

Solutions

Linear Equations Inequations Simultaneous Equations Rearranging Formulas

Linear Equations

Q1) a) $3x = 20 - x$	b) $t + 3 = 5 - t$
4x = 20	2t = 2
x = 5	t = 1
c) $3 + 5s = 2s + 13$	d) $5a - 4 = 3a + 6$
3s = 10	2a = 10
$s = \frac{10}{3}$	a = 5
3	
e) $3m + 8 = -2m$	f) $6y - 11 = 2y + 5$
5m = -8	4y = 16
$m = -\frac{8}{5}$	y = 4
5	
g) $2b + 7 = 11 - 3b$	h) $5x - 7 = 3x$
5b = 4	2x = 7
$b = \frac{4}{5}$	$x = \frac{7}{2}$
5	2
i) $x = 3x - 2 + 7$	j) $4a = 3 - 2a - 23$
-5 = 2x	6a = -20
$-\frac{5}{2} = x$	$a = -\frac{20}{6}$
2	0
	$a = -\frac{10}{3}$

Q2 a)
$$2(4t + 5) = 34$$
b) $2(x + 3) - 5 = 9$ $8t + 10 = 34$ $2x + 6 - 5 = 9$ $8t = 24$ $2x = 8$ $t = 3$ $x = 4$

c)
$$3r - 7(1+r) = 12$$

 $3r - 7 - 7r = 12$
 $-4r = 19$
 $r = -\frac{19}{4}$
d) $z(z+2) = z^2 + 6$
 $z^2 + 2z = z^2 + 6$
 $z = 3$

e)
$$(x + 1)(x - 2) = (x + 3)^2$$

 $x^2 - x - 2 = x^2 + 6x + 9$
 $-7x = 11$
 $x = -\frac{11}{7}$

f)
$$2(x + 3) = -2(x + 4)$$

 $2x + 6 = -2x - 8$
 $4x = -14$
 $x = -\frac{14}{4}$
 $x = -\frac{7}{2}$

Q3 a)
$$\frac{x+1}{4} = 5$$

x + 1 = 20
x = 19

b)
$$\frac{x}{2} + \frac{x}{4} = 1$$

Multiply by 4
 $2x + x = 4$
 $3x = 4$
 $x = \frac{4}{3}$

c)
$$\frac{a-1}{2} = \frac{a+1}{4}$$

Multiply by 4
 $2(a-1) = a+1$
 $a = 3$
d) $\frac{x+1}{2} + \frac{x-1}{3} = 4$
 $3(x+1) + 2(x-1) = 4$
 $3x + 3 + 2x - 2 = 4$
 $5x = 3$
 $x = \frac{3}{5}$

e)
$$\frac{x+2}{2} + \frac{x-1}{5} = \frac{1}{20}$$

Multiply by 20
 $10(x+2) + 4(x-1) = 1$
 $10x + 20 + 4x - 4 = 1$
 $14x = -15$
 $x = -\frac{15}{14}$
f) $\frac{2}{x} + \frac{1}{3} = 5$
Multiply by 3x
 $6 + x = 15x$
 $6 = 14x$
 $x = \frac{14}{6}$
 $x = \frac{7}{3}$

Inequations

<mark>Q1 a)</mark> 3 <i>n</i> > 9	c) $b - 3 \ge -2$
<i>n</i> > 3	$b \ge 1$

b)
$$t + 2 < -1$$

 $t < -3$
d) $7k > 3k - 16$
 $4k > -16$
 $k > -4$

e)
$$6m - 7 \le m$$

 $5m \le 7$
 $m \le \frac{7}{5}$
f) $8 + 2x > 3(4 - x)$
 $8 + 2x > 12 - 3x$
 $5x > 4$
 $x > \frac{4}{5}$

g)
$$11 - 2(4 + 3x) < 39$$
h) $19 + x > 15 + 3(x - 2)$ $11 - 8 - 6x < 39$ $19 + x > 15 + 3x - 6$ $-6x < 36$ $-2x > -10$ $x > -6$ $x < 5$

Simultaneous Equations

Q1) a)
$$3x - y = 1$$
 (1)
 $x + y = 1$ (2)
(1) + (2) gives
 $4x = 2$
 $x = \frac{1}{2}$
Substituting $x = \frac{1}{2}$ into (2) gives
 $\frac{1}{2} - y = 1$
 $y = -\frac{1}{2}$

b)
$$2x + y = 7$$
 (1)
 $x + y = 4$ (2)
(1) - (2) gives
 $x = 3$
Substituting $x = 3$ into (2) gives
 $3 + y = 4$
 $y = 1$

c)
$$5x - 2y = 13$$
 (1)
 $3x + 2y = 3$ (2)
(1) + (2) gives
 $8x = 16$
 $x = 2$
Substituting $x = 2$ into (2) gives
 $(3 x 2) + 2y = 3$
 $6 + 2y = 3$
 $2y = -3$
 $y = -\frac{3}{2}$

d)
$$2x - 2y = 9$$
 (1)
 $4x - 2y = 16$ (2)
(2) - (1) gives
 $2x = 7$
 $x = \frac{7}{2}$
Substituting $x = \frac{7}{2}$ into (1) gives
 $(2x\frac{7}{2}) - 2y = 9$
 $7 - 2y = 9$
 $-2y = 2$
 $y = -1$
(2)
Multiply (1) by 2 to give
 $2x + 6y = 20$ (3)
(3) - (2) gives
 $y = 2$

Substituting y = 2 into (1) gives x + (3 x 2) = 10 x + 6 = 10x = 4

b)
$$2x + y = 10$$
 (1)
 $-x + 2y = 9$ (2)
Multiply (2) by 2 to give
 $-2x + 4y = 18$ (3)
(1) + (3) gives
 $5y = 28$
 $y = 5.6$
Substituting $y = 5.6$ into (1) gives
 $2x + 5.6 = 10$

$$2x = 4.4$$
$$x = 2.2$$

c) 5x - 4y = 24(1) 2x = y + 9(2) Rearranging (2) gives 2x - y = 24(2) Multiply (2) by 4 to give 8x - 4y = 96(3) (3) – (1) gives 3x = 72*x* = 24 Substituting x = 24 into (2) gives (2 x 24) - y = 2448 - y = 24*y* = 24

d)
$$-3x + 2y = 5$$
 (1)
 $4x + 3y = -1$ (2)
Multiplying (1) by 3 and (2) by 2 gives
 $-9x + 6y = 15$ (3)
 $8x + 6y = -2$ (4)
(3) - (4) gives
 $-17x = 17$
 $x = -1$
Substituting $x = -1$ into (1) gives
 $3 + 2y = 5$
 $y = 1$

Q3) a) 4x + y = 9Rearrange y = -4x + 9

2x - y = 3Rearrange y = 2x - 3

Estimated solutions are x = 2, y = 1

Estimated solutions are x = -5, y = 6

Estimated solutions are x = -1, y = -3

There are no solutions since the lines are parallel and therefore never intersect. Note that lines are parallel if they have the same gradient.

Q4) a) Let *t* be the price of a cup of tea

Let *c* be the price of a cup of coffee

Forming equations to represent David and Jenny's purchases gives

2c + 3t = 9.75 (1) c + 4t = 7.75 (2) Multiply (2) by 2 to give 2c + 8t = 15.50 (3) (3) - (1) gives 5t = 5.75 t = 1.15Substituting t = 1.15 into (2) gives $c + (4 \times 1.15) = 7.75$ c + 4.60 = 7.75c = 3.15

So, a cup of coffee costs £3.15 and a cup of tea costs £1.15

b) Let *p* be the cost of a pen

Let *c* be the cost of a pencil

Forming equations to represent the total costs gives

```
9p + 5c = 3.2 	(1)

7p + 8c = 2.9 	(2)

Multiply (1) by 8 to and (2) by 5 to give

72p + 40c = 25.6 	(3)

35p + 40c = 14.5 	(4)

(3) - (4) gives

37p = 11.1

p = 30
```

When substituting be careful not to confuse pounds and pence. I'll choose to change £3.20 into 320 pence.

Substituting p = 30 into (1) gives (9 x 30) + 5c = 320

270 + 5c = 3205c = 50c = 10So, a pen costs 30p and a pencil costs 10p

c) Let *t* be the cost of a table and let *c* be the cost of a chair

Forming two equations to represent the total costs gives

 $2t + 3c = 2,000 \quad (1)$ $3t + 2c = 2,500 \quad (2)$ Multiply (1) by 3 and (2) by 2 to give $6t + 9c = 6,000 \quad (3)$ $6t + 4c = 5,000 \quad (4)$ (3) - (4) gives 5c = 1,000 c = 200Substituting c = 200 into (1) gives $2t + (3 \times 200) = 2,000$ 2t + 600 = 2,000 2t = 1,400t = 700

So, a chair costs $\pounds 200$ and a table costs $\pounds 700$

Rearranging Formulas

c) $s = 3 - t$	b) $s = t - 2$	Q1 a) $s = t + 4$
t + s = 3	t - 2 = s	t + 4 = s
t = 3 - s	t = s + 2	t = s - 4

d)
$$a = 5t$$

 $5t = a$
 $t = \frac{a}{5}$
e) $a = \frac{t}{5}$
 $\frac{t}{5} = a$
 $t = 5a$
f) $s = \frac{3t}{5}$
 $\frac{3t}{5} = s$
 $t = 5s$
 $t = \frac{5s}{3}$

Q2 a)
$$3a - x = a + 2x$$

 $3a - a = 2x + x$
 $2a = 3x$
 $a = \frac{3x}{2}$
b) $a + 2 = x(3 + a)$
 $a + 2 = 3x + ax$
 $a - ax = 3x - 2$
 $a(1 - x) = 3x - 2$
 $a = \frac{3x - 2}{1 - x}$

c)
$$z = \frac{a-3}{5-a}$$

 $z(5-a) = a-3$
 $5z - az = a-3$
 $5z + 3 = a(1+z)$
 $a(1+z) = 5z + 3$
 $a = \frac{5z+3}{1+z}$
d) $x(a-1) = b(a+2)$
 $xa - x = ba + 2b$
 $xa - ba = 2b + x$
 $a(x-b) = 2b + x$
 $a = \frac{2b+x}{x-b}$

Q3 a)
$$r = t^2$$

 $t^2 = r$
 $t = \sqrt{r}$
b) $r = \sqrt{t}$
 $\sqrt{t} = r$
 $t = r^2$
C) $r = \frac{\sqrt{t}}{5}$
 $\frac{\sqrt{t}}{5} = r$
 $\sqrt{t} = 5r$
 $t = (5r)^2$
 $t = 25r^2$

$$\bigwedge$$

d)
$$3t^{2} + r = s$$

 $3t^{2} = s - r$
 $t^{2} = \frac{s - r}{3}$
 $t = \sqrt{\frac{s - r}{3}}$
e) $\sqrt{t + 3} = s$
 $t + 3 = s^{2}$
 $t = s^{2} - 3$

f)
$$\frac{1}{2}\sqrt{2t-4} = s$$

 $\sqrt{2t-4} = 2s$
 $2t-4 = (2s)^2$
 $2t-4 = 4s^2$
 $2t = 4s^2 + 4$
 $t = 2s^2 + 2$