
The Low—Level
Server API



Goal

Set up our first Akka HTTP server
Understand the basic principles of Akka HTTP

Assumed as known:
• Akka, Akka Streams and advanced Scala
• HTTP basics: requests, responses, statuses, headers
• JSON: syntax, structure

(if you need an intro on HTTP/JSON, let me know in Q/A)



Akka HTTP basics
Akka HTTP is
• a suite of libraries
• focused on HTTP integration of an application
• designed for both servers and clients
• based on Akka actors and Akka Streams

Akka HTTP is NOT:
• a framework

Akka HTTP strengths
• stream-based, with backpressure for free
• multiple API levels for control vs ease of use

Core concepts
• HttpRequest, HttpResponse
• HttpEntity
• marshalling



Akka HTTP server
Goal: receive HTTP requests, send HTTP responses
• synchronously via a function HttpRequest => HttpResponse
• async via a function HttpRequest => Future[HttpResponse]
• async via streams, with a Flow[HttpRequest, HttpResponse, _]

(all of the above turn into flows sooner or later)

Under the hood:
• the server receives HttpRequests (transparently)
• the requests go through the flow we write
• the resulting responses are served back (transparently)



val connectionSource = Http().bind(interface = "localhost", port = 8080)
val requestHandler = (request: HttpRequest) => ... // an HttpResponse
connectionSource.runForeach(connection => connection.handleWithSyncHandler(requestHandler))

Recap
Method 1a: handle connections manually

Method 1b: shorthand

Http().bindAndHandleSync(requestHandler, interface = "localhost", port = 8080)

Method 2b: async with functions returning futures

val asyncRequestHandler = (request: HttpRequest) => ... // a Future[HttpResponse]
Http().bindAndHandleAsync(asyncRequestHandler, interface = "localhost", port = 8080)

Method 3b: async with streams

val streamsRequestHandler = Flow[HttpRequest].map { ... /* return an HttpResponse */ }
Http().bindAndHandle(streamsRequestHandler, interface = "localhost", port = 8080)



Akka rocks


