
Java Programming AP Edition
U3C9 Objects and Classes

CLASS DEFINITION AND OBJECT CREATION

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Introduction to Object-Oriented
Programming
After learning the preceding chapters, you are capable of solving many
programming problems using selections, loops, methods, and arrays. However,
these Java features are not sufficient for developing graphical user interfaces
and large scale software systems. Suppose you want to develop a graphical user
interface as shown below. How do you program it?

Without Object-Oriented Programming, things shall still work. Why we need
Object-Oriented Programming?

Motivation for Object-Oriented
Programming
More Compatible for Event-Driven Programming

More Manageable for GUI Components

More Organized Data and Methods related to a Certain Objects

Replacing:

(1) Library

(2) Data Records

(3) Event-Loop (Execution Flow)

(4) Thread Execution Control

OO Programming Concepts

Object-oriented programming (OOP) involves programming using
objects. An object represents an entity in the real world that can be
distinctly identified. For example, a student, a desk, a circle, a
button, and even a loan can all be viewed as objects. An object has a
unique identity, state, and behaviors. The state of an object consists
of a set of data fields (also known as properties) with their current
values. The behavior of an object is defined by a set of methods.

Objects: UML Class/Object Diagram

An object has both a
state and behavior. The
state defines the
object, and the
behavior defines what
the object does.

Classes

Classes are constructs that define objects of the same
type. A Java class uses variables to define data fields and
methods to define behaviors. Additionally, a class provides
a special type of methods, known as constructors, which
are invoked to construct objects from the class.

Classes

 class Circle {

/** The radius of this circle */

double radius = 1.0;

/** Construct a circle object */

Circle() {

}

/** Construct a circle object */

Circle(double newRadius) {

 radius = newRadius;

}

/** Return the area of this circle */
double getArea() {

 return radius * radius * 3.14159;

}

 }

Data field

Method

Constructors

Example: Defining Classes and Creating Objects
TestSimpleCircle.java

Objective: Demonstrate creating objects,
accessing data, and using methods.

