
Back to the
basics

Component / Unit Test

Integration Test

System Test

Acceptance Test

In testing there are 4 Test Levels. They can be

encountered when testing both a system and a system of
systems (multiple, dispersed, independent systems in

context as part of a larger, more complex system).

Component / Unit Test
focuses on components that are separately testable.

Integration Test
focuses on interactions between components or systems.

System Test
focuses on the behavior and capabilities of a whole system

or product, often considering the end-to-end tasks the

system can perform and the non-functional behaviors.

Acceptance Test
focuses on the behavior and capabilities of a whole system

or product: confidence, completion, fit for use & purpose.

The best way to navigate across the Test Levels is to

follow a predefined course, to constantly monitor it as you

go along and apply course corrections whenever you see

fit.

Plan

Monitor

Control

Metrics

Start with a

that you will

by using

in order to

Test Planning
Test planning applies for each test level and also includes

the methods for monitoring for each.

Is the activity of establishing or updating a test plan

which starts at the initiation of the test process and in line

with the Test Strategy.

Test Plan
is a document describing the scope, approach, resources

and schedule of intended test activities.

As a record of the test planning process, it also covers:

test items

features to be tested

testing tasks

who will do each task

degree of tester independence

test environment

test design techniques

Entry and Exit Criteria (with their rationale)

risk assessment based on requirements

contingency planning based on risk assessment

integration of reactive test techniques in execution

During test planning, the Test Manager

defines the approach for each level:

What is tested

Goals & Objectives

Test techniques & tools

 In order to have an effective planning, we need to consider

the complex relationships between test phases, but also

between development and test. Some examples would be:

the requirement traceability matrix

informal transfer of information.

In other words, the requirement traceability matrix is a

document that maps and traces user requirement with test

cases. The main purpose of Requirement Traceability

Matrix is to see that all test cases are covered so that no

functionality should miss while doing Software testing.

Another factor for effective planning would be the proper

listing of the testing scope with each feature associated

with a design specification, environment, etc.

Contact with all stakeholders has to be initiated at this

stage, but also all external dependencies identified and

service level agreements put in place.

In order to properly measure the progress, evaluate the

Entry and Exit criteria and to exercise control, we need to

put in place metrics starting with Test Planning.

Test Plan content example
as per IEEE829 standard

 Test plan identifier

 Introduction

 Test items

 Features to be tested

 Features not to be tested

 Approach

 Item pass/fail criteria

 Suspension criteria and

resumption requirements

 Test deliverables

 Testing tasks

 Environmental needs

 Responsibilities

 Staffing and training needs

 Schedule

 Risks and contingencies

 Approvals

Metrics
Are a measurement scale and the method used for

measurement.

It is important that the proper set of metrics is established

as they are mainly used to measure the progress of testing.

This will also enable testers to report results in a

consistent way and with coherent tracking (Example: % of

test coverage, % of test execution, etc.).

Although they should be as automated as possible to allow

immediate understandings of where we are, metrics should

be defined based on specific objectives that can also be

presented to stakeholders at various meetings, for various

concerns.

Project metrics
measure progress toward

established project exit

criteria.

Product metrics
measure some attribute of

the product, such as the

extent to which it has been

tested or the defect density.

Process metrics
measure the capability of the

testing or development

process, such as the

percentage of defects

detected by testing.

People metrics
measure the capability of

individuals or groups, such

as the implementation of test

cases within a given

schedule.

Monitor & Control
A testing schedule and monitoring framework need to be

established to track progress versus plan. Due to this, all

ongoing activities should have targets which are tracked

via ongoing measurements.

When I am stating all ongoing activities, I am also

referring at test analysis, test design, test implementation

and not only at test execution.

It is important to be able to relate the information and

status of the test work products in an understandable and

relevant manner based on the audience of those reports.

Not everyone is looking for the same level of details.

The aim of test control is to compare actual progress

versus the plan and implement corrective actions.

Common examples

Mon Tue Wed Thu Fri

50

40

30

20

10

0

Test Condition execution vs plan

No Run
53.2%

Passed
27.5%

In Progress
9.2%

Failed
6.4%

Test Case status

Test Analysis
Is process of analyzing the test basis (all
documents from which the requirements of a
component or system can be inferred) and
defining test objectives.

Test Design
Is the process of transforming general test

objectives into tangible test conditions and test
cases.

Test Implementation
Is the process of developing and prioritizing test
procedures, creating test data and, optionally,
preparing test harnesses and writing automated
test scripts.

Test Execution
Is the process of running a test on the component

or system under test, producing actual result.

Test Analysis
Is process of analyzing the test basis (all documents from

which the requirements of a component or system can be

inferred) and defining test objectives.

Covers WHAT is to be tested in the form of test

conditions and can start as soon as the basis for testing is

established for each test level.

It can be performed in parallel, integrated or iteratively

with Test Design.

Evaluates and reviews the test objectives and product

risks, while it defines detailed measures and targets for

success.

Deciding on the level of detail should consider:

The level of testing; level of detail and quality of the

test basis

System/software complexity and development lifecycle

used

Project and product risk

Relationship between test basis, what is to be tested

and how is to be tested

Test management tool used

The level of maturity of the test process and the skills

and knowledge of the test analysts

The level at which Test Design and other test work

products are specified

Availability of stakeholders for consultation

Test Condition
Is an item or event of a component or system that could be

verified by one or more test cases (ex: function,

transaction, feature, etc.).

A test condition may or may not specify values or

variables. It all depends on the context at that test level.

Some might be generic like "Test Payment" and others

may be specific like "Test Payment with VISA for 3 items

and a cost over 100$".

Don't forget, if you go specific, then expect a higher

number of test conditions. Check what you need at that

stage and adapt. It may not be the same for Component

Test as for System Test.

advantages of detailed test conditions

More flexibility in relating other test work products

Better and more detailed monitoring and control

Contributes to defect prevention by occurring early

Relates testing work products to stakeholders in terms

that they can understand

Influences and directs other testing activities, but also

other development activities

Enables test design, implementation and execution to

be optimized by more efficient coverage

Basis for clearer horizontal traceability within a test

level

disadvantages of detailed test conditions

Potentially time-consuming

Maintainability can become difficult

Level of formality needs to be defined and implemented

across the team

GO detailed when

GO generic when

Lightweight test design documentation

methods

Little or no formal requirements or

other development work products

The project is large-scale, complex or

high risk

Component (Unit) level testing

Less complex projects where simple

hierarchical relationships exist

Acceptance testing where use cases can

be utilized to help define tests

Test Design
Is an item or event of a component or system that could be

verified by one or more test cases (ex: function,

transaction, feature, etc.).

Covers HOW something is to be tested by identifying test

cases with step wise elaboration for the test conditions

(from Test Analysis) or from the test basis using

techniques identified in the test strategy or plan.

This phase can start for a given Test Level once Test

Conditions are identified and enough information is

available to enable the production of Test Cases.

In other words, a test case is a set of input values,

execution preconditions, expected results and execution

post-conditions, developed for a particular objective or

test condition, such as to exercise a particular program

path or to verify compliance with a specific requirement.

Although it can be merged together with Test Analysis, for

higher levels of testing it will remain a separate activity.

It is likely that some tasks that normally occur

during test implementation will be integrated

into the test design process. Especially when

using an iterative approach.

The coverage of test conditions by either creating low-

level and high-level test cases can be optimized by the

creation of test data starting in Test Design.

Test Implementation
Is the process of developing and prioritizing test

procedures, creating test data and, optionally, preparing

test harnesses and writing automated test scripts.

This is when tests are organized and prioritized and

when test designs are implemented as test cases, test

procedures and test data.

It is of great importance to pick the right tests and run

them in the right order. The importance of this even grows

exponentially in risk-based strategies when we prioritize

based on the likelihood of risk and problems.

At this stage, the Test Manager should ensure:

delivery of test environment

delivery of test data

constraints, risks and priorities are checked

test team is ready for execution

entry criteria is checked (explicit/implicit)

Some organizations may follow the IEEE829 standard to

define inputs and their associated expected results during

testing. Other only have rigorous rules when they need to

provide evidence of compliance for regulatory projects or

for adherence to standards.

In the most common cases, the test inputs are usually

documented together with expected results, test steps and

stored test data.

Just like test conditions and test cases, even during test

implementation we will face the decision to go into an

extensive (detailed) stage or to have a light (generic)

approach. This decision should be taken by your

understanding of the development lifecycle and by the

predictability of software features under test.

For example, in agile or iterative

lifecycles where code changes

dramatically from iteration to iteration,

the implementation work changes

significantly between each stage.

Please do not count off the extensive implementation

preparation due to the above:

Concrete test cases provide working examples of how

the software behaves

When tests are archived for long term and re-use in

regression these details may become valuable

Domain experts are likely to verify versus a concrete

test rather than an abstract business rule

Further weakness in software specification is identified

Some defects can be found only in production-like test

environments. These are often expensive to procure and

difficult to configure and manage. Similar challenges are

also faced for the use of production data or production like

data which can even lead to data privacy or other

headaches.

Test implementation is not all about

manual testing, this is the stage where

automation scripting takes place, the

stage where automation versus manual

prioritization and execution order is

established.

 And I am not talking only about automation, even tool

acquisition is done here, especially for test data

generation required to prepare for load, volume or

performance testing.

Quick reminder before moving forward

Test Suite
groups of test scripts, as well as a test

execution schedule.

Test Case
A set of preconditions, inputs, actions (where applicable),

expected results and post conditions, developed based on

test conditions.

Test Script
A sequence of instructions for

the execution of a test.

Test Charter
An instruction of test goals and possible test ideas on how

to test. Documentation of test activities in session-based

exploratory testing.

Test Execution
Is the process of running a test on the component or

system under test, producing actual result.

Should finish before execution starts
Tests are designed or at least defined

Tools are in place for test management and defect

management and test automation (if applicable)

Standards for test logging and defect reporting are

published

Execution begins once
The test object is delivered

The Entry criteria for test execution is met

During execution, a Test Managers role is to:

Monitor progress according to the plan

Initiate and carry out control actions to guide

testing

Ensure that test logs provide an adequate

record of relevant details for tests and events

During execution it is important to keep a traceability

between test conditions, the test basis and the test

objective and to have the appropriate level of test logging.

Time should be reserved for experienced-based and

defect-based test sessions driven by testers findings.

Entry Criteria

Exit Criteria

Set of generic and specific conditions for permitting a

process to go forward with a defined task

Purpose is to prevent a task from starting which would

entail more effort compared to the effort needed to

remove the failed entry criteria

Set of generic and specific conditions, agreed with

stakeholders for permitting a process to complete

Prevent a task from being considered completed when

there are still outstanding tasks not finished

Used to report progress against a plan and to know

when to stop testing

A Test Managers should:

ensure that effective processes are in place to

provide necessary information for evaluating

entry & exit criteria

make sure that the definition of the information

requirements and methods for collection are

part of test planning

ensure that members of the test team are

responsible for providing the information

required in an accurate and timely manner

The evaluation of exit criteria and reporting of results is a

test management activity.

0 10 20 30 40 50

test conditions

test cases

test procedures planned

tests executed

tests passed

tests failed

Number of test conditions, cases, pass, failed, etc.

Total defects, classified by severity, priority, status

Medium
53.2%

Low
31.9%

High
10.6%

Critical
4.3%

Medium
56.8%

Low
22.7%

High
15.9%

Blocker
4.5%

Closed
58.1%

Open
11.6%

Rejected
11.6%

Verification
9.3%

Clarification
5.8%Severity Priority Status

Change requests Quality risks

Planned versus actual

Rejected
50%

Postponed
23.3%

New
16.7%

Accepted
10%

Mitigated
65.2%

Deferred
21.7%

Acknowledge
13%

Week 1 Week 2 Week 3 Week 4 Week 5

20

15

10

5

0 Day 1 Day 2 Day 3 Day 4 Day 5

60

40

20

0

costs execution

Test Closure
consists of finalizing and archiving the testware and

evaluating the test process, including preparation of a test

evaluation report.

Once test execution is deemed to be complete, the key

outputs should be captured:

Test completion check - ensuring that all test work is

indeed concluded

Test artifacts handover - delivering valuable work

products to those who need them

Lessons learned - performing or participating in

retrospective meetings where important lessons

Archiving results, logs, reports, and other documents

These tasks are important (often missed) and should be

explicitly included as part of the test plan.

A Test Managers should:

Look for opportunities to reuse test work

products

Keep in mind that retrospectives should apply to

testing as well as to the entire project and indeed

the wider organization. Problems tend to be

systemic, not isolated

Waterfall

Agile

Requirements

Design

Implementation

Verification

Maintenance

Analysis

Planning

Design

Testing

Feedback

Deploy

V-Model

Specification

Unit Design

Code
Development

Unit Test

System Test

System Design Integration Test

Requirements Acceptance Test

Level Test Plan

Glossary
Each of the terms specified below are defined as per the

ISTQB® Glossary which is displayed online at:

https://glossary.istqb.org/en/search/

The period of time that begins when a software product is conceived

and ends when the software is no longer available for use. The

software lifecycle typically includes a concept phase, requirements

phase, design phase, implementation phase, test phase, installation

and checkout phase, operation and maintenance phase, and

sometimes, retirement phase. Note these phases may overlap or be

performed iteratively.

software lifecycle

system of systems

metric

measurement

test planning

test plan

Multiple heterogeneous, distributed systems that are embedded in

networks at multiple levels and in multiple interconnected domains,

addressing large-scale inter-disciplinary common problems and

purposes, usually without a common management structure.

test basis
The body of knowledge used as the basis for test analysis and design.

The activity of establishing or updating a test plan.

Documentation describing the test objectives to be achieved and the

means and the schedule for achieving them, organized to coordinate

testing activities.

The process of assigning a number or category to an entity to describe

an attribute of that entity.

A measurement scale and the method used for measurement.

test analysis
The activity that identifies test conditions by analyzing the test basis.

test design
The activity of deriving and specifying test cases from test conditions.

https://glossary.istqb.org/en/search/

test case

test condition

test execution

A set of preconditions, inputs, actions (where applicable), expected

results and postconditions, developed based on test conditions.

An aspect of the test basis that is relevant in order to achieve specific

test objectives.

test control

test implementation

test script
A sequence of instructions for the execution of a test.

test procedure
A sequence of test cases in execution order, and any associated

actions that may be required to set up the initial preconditions and

any wrap up activities post execution.

The activity that prepares the testware needed for test execution based

on test analysis and design.

The process of running a test on the component or system under test,

producing actual result(s).

A test management task that deals with developing and applying a set

of corrective actions to get a test project on track when monitoring

shows a deviation from what was planned.

test log
A chronological record of relevant details about the execution of tests.

exit criteria
The set of conditions for officially completing a defined task.

test closure
During the test closure phase of a test process data is collected from

completed activities to consolidate experience, testware, facts and

numbers. The test closure phase consists of finalizing and archiving

the testware and evaluating the test process, including preparation of a

test evaluation report.

test summary report
A test report that provides an evaluation of the corresponding test

items against exit criteria.

boundary value analysis

branch testing

cause-effect graphing

classification tree method

condition testing

Test Techniques

A black-box test technique in which test cases are designed based on

boundary values.

A white-box test technique in which test cases are designed to

exercise branches.

A black-box test design technique in which test cases are designed

from cause-effect graphs.

A black-box test design technique in which test cases, described by

means of a classification tree, are designed to execute combinations

of representatives of input and/or output domains.

A white-box test design technique in which test cases are designed to

execute condition outcomes.

condition determination testing
A white-box test technique in which test cases are designed to

exercise single condition outcomes that independently affect a

decision outcome.
control flow analysis
A form of static analysis based on a control flow graph.

data flow analysis
A form of static analysis based on the definition and usage of

variables.

decision table testing

decision testing

defect-based test design technique

A form of static analysis based on a control flow graph.

A white-box test technique in which test cases are designed to execute

decision outcomes.

A procedure to derive and/or select test cases targeted at one or more

defect types, with tests being developed from what is known about the

specific defect type.

defect taxonomy

dynamic analysis

error guessing

equivalence partitioning

exploratory testing

experience-based test technique

A system of (hierarchical) categories designed to be a useful aid for

reproducibly classifying defects.

The process of evaluating behavior, e.g., memory performance, CPU

usage, of a system or component during execution.

A test technique in which tests are derived on the basis of the tester's

knowledge of past failures, or general knowledge of failure modes.

A black-box test technique in which test cases are designed to

exercise equivalence partitions by using one representative member of

each partition.

An approach to testing whereby the testers dynamically design and

execute tests based on their knowledge, exploration of the test item

and the results of previous tests.

A procedure to derive and/or select test cases based on the tester's

experience, knowledge and intuition.

multiple condition testing
A white-box test design technique in which test cases are designed to

execute combinations of single condition outcomes (within one

statement).
pairwise testing
A black-box test design technique in which test cases are designed to

execute all possible discrete combinations of each pair of input

parameters.

path testing

requirements-based testing

A white-box test design technique in which test cases are designed to

execute paths.

An approach to testing in which test cases are designed based on test

objectives and test conditions derived from requirements, e.g., tests

that exercise specific functions or probe non-functional attributes

such as reliability or usability.

specification-based technique

static analysis

statement testing

A procedure to derive and/or select test cases based on an analysis of

the specification, either functional or non-functional, of a component

or system without reference to its internal structure.

The process of evaluating a component or system without executing

it, based on its form, structure, content, or documentation.

A white-box test technique in which test cases are designed to execute

statements.

state transition testing
A black-box test technique using a state transition diagram or state

table to derive test cases to evaluate whether the test item successfully

executes valid transitions and blocks invalid transitions.

structure-based technique
A procedure to derive and/or select test cases based on an analysis of

the internal structure of a component or system.

test charter
Documentation of test activities in session-based exploratory testing.

use case testing
A black-box test technique in which test cases are designed to execute

scenarios of use cases.

wild pointer
A pointer that references a location that is out of scope for that

pointer or that does not exist.

Types of Testing

accessibility testing

accuracy testing

black-box testing

Testing to determine the ease by which users with disabilities can use

a component or system.

Testing to determine the accuracy of a software product.

Testing, either functional or non-functional, without reference to the

internal structure of the component or system.

heuristic evaluation

interoperability testing

maintainability testing

operational acceptance test

A usability review technique that targets usability problems in the

user interface or user interface design. With this technique, the

reviewers examine the interface and judge its compliance with

recognized usability principles (the "heuristics").

Testing to determine the interoperability of a software product.

Testing to determine the maintainability of a software product.

Operational testing in the acceptance test phase, typically performed

in a (simulated) operational environment by operations and/or

systems administration staff focusing on operational aspects, e.g.,

recoverability, resource-behavior, installability and technical

compliance.

portability testing
Testing to determine the portability of a software product.

recoverability testing
Testing to determine the recoverability of a software product.

reliability testing
Testing to determine the reliability of a software product.

security testing
Testing to determine the security of the software product.

usability testing

white-box testing

suitability testing
Testing to determine the suitability of a software product.

Testing to evaluate the degree to which the system can be used by

specified users with effectiveness, efficiency and satisfaction in a

specified context of use.

Testing based on an analysis of the internal structure of the

component or system.

Exercises

ASTQB ISTQB

ISTQB® Foundation 2011: 3

ISTQB® Foundation 2018 Exam A: 7, 8

ISTQB® Foundation 2018 Exam B: 6, 7

ISTQB® Foundation 2018 Exam C: 6

ASTQB® Foundation Exam 1: 9, 10, 11, 12, 13

ASTQB® Foundation Exam 2: 9, 10, 11, 12, 13

ISTQB® Advanced Test Manager: 1, 2, 3, 4, 5, 6, 7, 8, 9

ASTQB® Advanced Test Manager: 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14

https://www.astqb.org/
https://www.istqb.org/

