Vectors: Vector Dot Product

When do we use vector dot product

- Take example of a force acting parallel to displacement. Work done is the product of force and displacement. ($\mathrm{W}=\mathrm{Fd}$)
- However, the work done by a force acting at an angle is less in magnitude. This is because part of the force F acts vertically, and part horizontally. Only the horizontal part does work.

Work done = simple product of Force and displacement
(3 Using Dot Product: The dot product of vectors is a powerful tool to find solutions in such situations.

Types of Vector Multiplication

(3) Scalar with Vector: Multiplying a vector with a scalar changes its length but not its direction. If the scalar is negative, the direction also changes (it becomes reverse)

- Vector with Vector. Two types of multiplication -
- Dot Product: Yields a scalar value.
- Cross Product: Yields a vector value (covered in next lesson)

Dot Product or Scalar Product

$$
\vec{a} \cdot \vec{b}=a b \cos \phi
$$

Here a and b are magnitudes of vectors, and ϕ is the angle betv
 well in the formula

Commutative property: $\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$
Maximum Value of dot product: When vectors are parallel or antiparallel
Zero Value of dot product: When the angle between vectors is 90°

Work done using Dot Product

Example: Find work done, using dot product, by a force F that acts at an angle θ with the X axis
$\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d}}=\mathrm{Fd} \cos \theta$
where \vec{F} and \vec{d} are vectors

This component of F does work

Visualization of Dot Product

Component along Direction: Dot product can be expressed as the product of the magnitude of one vector and the component of the other vector along its direction.
$\vec{a} \cdot \vec{b}=a b \cos \theta=(a \cos \theta) b$

Dot Product in Unit Vector Notation
If $\overrightarrow{\mathrm{a}}=\mathrm{a}_{\mathrm{x}} \hat{\imath}+\mathrm{a}_{\mathrm{y}} \hat{\jmath}+\mathrm{a}_{\mathrm{z}} \hat{\mathrm{k}}$ and $\overrightarrow{\mathbf{b}}=\mathrm{b}_{\mathrm{x}} \hat{\imath}+\mathrm{b}_{\mathrm{y}} \hat{\jmath}+\mathrm{b}_{\mathrm{z}} \hat{\mathrm{k}}$
then

$$
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

