

Format SPM 2021 (KSSM)

FORMAT INSTRUMEN PEPERIKSAAN SPM MULAI TAHUN 2021 MATA PELAJARAN MATEMATIK TAMBAHAN (3742)

Bil.	Perkara	Kertas 1 (3472/1)	Kertas 2 (3472/2)		
1	Jenis instrumen	Ujian Bertulis			
2	Jenis item	 Subjektif Respons Terhad Subjektif Respons Terhad Berstruktur 			
3	Bilangan soalan	Bahagian A 12 soalan (64 markah) (Jawab semua soalan) Bahagian B 3 soalan (16 markah) (Jawab dua soalan)	Bahagian A 7 soalan (50 markah) (Jawab semua soalan) Bahagian B 4 soalan (30 markah) (Jawab tiga soalan) Bahagian C 4 soalan (20 markah) (Jawab dua soalan)		
4	Jumlah Markah	80	100		
5	Konstruk	 Mengingat & Memahami Mengaplikasi Menganalisis Menilai Mencipta 	 Mengingat & Memahami Mengaplikasi Menganalisis Menilai Mencipta 		
6	Tempoh Ujian	2 jam	2 jam 30 minit		
7	Cakupan Konstruk	Standard kandungan dan standard pembelajaran dalam Dokumen Standard Kurikulum dan Pentaksiran (DSKP) KSSM (Tingkatan 4 dan Tingkatan 5)			
8	Aras Kesukaran	Rendah : Sederhana : Tinggi 5 : 3 : 2			
9	Kaedah Penskoran	Analitik			
10	Alatan Tambahan	Kalkulator saintifik yang tidak boleh diprogram			

List of Formula

- $1 \qquad x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ $2 \qquad \log_a b = \frac{\log_c b}{\log_c a}$ 3 $T_n = a + (n-1)d$ 4 $T_n = ar^{n-1}$ 5 $S_n = \frac{n}{2} [2a + (n-1)d]$ 6 $S_n = \frac{a(r^n - 1)}{r - 1} = \frac{a(1 - r^n)}{1 - r}$, $r \neq 1$ 7 $Z = \frac{X-\mu}{\sigma}$ 8 $P(X = r) = {}^{n}C_{r} p^{r} q^{n-r}$, p + q = 19 ${}^{n}P_{r} = \frac{n!}{(n-r)!}$ $10 \quad {}^{n}C_{r} = \frac{n!}{(n-r)!r!}$ 11 $I = \frac{Q_1}{Q_0} \times 100$ 12 $\overline{I} = \frac{\sum W_i I_i}{\sum W_i}$ $13 \quad \sin^2 A + \cos^2 A = 1$ $sin^2 A + kos^2 A = 1$ $14 \ \sec^2 A = 1 + \tan^2 A$ $sek^2 A = 1 + tan^2 A$
- 15 $\operatorname{cosec}^2 A = 1 + \operatorname{cot}^2 A$ $kosek^2 A = 1 + kot^2 A$
- 16 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\sin(A \pm B) = \sin A \log B \pm \log A \sin B$
- 17 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $kos(A \pm B) = kos A kos B \mp sin A sin B$

18
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

19 $\sin 2A = 2 \sin A \cos A$ $\sin 2A = 2 \sin A \log A$

20
$$\cos 2A = \cos^2 A - \sin^2 A$$

= $2\cos^2 A - 1$
= $1 - 2\sin^2 A$

$$kos 2A = kos^{2}A - sin^{2}A$$
$$= 2 kos^{2}A - 1$$
$$= 1 - 2 sin^{2}A$$

$$21 \quad \tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

- 22 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- 23 $a^2 = b^2 + c^2 2bc \cos A$ $a^2 = b^2 + c^2 - 2bc \log A$
- 24 Area of triangle / Luas segi tiga = $\frac{1}{2}ab \sin C$

Brought to you by:

List of Form 4 Chapter in Additional Mathematics KSSM.

Chapter 1	Functions
Chapter 2	Quadratic Functions
Chapter 3	System of Equations
Chapter 4	Indices, Surds and Logarithms
Chapter 5	Progressions
Chapter 6	Linear Law
Chapter 7	Coordinate Geometry
Chapter 8	Vectors
Chapter 9	Solutions of Triangles
Chapter 10	Index Numbers

Chapter 1: Function

Question 1.1					
Given	Given $f: x \to 3x-2$ and $g: x \to \frac{x}{5}+1$, find				
	(a)	$f^{-1}(x)$			
	(b)	$f^{-1}g(x)$			
	(c)	h(x) such that $hg(x) = 2x + 6$			
		Answer			

 Question 1.2

 Diagram 1.1 shows that function h maps x onto y and function g maps y onto z.

 $x \xrightarrow{h} y \xrightarrow{g} z$
 $y \xrightarrow{g} z$ </tr

5

B

Chapter 2: Quadratic Function

Question 2.1

Diagram 2 shows the graph of the function $y = -(x+1)^2 + 9$, where *m* is a constant. The curve touches the line y = m at point *A* and cut the y-axis at point *B*. The curve also cut the *x*-axis at point *P*.

- a) Determine the value of m and of k.
- b) State the coordinates of point *P*.

Answer

Question 2.2

It is given that the curve $y = x^2 - 2x$ intersect with the line y = 9(2x-5) - 5p, where p is a constant at two points. Find the range of values of p.

Answer

Question 2.3

Graph of quadratic function $g(x) = -4 + hx - x^2$ has maximum point (k, -3) where h > 0 and k > 0.

- a) by using completing the square, find the value of *h* and *k*.
- b) hence, sketch graph of corresponding function f(x)

Answer

Chapter 3: System of Equations

Question 3.1

Solve the following linear equations system.

5x + 10y + 15z = 3210x + 15y + 20z = 4620x + 35y + 30z = 82

Answer

Question 3.2

Solve the simultaneous equations q - 4p + 20 = 0 and $4p^2 - 8p - 4pq + q^2 - 16 = 0$

Answer

Brought to you by:

Chapter 4: Indices, Surd & Logarithms

Question 4.1

Show that $3(2^n) + (2^{n+3}) + 2^{n+2}$ is divisible by 5 for all the positive integer values of *n*.

Hence, solve $3(2^n) + (2^{n+3}) + 2^{n+2} = 3$.

Answer

Brought to you by:

13

Brought to you by:

Chapter 5: Progressions

Question 5.1

It is given that x+4, x-2 and x-5 are three consecutive terms of a geometric progression. Find :

(a) the value of x.

(b) the first term if $\frac{3}{x}$ is the tenth term of the progression.

(c) sum of the first 5 terms

Answer

Question 5.2

In arithmetic progression, the sum of the first four terms is 36 and the sixth terms is -5. Find the value of the first term and the common difference of the progression.

Answer

Brought to you by:

Question 5.3

Hazim drops a tennis ball 148 cm vertically upwards from the floor. After the first bounce, the tennis ball reaches a height of $\frac{3}{4}$ from its previous distance from the floor as shown in diagram below. The tennis ball continues bouncing until it stops. 148 cm Lantunan pertama Lantunan kedua *First bounce* Find a) the maximum height of the tennis ball from the floor is less than 12 cm for the first time.

b) the total distance, in cm, travelled by the tennis ball from the first bounce until it stops.

Answer

Brought to you by:

Chapter 6: Linear Law

Brought to you by:

Question 6.2

Tabl	Table below shows the values of two variables x and y obtained from an experiment. The						
i	Table below shows the values of two variables, x and y , obtained from an experiment. The						
varia	bles x and :	y are related	by the equal	$\lim y = \frac{1}{t^x},$	where <i>p</i> and	<i>t</i> are consta	nts.
_							
	x	4	6	8	10	12	14
	У	2.5	1.86	1.38	1.04	0.78	0.59
_							
	(a) Based	on Table abo	ove, construc	t a table for t	he value of 1	og_{10} y. Give	your answer
	correc	t to two signi	ficant figure	s			5
	(b) Plot le	og vagainst	r using a s	cale of 2 cm	to 2 units on	the $x - axis$	and $2 \mathrm{cm}$ to 0.1
	(b) Fibt $\log_{10} y$ against x, using a scale of 2 cm to 2 units on the $x - axis$ and 2 cm to 0.1						
	unit on the $\log_{10} y$ – <i>axis</i> . Hence draw the line of best fit.						
	(c) Use the graph in (b) to find the value of						
	i. t						
	ii.	р					
Answer							

Chapter 7: Coordinate Geometry

Question 7.1

Chapter 8: Vector

Question 8.1

Diagram shows triangle ABC. The point D lies on the straight line AC and the point E lies on the straight line AB. The straight line BD intersects the straight line CE at the point F.

Given that $\angle ACB = 90^\circ$, $\overrightarrow{AC} = 14x$, $\overrightarrow{CB} = 16y$, $\overrightarrow{AC} : \overrightarrow{DC} = 5 : 1$ and $\overrightarrow{AB} : \overrightarrow{AE} = 4 : 1$.

- a) Express in terms of x and y.
 - i. \overrightarrow{BD}
 - ii. \overrightarrow{CE}
- b) Given that $\overrightarrow{CF} = h\overrightarrow{CE}$ and $\overrightarrow{BF} = k\overrightarrow{BD}$, where *h* and *k* are constants, find the value of *h* and of *k*.
- c) Given that |x| = 2 units and |y| = 4 units, find $|\overrightarrow{AB}|$.

Answer

Chapter 9: Solution of Triangle

Chapter 10: Index Number

Question 10.1

Table below shows the price indices and weightages for four stationery items P, Q, R and S.

	Price (RM) per unit		Price Index for the year 2014	Weightage
	Harga (RM) seunit		based on the year 2013	Pemberat
Stationery	Year 2013	Year 2014	Indeks harga pada tahun 2014	
Alat tulis	Alat tulis Tahun Tahun		berasaskan tahun 2013	
	2013	2014		
Р	2.80	x	80	5
Q	4.00	4.80	120	1
R	у	2.60	130	2
S	5.00	5.85	Z	m

- a) Find the values of *x*, *y* and *z*.
- b) The composite index for the price of the stationery in the year 2014 based on the year 2013 is 104. Calculate the value of *m*.
- c) The total expenditure for the stationery in the year 2013 is RM640. Calculate the corresponding total expenditure in the year 2014.
- d) The price index for Q in the year 2015 based on the year 2013 is 158.4. Calculate the price index for Q in the year 2015 based on the year 2014.

Answer

