3.4: Systems of Equations in Three Variables

Equations in three variables are graphed as planes. As was the case when graphing lines, there may be:

- one solution expressed as an ordered triple, (x, y, z)
- no solution, ø
- an infinite number of solutions

One Solution

The three individual planes intersect at a specific point.

Infinitely Many Solutions

The planes intersect in a line.
Every coordinate on the line represents a solution of the system.

The planes intersect in the same plane.
Every equation is equivalent.
Every coordinate in the plane represents a solution of the system.

No Solution There are no points in common with all three planes.

Steps to Solving Systems with Three Variables

1) Pick two equations, and eliminate one variable from them.

You'll be left with one equation, having 2 variables. Let's call this equation "YAY"
2) Pick another pair of equations, and eliminate the same variable you eliminated in step 1.

You'll be left with another equation, which we'll call "MATH". "MATH" will have the same 2 variables as "YAY".
3) Pair the equations "YAY" and "MATH", to solve for the 2 variables therein.
4) Substitute those two values into one of the original equations, to find the third variable.

Ex\#1: Please solve the following system.
$x-3 y+z=22$
$2 x-2 y-z=-9$
$x+y+3 z=24$
$x+y+z=1$
$x+y-z=3$
$2 x+2 y+z=3$

Ex\#2: Please solve the following system.

Ex\#3: Please solve the following system.
$x+y+z=2$
$3 x+3 y+3 z=14$
$x-2 y+z=4$

