ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS			
Universal gravitational constant,	Acceleration due to gravity at Earth's surface,		
$G = 6.67 \times 10^{-11} \text{ m}^3 / (\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$	$g = 9.8 \text{ m/s}^2$		
1 atmosphere of pressure,	Magnitude of the gravitational field strength at the		
$1 \text{ atm} = 1.0 \times 10^5 \text{ N} / \text{m}^2 = 1.0 \times 10^5 \text{ Pa}$	Earth's surface, $g = 9.8$ N/kg		
	·		

PREFIXES				
	FREFIALS	r		
Factor	Prefix	Symbol		
10 ¹²	tera	Т		
10 ⁹	giga	G		
10 ⁶	mega	М		
10 ³	kilo	k		
10^{-2}	centi	с		
10^{-3}	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10 ⁻¹²	pico	р		

			nertz,	Hz	nev	vton,	N
UNIT		j	joule,		pa	pascal,	
SYN	SYMBOLS		ogram,	kg	sec	second,	
		r	neter,	m	watt,		W
VALUES OF TRIGONOMETRIC FUNCTIONS FOR							
COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1

4/5

3/4

 $\sqrt{2}/2$

1

3/5

4/3

1/2

 $\sqrt{3}$

0

 ∞

The following conventions are used in this exam:

• The frame of reference of any problem is assumed to be inertial unless otherwise stated.

 $\cos\theta$

 $\tan\theta$

- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

1

0

 $\sqrt{3}/2$

 $\sqrt{3}/3$

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base C = circumference	$a^2 + b^2 = c^2$
Triangle	Cylinder	s	h = height	$\sin\theta = \frac{a}{a}$
$A = \frac{1}{2}bh$	$V = \pi r^2 \ell$	βr	$\ell = \text{length}$ r = radius	$\cos\theta = \frac{b}{b}$
2	$S = 2\pi r\ell + 2\pi r^2$		s = arc length	$\cos \theta = \frac{-}{c}$
Circle	Sphere		S = surface area V = volume	$\tan \theta = \frac{a}{b}$
$A = \pi r^2$	$V = \frac{4}{3}\pi r^3$	×/	w = width	c a
$C = 2\pi r$	6		θ = angle	θ 90°
$s = r\theta$	$S = 4\pi r^2$			b

MECHANICS AND FLUIDS

I

$ \begin{array}{ll} \mathbf{v}_{z}=\mathbf{v}_{,o}+a_{z}t & a = \operatorname{acceleration} \\ a = distance \\ x=x_{0}+\mathbf{v}_{,o}t+\frac{1}{2}a_{z}t^{2} & b = \operatorname{force} \\ x=x_{0}+\mathbf{v}_{,o}t+\frac{1}{2}a_{z}t^{2} & c = \operatorname{corgy} \\ F=\operatorname{force} & f = \operatorname{frequency} \\ \vec{x}_{o}=\sum \frac{m, \vec{x}_{o}}{m,} & k = \operatorname{spring \ constant} \\ \vec{x}_{on}=\sum \frac{m, \vec{x}_{o}}{m,} & k = \operatorname{spring \ constant} \\ \vec{x}_{on}=\sum \frac{m, \vec{x}_{o}}{m_{o}} & k = \operatorname{spring \ constant} \\ \vec{x}_{on}=\sum \frac{m, \vec{x}_{o}}{m_{o}} & p = \operatorname{momentum} \\ \vec{a}_{on}=\sum \frac{m, \vec{x}_{o}}{m_{o}} & p = \operatorname{momentum} \\ \vec{p}_{on}=\frac{m, \vec{x}_{o}}{m_{o}} & r = \operatorname{radius, \ distance, \ or} \\ \vec{p}_{i}=d \sum \frac{m, \vec{x}_{o}}{m_{o}} & r = \operatorname{radius, \ distance, \ or} \\ \vec{p}_{i}=d \sum \frac{m, \vec{x}_{o}}{m_{o}} & k = \operatorname{poing \ constant} \\ \vec{r}_{i}=d \sum \frac{m, \vec{x}_{o}}{m_{o}} & r = \operatorname{radius, \ distance, \ or} \\ \vec{p}_{i}=d \sum \frac{m, \vec{x}_{o}}{m_{o}} & r = \operatorname{radius, \ distance, \ or} \\ \vec{p}_{i}=d \sum \frac{m, \vec{x}_{o}}{m_{o}} & r = \operatorname{radius, \ distance, \ or} \\ \vec{k}_{i}=-k\Delta \vec{x} & W = \operatorname{work} \\ \vec{k}_{i}=-k\Delta \vec{x} & W = \operatorname{work} \\ \vec{k} = \frac{1}{2}m^{2} & r = \operatorname{radius, \ distance, \ or} \\ \vec{k} = \frac{1}{2}m^{2} & \mu = \operatorname{logh} \\ \vec{k} = \frac{1}{2}m^{2} & \mu = \operatorname{logh} \\ \vec{k} = \frac{1}{2}m^{2} & \mu = \operatorname{coefficient} \ of \ friction \\ \vec{w} = r_{i}d = rd \ cos \theta \\ \Delta L_{i} = \frac{1}{2}m^{2} & \mu = \operatorname{coefficient} \ of \ friction \\ \Delta U_{i} = \frac{1}{2}k(\Delta x)^{2} & \mu = \operatorname{coefficient} \ of \ friction \\ \vec{k} = \frac{1}{2}m^{2} & \pi \\ \vec{k} & work \\ \Delta L_{i} = \pi\Delta M & x = \operatorname{position} \\ \vec{k} = \frac{1}{2}m \sqrt{m} & m \\ \vec{k} = \frac{\Delta \vec{k}}{\Delta m} & $	MECHAN	CS AND FLUIDS	
$P_1 + \rho g y_1 + \frac{1}{2} \rho y_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho y_2^2$	$ \begin{split} & v_x = v_{x0} + a_x t & a = \operatorname{acceleration} \\ & x = x_0 + v_{x0} t + \frac{1}{2} a_x t^2 & E = \operatorname{energy} \\ & v_x^2 = v_{x0}^2 + 2a_x (x - x_0) & J = \operatorname{impulse} \\ & \overline{x}_{cm} = \frac{\sum m_i \overline{x}_i}{\sum m_i} & k = \operatorname{spring \ constant} \\ & \overline{x}_{cm} = \frac{\sum \overline{F}}{m_{sys}} = \frac{\overline{F}_{net}}{m_{sys}} & p = \operatorname{momentum} \\ & \overline{a}_{sys} = \frac{\sum \overline{F}}{m_{sys}} = \frac{\overline{F}_{net}}{m_{sys}} & p = \operatorname{momentum} \\ & p = \operatorname{power} \\ & r = \operatorname{radius, \ distance, \ or} \\ & postion \\ & \overline{F}_g = G \frac{m_1 m_2}{r^2} & t = \operatorname{time} \\ & \overline{F}_f \leq \mu \overline{F}_n & U = \operatorname{potential \ energy} \\ & \overline{F}_s = -k\Delta \overline{x} & W = \operatorname{work} \\ & a_c = \frac{v^2}{r} & y = \operatorname{height} \\ & \theta = \operatorname{angle} \\ & K = \frac{1}{2} m v^2 & \mu = \operatorname{coefficient \ of \ frictio} \\ & W = F_{ij} d = Fd \cos \theta \\ & \Delta K = \sum W_i = \sum F_{ij,i} d_i \\ & \Delta U_g = mg \Delta y \\ & P_{avg} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t} \\ & P_{uss} = F_{ij} v = Fv \cos \theta \\ & \overline{p} = m \vec{v} \\ & \overline{F}_{net} = \frac{\Delta \overline{p}}{\Delta t} = m \overline{\Delta} \\ & \overline{J} = \overline{F}_{avg} \Delta t = \Delta \overline{p} \end{split} $	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$ $v = r\omega$ $a_T = r\alpha$ $\tau = r_\perp F = rF \sin \theta$ $I = \sum m_i r_i^2$ $I' = I_{cm} + Md^2$ $\alpha_{sys} = \frac{\Sigma \tau}{I_{sys}} = \frac{\tau_{net}}{I_{sys}}$ $K = \frac{1}{2} I \omega^2$ $W = \tau \Delta \theta$ $L = I\omega$ $L = rmv \sin \theta$ $\Delta L = \tau \Delta t$ $\Delta x_{cm} = r\Delta \theta$ $T = \frac{1}{f}$ $T_s = 2\pi \sqrt{\frac{\ell}{g}}$ $x = A \cos(2\pi ft)$ $x = A \sin(2\pi ft)$ $\rho = \frac{m}{V}$ $P = \frac{F_\perp}{A}$ $P = P_0 + \rho gh$ $P_{gauge} = \rho gh$ $F_b = \rho Vg$ $A_1 v_1 = A_2 v_2$	A = amplitude or area d = distance f = frequency F = force h = height I = rotational inertia k = spring constant K = kinetic energy $\ell = \text{length}$ L = angular momentum m = mass M = mass M = mass M = mass M = mass P = pressure r = radius, distance, or position t = time T = period v = velocity or speed V = volume W = work x = position y = vertical position $\alpha = \text{angular acceleration}$ $\theta = \text{angle}$ $\rho = \text{density}$ $\tau = \text{torque}$ $\omega = \text{angular speed}$
			$v_2 + \frac{1}{2}\rho v_2^2$