Solutions

Linear Equations

Inequations
Simultaneous Equations
Rearranging Formulas

Linear Equations

$$
\text { Q1) a) } \begin{aligned}
3 x & =20-x \\
4 x & =20 \\
x & =5
\end{aligned}
$$

b) $t+3=5-t$

$$
2 t=2
$$

$$
t=1
$$

$$
\text { c) } \begin{aligned}
3+5 s & =2 s+13 \\
3 s & =10 \\
s & =\frac{10}{3}
\end{aligned}
$$

e) $3 m+8=-2 m$

$$
\begin{aligned}
5 m & =-8 \\
m & =-\frac{8}{5}
\end{aligned}
$$

$$
\text { g) } \begin{aligned}
2 b+7 & =11-3 b \\
5 b & =4 \\
b & =\frac{4}{5}
\end{aligned}
$$

$$
\text { i) } \begin{aligned}
x & =3 x-2+7 \\
-5 & =2 x \\
-\frac{5}{2} & =x
\end{aligned}
$$

$$
\text { j) } 4 a=3-2 a-23
$$

$$
6 a=-20
$$

$$
a=-\frac{20}{6}
$$

$$
a=-\frac{10}{3}
$$

Q2 a) $2(4 t+5)=34$
$8 t+10=34$
$8 t=24$
$t=3$
b) $2(x+3)-5=9$
$2 x+6-5=9$
$2 x=8$
$x=4$
c) $3 r-7(1+r)=12$

$$
\begin{aligned}
3 r-7-7 r & =12 \\
-4 r & =19 \\
r & =-\frac{19}{4}
\end{aligned}
$$

d) $z(z+2)=z^{2}+6$

$$
\begin{aligned}
z^{2}+2 z & =z^{2}+6 \\
2 z & =6 \\
z & =3
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
(x+1)(x-2) & =(x+3)^{2} \\
x^{2}-x-2 & =x^{2}+6 x+9 \\
-7 x & =11 \\
x & =-\frac{11}{7}
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
2(x+3) & =-2(x+4) \\
2 x+6 & =-2 x-8 \\
4 x & =-14 \\
x & =-\frac{14}{4} \\
x & =-\frac{7}{2}
\end{aligned}
$$

$$
\begin{array}{lc}
\text { Q3 a) } \frac{x+1}{4}=5 & \text { b) } \frac{x}{2}+\frac{x}{4}=1 \\
x+1=20 & \text { Multiply by } 4 \\
x=19 & 2 x+x=4 \\
3 x=4 \\
x=\frac{4}{3} \\
& \\
\text { c) } \frac{a-1}{2}=\frac{a+1}{4} & \text { d) } \frac{x+1}{2}+\frac{x-1}{3}=4 \\
\text { Multiply by } 4 & 3(x+1)+2(x-1)=4 \\
2(a-1)=a+1 & 3 x+3+2 x-2=4 \\
2 a-2=a+1 & 5 x=3 \\
a=3 & x=\frac{3}{5}
\end{array}
$$

e) $\frac{x+2}{2}+\frac{x-1}{5}=\frac{1}{20}$

$$
\text { f) } \frac{2}{x}+\frac{1}{3}=5
$$

Multiply by 20

$$
\begin{aligned}
& 10(x+2)+4(x-1)=1 \\
& 10 x+20+4 x-4=1 \\
& 14 x=-15 \\
& \quad x=-\frac{15}{14}
\end{aligned}
$$

Multiply by $3 x$

$$
\begin{aligned}
& 6+x=15 x \\
& 6=14 x \\
& x=\frac{14}{6} \\
& x=\frac{7}{3}
\end{aligned}
$$

Inequations

Q1 a) $3 n>9$

$$
n>3
$$

c) $b-3 \geq-2$ $b \geq 1$
b) $t+2<-1$
$t<-3$
d) $7 k>3 k-16$

$$
4 k>-16
$$

$$
k>-4
$$

e) $6 m-7 \leq m$

$$
\begin{aligned}
5 m & \leq 7 \\
m & \leq \frac{7}{5}
\end{aligned}
$$

f) $8+2 x>3(4-x)$
$8+2 x>12-3 x$

$$
\begin{gathered}
5 x>4 \\
x>\frac{4}{5}
\end{gathered}
$$

g) $11-2(4+3 x)<39$

$$
\begin{aligned}
11-8-6 x & <39 \\
-6 x & <36 \\
x & >-6
\end{aligned}
$$

h) $19+x>15+3(x-2)$

$$
\begin{aligned}
19+x & >15+3 x-6 \\
-2 x & >-10 \\
x & <5
\end{aligned}
$$

Simultaneous Equations

$$
\text { Q1) a) } \begin{gather*}
3 x-y=1 \tag{1}\\
x+y=1 \tag{2}
\end{gather*}
$$

(1) $+(2)$ gives

$$
\begin{aligned}
4 x & =2 \\
x & =\frac{1}{2}
\end{aligned}
$$

Substituting $x=\frac{1}{2}$ into (2) gives

$$
\begin{aligned}
\frac{1}{2}-y & =1 \\
y & =-\frac{1}{2}
\end{aligned}
$$

b) $2 x+y=7$

$$
\begin{equation*}
x+y=4 \tag{1}
\end{equation*}
$$

(1) - (2) gives

$$
x=3
$$

Substituting $x=3$ into (2) gives

$$
\begin{array}{r}
3+y=4 \\
y=1
\end{array}
$$

c) $5 x-2 y=13$
$3 x+2 y=3$
(1) $+(2)$ gives

$$
\begin{aligned}
8 x & =16 \\
x & =2
\end{aligned}
$$

Substituting $x=2$ into (2) gives

$$
\begin{aligned}
(3 \times 2)+2 y & =3 \\
6+2 y & =3 \\
2 y & =-3 \\
y & =-\frac{3}{2}
\end{aligned}
$$

d) $2 x-2 y=9$
$4 x-2 y=16$
(2) - (1) gives

$$
\begin{aligned}
2 x & =7 \\
x & =\frac{7}{2}
\end{aligned}
$$

Substituting $x=\frac{7}{2}$ into (1) gives

$$
\begin{aligned}
\left(2 x \frac{7}{2}\right)-2 y & =9 \\
7-2 y & =9 \\
-2 y & =2 \\
y & =-1
\end{aligned}
$$

Q2) a) $x+3 y=10$
$2 x+5 y=18$
Multiply (1) by 2 to give
$2 x+6 y=20$
(3) - (2) gives

$$
y=2
$$

Substituting $y=2$ into (1) gives

$$
\begin{aligned}
x+(3 \times 2) & =10 \\
x+6 & =10 \\
x & =4
\end{aligned}
$$

b) $2 x+y=10$
$-x+2 y=9$
Multiply (2) by 2 to give
$-2 x+4 y=18$
(1) $+(3)$ gives
$5 y=28$
$y=5.6$
Substituting $y=5.6$ into (1) gives
$2 x+5.6=10$

$$
\begin{aligned}
2 x & =4.4 \\
x & =2.2
\end{aligned}
$$

$$
\text { c) } \begin{gather*}
5 x-4 y=24 \tag{1}\\
2 x=y+9 \tag{2}
\end{gather*}
$$

Rearranging (2) gives

$$
\begin{equation*}
2 x-y=24 \tag{2}
\end{equation*}
$$

Multiply (2) by 4 to give

$$
\begin{equation*}
8 x-4 y=96 \tag{3}
\end{equation*}
$$

(3) - (1) gives

$$
\begin{aligned}
3 x & =72 \\
x & =24
\end{aligned}
$$

Substituting $x=24$ into (2) gives

$$
\begin{aligned}
(2 \times 24)-y & =24 \\
48-y & =24 \\
y & =24
\end{aligned}
$$

$$
\text { d) } \begin{array}{r}
-3 x+2 y=5 \\
4 x+3 y=-1 \tag{2}
\end{array}
$$

Multiplying (1) by 3 and (2) by 2 gives

$$
\begin{gather*}
-9 x+6 y=15 \tag{3}\\
8 x+6 y=-2 \tag{4}\\
(3)-(4) \text { gives } \\
-17 x=17 \\
x=-1
\end{gather*}
$$

Substituting $x=-1$ into (1) gives

$$
\begin{array}{r}
3+2 y=5 \\
y=1
\end{array}
$$

Q3) a) $4 x+y=9$
Rearrange
$y=-4 x+9$
$2 x-y=3$
Rearrange
$y=2 x-3$

Estimated solutions are $x=2, y=1$
b) $2 x+3 y=8$

Rearrange
$y=-\frac{2}{3} x+\frac{8}{3}$
$2 x+y=-4$
Rearrange
$y=-2 x-4$

Estimated solutions are $x=-5, y=6$
c) $x-3 y=8$

Rearrange
$y=\frac{1}{3} x-\frac{8}{3}$
$2 x+y=-4$
Rearrange
$y=-2 x-4$

Estimated solutions are $x=-1, y=-3$
d) $y-4 x=8$

Rearrange
$y=4 x+8$
$y=4 x+2$

There are no solutions since the lines are parallel and therefore never intersect. Note that lines are parallel if they have the same gradient.

Q4) a) Let t be the price of a cup of tea
Let c be the price of a cup of coffee
Forming equations to represent David and Jenny's purchases gives
$2 c+3 t=9.75$
$c+4 t=7.75$
Multiply (2) by 2 to give
$2 c+8 t=15.50$
(3) - (1) gives
$5 t=5.75$
$t=1.15$
Substituting $t=1.15$ into (2) gives
$c+(4 \times 1.15)=7.75$
$c+4.60=7.75$
$c=3.15$
So, a cup of coffee costs $£ 3.15$ and a cup of tea costs $£ 1.15$
b) Let p be the cost of a pen

Let c be the cost of a pencil
Forming equations to represent the total costs gives
$9 p+5 c=3.2$
$7 p+8 c=2.9$
Multiply (1) by 8 to and (2) by 5 to give
$72 p+40 c=25.6$
$35 p+40 c=14.5$
(3) - (4) gives
$37 p=11.1$
$p=30$

When substituting be careful not to confuse pounds and pence. I'll choose to change $£ 3.20$ into 320 pence.

Substituting $p=30$ into (1) gives
$(9 \times 30)+5 c=320$
$270+5 c=320$
$5 c=50$
$c=10$
So, a pen costs 30 p and a pencil costs 10 p
c) Let t be the cost of a table and let c be the cost of a chair

Forming two equations to represent the total costs gives

$$
\begin{align*}
& 2 t+3 c=2,000 \tag{1}\\
& 3 t+2 c=2,500
\end{align*}
$$

Multiply (1) by 3 and (2) by 2 to give
$6 t+9 c=6,000$
$6 t+4 c=5,000$
(3) - (4) gives
$5 c=1,000$
$c=200$
Substituting $c=200$ into (1) gives

$$
\begin{gathered}
2 t+(3 \times 200)=2,000 \\
2 t+600=2,000 \\
2 t=1,400 \\
t=700
\end{gathered}
$$

So, a chair costs $£ 200$ and a table costs $£ 700$

Rearranging Formulas

Q1 a) $s=t+4$
b) $s=t-2$
$t+4=s$
$t=s-4$
$t-2=s$
$t=s+2$
c) $\begin{aligned} s & =3-t \\ t & +s=3 \\ t & =3-s\end{aligned}$
d) $a=5 t$
$5 t=a$
$t=\frac{a}{5}$
e) $a=\frac{t}{5}$
f) $s=\frac{3 t}{5}$
$\frac{t}{5}=a$

$$
\frac{3 t}{5}=s
$$

$$
t=5 a
$$

$$
3 t=5 s
$$

$$
t=\frac{5 s}{3}
$$

$$
\text { Q2 a) } \begin{aligned}
3 a-x & =a+2 x \\
3 a-a & =2 x+x \\
2 a & =3 x \\
a & =\frac{3 x}{2}
\end{aligned}
$$

$$
\text { b) } \begin{gathered}
a+2=x(3+a) \\
a+2=3 x+a x \\
a-a x=3 x-2 \\
a(1-x)=3 x-2 \\
a=\frac{3 x-2}{1-x}
\end{gathered}
$$

$$
\begin{aligned}
& \text { c) } z=\frac{a-3}{5-a} \\
& z(5-a)=a-3 \\
& 5 z-a z=a-3 \\
& 5 z+3=a(1+z) \\
& a(1+z)=5 z+3 \\
& a=\frac{5 z+3}{1+z}
\end{aligned}
$$

$$
\text { d) } \begin{gathered}
x(a-1)=b(a+2) \\
x a-x=b a+2 b \\
x a-b a=2 b+x \\
a(x-b)=2 b+x \\
a=\frac{2 b+x}{x-b}
\end{gathered}
$$

Q3 a) $r=t^{2}$
$t^{2}=r$
b) $r=\sqrt{t}$
$\sqrt{t}=r$
$t=\sqrt{r}$
$t=r^{2}$

$$
\text { c) } \begin{aligned}
r & =\frac{\sqrt{t}}{5} \\
\frac{\sqrt{t}}{5} & =r \\
\sqrt{t} & =5 r \\
t & =(5 r)^{2} \\
t & =25 r^{2}
\end{aligned}
$$

d) $3 t^{2}+r=s$
$3 t^{2}=s-r$
$t^{2}=\frac{s-r}{3}$
e) $\sqrt{t+3}=s$
$t+3=s^{2}$
$t=s^{2}-3$

$$
\begin{gathered}
f \frac{1}{2} \sqrt{2 t-4}=s \\
\sqrt{2 t-4}=2 s \\
2 t-4=(2 s)^{2} \\
2 t-4=4 s^{2} \\
2 t=4 s^{2}+4 \\
t=2 s^{2}+2
\end{gathered}
$$

