [1]

Phospholipid bilayers play crucial roles within plant cells.Which of the following statements linked to the importance of membranes in plant cells is/are true?

- **Statement 1:** ATP synthase embedded in thylakoid membranes maintains chemiosmotic gradients.
- **Statement 2:** Phospholipid bilayers within the chloroplast are impermeable to protons.

Statement 3: Thylakoid membranes contain electron transport chain proteins.

- A 1, 2 and 3
- **B** Only 1 and 2
- C Only 2 and 3
- **D** Only 1

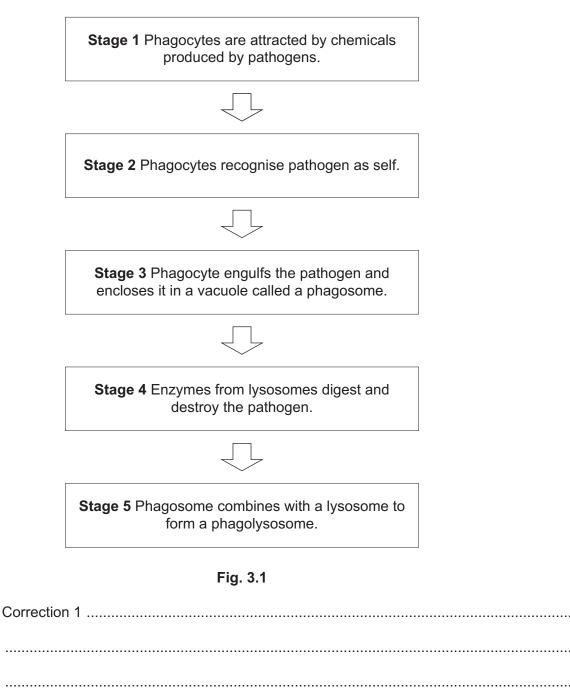
Your answer

3 (a) A cytoskeleton is present in all eukaryotic cells. One of its functions is to control the movement of organelles.

State how the cytoskeleton moves organelles around the cell.

......[1]

(b) Epithelial cells in the airways of mammals play an essential role in defences against pathogens.

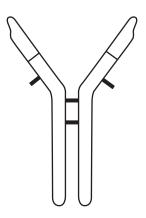

Explain the function of epithelial cells in the airways of mammals in the defence against pathogens **and** suggest the importance of the cytoskeleton in carrying out this function.

[4]

(c) (i) Phagocytes defend the body by engulfing and destroying pathogens in a process called phagocytosis.

A student produced a summary of the stages of phagocytosis, which is shown in Fig. 3.1.

The student made two errors in their summary. Describe what **two** corrections the student should make.


Correction 2

[2]

Turn over

(ii) Antibodies are defensive proteins carried in the bloodstream. Fig. 3.2 shows the simplified, incomplete structure of an antibody.

Complete Fig. 3.2 by drawing and labelling the missing part(s) of the antibody.

[Answer on Fig. 3.2]

- **24** In 1990, Carl Woese suggested a new top level taxon to the current system of classification of living organisms, which he termed a domain. He used his results from studying RNA to organise organisms into three distinct groups.
 - (a) (i) Name the cell component that appears in organisms of all three domains that Woese suggested.

		[1]
	(ii)	One of the domains he suggested is called Eukarya.	
		Name the other two domains.	
		1	
		2	
	(iii)	L State two defining features of all members of the domain Eukarya.	2]
	(111)		
		[21
(b)	Woe	ese carried out a detailed study of RNA molecules in order to draw his conclusions.	-
	-	gest two ways in which the scientific community are likely to have validated Woese earch.	's

......[2]

0	Questi	ion	Answer	Mark	Guidance
1	(a)	(i)	you can now see	1	IGNORE clarity
			Golgi body / mitochondria / (smooth / rough) endoplasmic reticulum / ER / RER / SER / ribosomes		IGNORE ref to size of organelles DO NOT ACCEPT chloroplast
			OR		
			organelles seen in more detail / grana (in chloroplast) / thylakoids (in chloroplast) / nuclear pore / cristae (in mitochondria) / membranes within organelles / double nuclear membrane / (double) nuclear envelope		IGNORE ref to ultrastructure unqualified
			OR		
			resolution is , higher / better \checkmark		
1	(a)	(ii)	LSCM image	1 max	ORA for electron microscope
			has lower <u>resolution</u> (than EM)		needs to be comparative
			OR		
			can have <u>fluorescen</u> t tag		IGNORE colour
			OR		
			can see movement (as can be used on living cells)		
			OR		
			can see , different layers / at different depths (of the sample) \checkmark		IGNORE ref to 2D / 3D / depth of field

Mark Scheme

June 2017

C	Questi	ion	Answer	Mark	Guidance
1	(b)	(i)	prophase (1) 🗸	1	DO NOT ACCEPT prophase II (as question states meiosis I)
1	(b)	(ii)		2 max	Mark the first 2 answers
			1 chromosomes / chromatids , visible / condensed 🗸		1 Needs to be a clear statement
			 2 chromosomes not , organised / yet aligned / arranged OR chromosomes not at , ends / equator ✓ 		2 ACCEPT chromosomes , in different positions / scattered / spread out
			 3 nuclear envelope (around chromosomes) / nuclear membrane is present / chromosomes separated from cytoplasm ✓ 		3 ACCEPT nuclear membrane starting to disappear DO NOT ACCEPT nuclear membrane has disappeared
			4 no (visible) nucleolus ✓		
1	(b)	(iii)	1 independent / random , <u>assort</u> ment √	3 max	
			2 (homologous chromosomes) line up, across the centre of the cell / on the equator / on the metaphase plate ✓		
			 3 maternal or paternal chromosomes / either one of the homologous pair , can end up , facing either pole / in either (daughter) cell ✓ 		
			 4 each chromosome of the homologous pair , is genetically different / contains different alleles / contains different gene variant ✓ 		4 ACCEPT if described in terms of chromatids being genetically different

June 2017

Question	Answer	Mark	Guidance
1 (c)	2 max for sources embryonic / embryo ✓ fetus / fetal ✓ umbilical cord (blood) ✓ (adult) bone marrow (tissue) ✓ convert somatic cell into pluripotent cell ✓	2 max	ACCEPT e.g. breast milk / muscle / liver / placenta / etc. ACCEPT blastocyst
	ethical issue – must relate to one of their stated sources ethical issue identified – such as 1 from the list below ✓ <i>embryonic</i> E1 embryo , destroyed / killed / discarded E2 use of excess embryos from assisted fertilisation or E3 debate about when life begins or E4 embryo cannot give consent or	2	Note: list of issues is not exhaustive – credit a well expressed issue
	F1 obtained from , miscarried / aborted , fetuses fetal or umbilical cord U1 detached from infant at birth anyway		F1 IGNORE ref to obtaining fetal stem cells by killing fetus but can still access the judgement mark
	 or B1 harvesting bone marrow is , painful / risky bone marrow B2 donor babies / babies conceived specifically to provide a bone marrow transplant for a sibling (with a condition requiring the transplant) 		
	a statement indicating, judgement / opinion / understanding, of this ethical		Can only be awarded once the issue relating to one of their sources has been identified.

H020/02	Mark Schem	Mark Scheme		
	issue 🗸		IGNORE 'playing God' as an opinion	

C	Quest	ion	Answer	Mark	Guidance
2	(a)			2	IGNORE any observations
			D1 put , (leaf) stalk(s) / petiole(s) , in , dye / stain / food colouring ✓		D1 ACCEPT 'stick' for 'stalk'
			D2 (then) cut , transversely / cross section 🗸		D2 ACCEPT cut across , (leaf) stalk / petiole (with a sharp blade) a longitudinal , cut / section
			OR		IGNORE Cut in half IGNORE
			M1 cut a (thin) , transverse / cross , section \checkmark		M1 ACCEPT cut a (thin) slice of (leaf) stalk / petiole (with a sharp blade) a longitudinal , cut / section
			M2 (then) add (named) stain / observe with microscope under low power ✓		IGNORE ^{cut in half} IGNORE

Q	uesti	on	Answer	Marks	Guidance
22	(a)		detect the presence of acid / H ⁺ ✓ measure end-point / dependent variable ✓	1	
	(b)	(i)	surface area to volume ratio on x-axis and time on y-axis ✓ plotted points occupy at least half of available area and linear scale on both axes and line of best fit drawn ✓ axes labelled time (min) and surface area to volume ratio / AW ✓	4	DO NOT ALLOW if units given for x-axis
		(ii)	all points plotted correctly (to +/- half a 2 mm grid square) ✓ time taken for diffusion (to centre of cube) , increases as surface area to volume ratio decreases, ORA ✓	1	ALLOW ecf for correctly plotted points on incorrectly-scaled graph Answer must mention surface area to volume ratio DO NOT ALLOW if colour change is discussed in place of diffusion IGNORE rate
		(iii)	0.44 ✓	1	 ALLOW a description consistent with the graph the candidate has drawn ALLOW answer in the range of 0.40 – 0.48 depending on candidate's plotted graph Answer must be reported to 2 decimal places
		(iv)	test cubes of (known) length between 10 and 20 mm \checkmark	1	
	(c)		0.35 / 0.347 🗸	3	ALLOW 0.69 / 0.694 for 1 mark ALLOW 0.3 or 0.3472 for 1 mark

Q	Question		Answer	Marks	Guidance
			mm min⁻¹✓		ALLOW mm/min
	(d)	(i)	<i>cube</i> A , <i>because</i> time for test 2 different from others ✓ use of processed figures to support ✓	2	ALLOW calculated rates for cube A - E ALLOW calculated range compared with that of cubes B - E
		(ii)	Limitation inconsistency in surface area \checkmark cube A \checkmark Because It is the smallest cube so small error in cutting will have proportionately larger effect in a small cube / idea that error is a bigger proportion of total time \checkmark Limitation using human eye and judgement to determine end point \checkmark cube E \checkmark Because largest cube so harder to see through 2cm of jelly / AW \checkmark	3	ALLOW mark only if one of the other two marks is awarded ALLOW mark only if one of the other two marks is awarded
	(e)		idea of involvement of cytoskeleton / vesicles ✓	1	IGNORE reference to different diffusion resistance
			Total	17	

June 2016

SECTION B

Q	Questi	on	Answer	Marks Guidance	
21	(a)	(i)	1 discs same , size / thickness / surface area / surface area to volume ratio / diameter ✓	max 2	 Mark first two answers only, ignoring the numbered sections IGNORE mass / balance used / soak time / repeats IGNORE a list of variables unqualified 1 ACCEPT same cork borer used ACCEPT 'pieces of potato' etc. for 'discs' ACCEPT 'length' as equivalent to 'diameter' IGNORE same shape / similar size etc
			 2 same (variety / part, of) potato ✓ 3 no skin on potato ✓ 		
			 4 <i>ref to</i> removing excess water before (re)weighing ✓ 5 same , number / amount , 		4 e.g. blotting / shaking
			 of discs (in each solution) ✓ 6 same <u>volume</u> (sucrose) <u>solution</u> ✓ 		
			 7 same temperature ✓ 8 cover the tubes ✓ 		7 ACCEPT in context of room / environment / solution

June 2016

C	Questio	on	Answer	Marks	Guidance
21	(a)	(ii)	 <i>idea that</i> no change of mass occurs when the water potential of (sucrose) <u>solution</u> = water potential of potato (tissue) ✓ 	max 3	ACCEPT Ψ for water potential throughout IGNORE ref to solute potential / isontonic
			2 ref. to no change in mass (of potato) between 0.2 and 0.3 mol dm ⁻³ ✓		2 correct units must be stated once ACCEPT 'between 0.2 and 0.3 mol dm ⁻³ the water potential of the solution and the potato will be the same'
			3 plot graph of concentration of , sucrose / solution , against (%) change in mass and find which (sucrose) concentration gives no change in mass of potato		 3 x and y axes interchangeable When an axis has been identified it can be referred to by letter later. Needs some ref to the mass change being 0. If the change in mass axis has previously been identified, then ref to that axis value being 0 is equivalent to no change in mass
					e.g. 'Should draw a graph of sucrose concentration on the x axis and change in mass of potato discs on the y axis. The point where the line of best fit crosses the x axis (when the y axis = 0) is the concentration of sucrose in the potato discs.' will get the mark
			OR carry out the experiment again with more (sucrose) concentration intervals between 0.2 and 0.3 mol dm ⁻³ ✓		 'Draw a graph with change in mass of potato discs on the y axis and concentration of sucrose solution on the x axis and draw a line of best fit. Where the line intercepts the x axis is where the change in mass of potato discs is zero.' will get the mark 3 correct units must be stated once
			 4 look up the water potential of the (sucrose) <u>solution</u> (e.g. on calibration curve or table), of that concentration / of the concentration which gives no mass change ✓ 		

June 2016

C	Questio	on	Answer	Marks	Guidance
21	(b)	(i)	X (cellulose) cell wall ✓	max 3	If additional incorrect answer given, then 0 marks
			Y cell <u>surface</u> membrane / plasma membrane ✓		Y ACCEPT plasmalemma
			Z <u>vacuol</u> e <u>membrane</u> / tonoplast ✓		Z IGNORE vacuole
21	(b)	(ii)	sucrose <u>solution</u> ✓	1	If additional incorrect answer given, then 0 marks
					ACCEPT sugar solution / external solution / solution placed in DO NOT CREDIT 'solution' unqualified
21	(c)			2	IGNOREref to large surface area and short diffusion pathIGNOREref to solute potential / isotonicACCEPTΨ for water potential'it' or 'they'= root hairsIGNOREref to roots or root cells unqualified as hairs
			there is a low <u>er water potential</u> inside root <u>hair</u> (cells) ✓		ACCEPT root hair , has / creates , a low <u>er water potential</u> (than soil) ACCEPT maintains / sets up / establishes , a (steep) <u>water potential</u> gradient Look for a comparison in water potential between the cell and the soil
			actively transport / pump , (mineral) ions / salts , into root <u>hair</u> (s) (cells) or root <u>hair</u> (s) (cells) store / contain , (mineral) ions / salts / solutes ✓		IGNORE solutes / sugars / hydrogen ions ACCEPT named ions ACCEPT named ions ACCEPT named solutes e.g. sugars
			Total	11	

C	Quest	ion	Answer	Marks	Guidance	
22	(a)			3	ACCEPT ORA for glucose for mps 1, 2 3 & 4 only	
			glycogen is			
			1 insoluble , so has no effect on , water potential / Ψ (of cell) \checkmark		1 ACCEPT insoluble so has no osmotic effect (on cell)	
			2 <u>metabol</u> ically inactive ✓			
			3 compact / lots can be stored in a small space ✓			
			4 able to store , large amounts / lots , of energy \checkmark			
			 5 (highly branched so) has lots of ends for , adding / removing , <u>glucose</u> (when needed) or can be broken down , fast / quickly / rapidly , to release <u>glucose</u> ✓ 		5 IGNORE ref to surface area	
					Note: 'compact so can store large amounts of energy' = 2 marks (mps 3 & 4)	

C	Quest	tion	Answer	Marks	Guidance
22	(b)			3 max	NOTE answers must be the in context of protein transport. Penalise once if a different material (e.g. gene) is transported to max 2
			1 <u>transport</u> vesicle from RER ✓		
			2 modification / processing / folding ✓		2 ACCEPT example of modification e.g. converted into a glycoprotein ACCEPT in context of RER or Golgi
			3 in / at , Golgi (body / apparatus) ✓		3 IGNORE SER / smooth endoplasmic reticulum
			4 (packaged into) <u>secretory</u> vesicle ✓		
			5 vesicles move along the cytoskeleton ✓		5 ACCEPT use of motor proteins / chaperones / microtubules
			6 (vesicle) fuses with , cell <u>surface</u> / plasma , membrane ✔		6 ACCEPT merges with DO NOT ACCEPT binds / attaches / dissolves
			7 (secretion occurs by) <u>exocytosis</u> ✓		 7 DO NOT ACCEPT exocytosis in context of excretion (rather than secretion) DO NOT ACCEPT vesicle being released by exocytosis

Que	Question		Answer		Guidance
17	(a)	(i)	(pigments) absorb , light / photons ✓ electrons , excited / raised to higher energy level ✓	4 max	
			accessory pigments pass energy to , reaction centres / primary pigments ✓ primary pigments , become oxidised / lose electrons / pass electrons to ETC ✓		ALLOW named accessory pigments e.g. chlorophyll b / xanthophyll / carotenoids ALLOW chlorophyll a for primary pigment
			for light dependent reaction / photophosphorylation \checkmark		ALLOW for making , ATP / reduced NADP
		(ii)	<i>idea that</i> they have to absorb light of short (er) wavelengths ✓	1 max	ALLOW blue / blue-violet light ALLOW wavelengths between 400 and 500nm ALLOW high(er) frequency
			<i>idea that</i> some wavelengths (of light) don't reach , depths / them ✓		e.g. some wavelengths of light may not reach <i>Chromista</i> if they are in deep water
	(b)		Chromista (chloroplast) has fewer thylakoids ✓	2 max	IGNORE reference to external membrane ALLOW plants (chloroplasts) have more thylakoids
			<i>Chromista</i> (chloroplast) has no , inter-granal lamellae / lamellae between thylakoids ✓		ALLOW plant (chloroplasts) have lamellae between thylakoids
			plants (chloroplasts) have thylakoids in groups of more than three ✓		ALLOW thylakoids in plant (chloroplasts) form grana IGNORE <i>Chromista</i> (chloroplast) has thylakoids in groups of three
			plants (chloroplasts) have starch grains / <i>Chromista</i> (chloroplast) does not have starch grains ✓		groups of three

H420/01

Questic	on	Answer	Marks	Guidance
(c)	(i)		2 max	IGNORE stability for explanations
		<pre>property hydrophobic (region / fatty acid tails) ✓ explanation (helps to) form bilayer / separates two aqueous regions ✓ property (region) contains cholesterol ✓ explanation regulates (membrane) fluidity / AW✓</pre>		<i>property</i> MUST be linked to its <i>explanation</i>
(c)	(ii)	compartmentalisation OR form / surround , (named) organelles ✓	2 max	e.g. separating organelles from cytoplasm
		purpose of / need for , compartments / separation ✓ sites of , chemical reactions / electron carriers / photophosphorylation / chemiosmosis / oxidative phosphorylation ✓		e.g. form vesicles for transport is MP1 and MP2 ALLOW ETC for electron carriers
		provide attachment sites for , enzymes / pigments \checkmark allow formation of concentration gradients \checkmark		ALLOW correctly named enzyme e.g. ATP synthase
		Total	11	

Question		Answer/Indicative content	Marks	Guidance
1		A	1	
		Total	1	
2		В	1	
		Total	1	
3		С	1	
		Total	1	
4		A	1	
		Total	1	
5		D	1	
		Total	1	
6		A	1	
		Total	1	
7		В	1	
		Total	1	
8		A	1	
		Total	1	
9		С	1	
		Total	1	
10		A	1	
		Total	1	
11		В	1	
		Total	1	
12		D	1	
		Total	1	
13		С	1	
		Total	1	
14		В	1	

Q	uestio	n	Answer/Indicative content	Marks	Guidance
			Total	1	
15			С	1	
			Total	1	
16	a	i	<i>normal rate</i> 78.9 bpm (1) <i>rate for tachycardia</i> 125 bpm (1)	4	ALLOW 1.3 bps. ALLOW 2.1 bps.
			percentage increase 58 (%) (1)(1)		ALLOW 2 marks for percentage increase correctly calculated using candidate's figures for rates and answer given to nearest whole number. ALLOW 1 mark for correct working [(125 – 78.9) ÷ 78.9 × 100 or correct use of candidate's figures for rates] or a correctly calculated but unrounded answer DO NOT ALLOW answers that divide by the rate for tachycardia as a percentage increase is asked for.
		ii	<i>two from</i> lower (Q)R(S) peak (1) P and T equal in height (1) width of T wave greater (1)	2	
	b		<i>three from</i> no distinct, P curve / atrial depolarisation (1) irregular / weak, atrial contraction (1) insufficient blood forced into ventricles (1) although ventricles contract there is less blood forced from the heart (1)	3	
			Total	9	

Question	Answer	Mark	Guidance
3(a)	(using) microtubules / tubulin / motor proteins ✓	1	ALLOW kinesins / dyneins / 'moto' proteins
			IGNORE spindle fibres, centrioles
3(b)	1 goblet cells, secrete / release / make / produce / form, mucus ✓	4	IGNORE excrete
		max	
	2 <u>mucus</u> traps, pathogens / microorganisms / bacteria ✓		ALLOW named example of a lung pathogen
			IGNORE cilia trap, pathogens / microorganisms
	3 ref. phagocytes / neutrophils / macrophages / lysozyme 🗸		
	4 cilia / ciliated cells / ciliated epithelium, sweep / brush / waft / move /		ALLOW 'cillia' / other spelling that looks and sounds same
	AW, <u>mucus</u> ✓		DO NOT ALLOW cilia cells
	5 cytoskeleton / microtubules / tubulin, move(s) / make(s) up, the <u>cilia</u>		

Question	Answer	Mark	Guidance
3(c)(i)	(stage) 2 (should say), non-self / not self / foreign ✓	2	ALLOW quote to replace stage number 2 , e.g. 'phagocytes recognise pathogens as non-self 'phagocytes do not recognise pathogens as self IGNORE non-body
	(stage) 5 (should be) before 4 / 4 (should be) after 5 ✓		 ALLOW 4 and 5 are in wrong order / should be reversed / need swapping / should be the other way round / AW ALLOW quote to replace stage numbers, e.g. 'phagosome combines with a lysosome before stage 4' 'enzymes from lysosomes digest pathogens after stage 5' 'forms a phagolysosome and THEN destroys the pathogen' 'phagosome and lysosome do not combine AFTER the pathogen is destroyed'
3(c)(ii)	minimum of one light chain drawn on outside of heavy chain and	1	GUIDELINES for drawing: Light chain should start at tip of arm of Y and be 25–50% the length of the heavy chain.
	label to, light (polypeptide) chain / variable region / antigen-binding site \checkmark		ALLOW label line not touching if label written near correct region

C	Question		Answer	Marks	Guidance
24	(a)	(i)	ribosome(s) ✓	1	If additional incorrect answer given, then 0 marks
24	(a)	(ii)		2	In either order
			(Eu)bacteria ✓		DO NOT ACCEPT bacterium
			Archaea(bacteria) 🖌		ACCEPT phonetic spelling
24	(a)	(iii)	nucleus ✓	2 max	Mark the first two answers but IGNORE multicellular DO NOT ACCEPT microtubule / cytoskeleton / centriole
			DNA with , histones / (associated) proteins \checkmark		
			linear DNA ✓		IGNORE chromosome
			(named) membrane bound organelles 🖌		IGNORE chloroplast
			80s ribosomes 🖌		ACCEPT large(r) ribosomes
24	(b)		1 scientific , conferences / meetings ✓	2 max	
			 2 peer review / approving the work for publication / publication in (reputable) scientific journal ✓ 		2 ACCEPT analysing the procedures and data of the investigation
			3 replication of work (by others to see if the same results are obtained) ✓		3 ACCEPT (others) repeat the experiments
			 4 look for more (supporting) evidence (e.g. from other peoples' work / investigating other molecules) ✓ 		4 Other molecules could include cytochrome C