
 

 
 

Software Verification Plan 

 
for the 

 

 <Program Name> 
 

Document No: <Doc Number> 

Revision: - 

 
 

 

 

__________________________________________________ 

  

___________ 

<Name>, Program Manager  Date 

 

__________________________________________________ 

  

___________ 

<Name>, Technical Project Lead  Date 

 

__________________________________________________ 

  

___________ 

<Name>, Engineer  Date 

 

__________________________________________________ 

  

___________ 

<Name>, Quality Engineer  Date 

 

 
 

 

Notice 
This document and the information contained herein are the property of <Company 

Name>. Any reproduction, disclosure or use thereof is prohibited except as 

authorized in writing by <Company Name>.  Recipient accepts the responsibility for 

maintaining the confidentiality of the contents of this document. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 2 of 188 Rev.   -    

 

 

 

REVISIONS 

Rev. Reason/Description 

Requested/ 

Changed By Date 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 



Software Verification Plan 

 

 
 

<Doc Number> Page 3 of 188 Rev.   -    

 

Table of Contents 

 

Section                                                                                                                  Page 
 

1.0 INTRODUCTION .............................................................................................. 8 

1.1 Purpose ........................................................................................................ 8 
1.2 Scope ........................................................................................................... 8 
1.3 Acronyms and Abbreviations ........................................................................... 9 
1.4 Applicable Documents .................................................................................. 10 

1.4.1 External Documents ................................................................................ 10 
1.4.2 Internal Documents ................................................................................ 10 

2.0 ORGANIZATION ............................................................................................ 11 

2.1 Team Member Responsibilities ....................................................................... 11 

3.0 INDEPENDENCE ............................................................................................ 15 

3.1 Peer Reviews............................................................................................... 16 
3.2 Independence of DO-178C Objectives ............................................................ 17 

4.0 VERIFICATION METHODS ............................................................................. 20 

4.1 V-Model Verification Approach ....................................................................... 20 
4.2 Analysis of Outputs Methods ......................................................................... 22 

4.2.1 Traceability of Reviews and Analysis Results .............................................. 23 
4.2.2 Transition Review Planning ...................................................................... 24 
4.2.3 Peer Review Planning .............................................................................. 24 
4.2.4 Software Planning Process Verification Methods .......................................... 25 
4.2.5 Planning Process Verification Activities ...................................................... 25 
4.2.6 Software Planning Process Inputs ............................................................. 25 
4.2.7 Software Planning Process Reviews and Analysis ........................................ 25 

4.2.7.1 Software Verification Plan Review ........................................................ 25 
4.2.7.2 Software Planning Review ................................................................... 26 

4.3 Software Requirements Process Verification Methods ....................................... 28 
4.3.1 Software Requirements Process Verification Objectives ................................ 28 
4.3.2 Software Requirements Process Inputs ...................................................... 28 
4.3.3 Transition Criteria for Entering The Verification of Requirements Process ....... 28 
4.3.4 Software Requirements Process Reviews and Analysis ................................. 29 

4.3.4.1 Software Requirements Document Review ............................................ 30 
4.3.4.2 Software Requirements Review ........................................................... 31 
4.3.4.3 Analysis of High-Level Software Requirements ...................................... 32 
4.3.4.4 System and Software Requirements Trace Analysis ................................ 32 

4.4 Software Design Process Verification Methods ................................................. 33 
4.4.1 Software Design Process Verification Objectives ......................................... 33 
4.4.2 Software Design Process Inputs ................................................................ 33 
4.4.3 Transition Criteria for Entering The Verification of Design Process ................. 33 
4.4.4 Software Design Process Reviews and Analysis ........................................... 34 

4.4.4.1 Software Design Description Review ..................................................... 34 
4.4.4.2 Software Preliminary Design Review .................................................... 35 
4.4.4.3 Software Critical Design Review ........................................................... 36 

4.4.5 Reviews and Analysis of Software Architecture ........................................... 37 



Software Verification Plan 

 

 
 

<Doc Number> Page 4 of 188 Rev.   -    

 

4.4.6 Reviews and Analysis of Low-Level Software Requirements .......................... 37 
4.5 Software Coding Process Verification Methods ................................................. 38 

4.5.1 Software Coding Process Verification Objectives ......................................... 38 
4.5.2 Software Verification Process Inputs.......................................................... 38 
4.5.3 Transition Criteria for Entering The Verification of Software Coding Process .... 38 
4.5.4 Software Coding Process Reviews and Analysis ........................................... 38 

4.5.4.1 Source Code File Review ..................................................................... 39 
4.5.4.2 Source Code Review........................................................................... 39 

4.5.5 Reviews and Analysis of Source Code ........................................................ 39 
4.6 Integration Process Verification Methods ......................................................... 41 

4.6.1 Integration Process Verification Objectives ................................................. 41 
4.6.2 Integration Process Inputs ....................................................................... 41 
4.6.3 Transition Criteria for Entering The Verification of Integration Process ........... 41 
4.6.4 Integration Process Reviews and Analysis .................................................. 42 

4.6.4.1 Executable Object Code Review ........................................................... 42 
4.6.4.2 System Integration Review ................................................................. 42 
4.6.4.3 Reviews and Analysis of Executable Object Code ................................... 42 

4.7 Software Testing Process Verification Methods ................................................. 44 
4.7.1 Software Testing Process Verification Objectives ......................................... 44 
4.7.2 Software Testing Process Inputs ............................................................... 44 
4.7.3 Transition Criteria for Entering The Testing of Integration Process Outputs .... 44 
4.7.4 Transition Criteria for Entering The Verification of Verification Outputs .......... 45 
4.7.5 Software Testing Process Reviews and Analysis .......................................... 45 

4.7.5.1 Software Verification Cases and Procedures Document Review ................ 45 
4.7.5.2 System Verification Review ................................................................. 46 
4.7.5.3 Reviews and Analysis of Test Cases, Test Procedures, and Results ........... 46 

4.7.5.3.1 Review checklists for test cases, procedures, and results ................... 47 
4.7.6 Software Test Execution .......................................................................... 49 

4.7.6.1 Test Environment .............................................................................. 50 
4.7.6.2 Requirements-Based Test Cases .......................................................... 50 
4.7.6.3 Normal Range Test Cases ................................................................... 50 
4.7.6.4 Robustness Test Cases ....................................................................... 51 

4.7.6.4.1 Robustness Test Case Selection Strategy ......................................... 51 
4.7.6.5 Requirements-Based System Verification Testing Methods ...................... 52 

4.7.6.5.1 Requirements-Based Software Verification Testing ............................ 55 
4.7.6.5.2 Requirements-Based Low-Level Testing ........................................... 56 

4.7.7 Effectiveness of Test Program .................................................................. 56 
4.7.7.1 Assess results of requirements-based tests ........................................... 56 
4.7.7.2 Assess failure explanations and rework ................................................. 57 
4.7.7.3 Assess coverage achievement ............................................................. 57 

4.8 Coverage Analysis Methods ........................................................................... 58 
4.8.1 Requirements Coverage Analysis .............................................................. 59 
4.8.2 Structural Coverage Analysis .................................................................... 59 

4.8.2.1 Achieving Coverage ........................................................................... 60 
4.8.2.2 Coverage Analysis Methods ................................................................. 62 
4.8.2.3 Statement Coverage .......................................................................... 64 
4.8.2.4 Modified Condition Decision Coverage .................................................. 64 

4.8.3 Data Coupling and Control Coupling Analysis .............................................. 79 
4.8.3.1 Data Coupling Analysis ....................................................................... 79 
4.8.3.2 Control Coupling Analysis ................................................................... 82 

4.9 Process-Specific Activities ............................................................................. 84 
4.9.1 Test Case Development ........................................................................... 84 



Software Verification Plan 

 

 
 

<Doc Number> Page 5 of 188 Rev.   -    

 

4.9.2 Test Case Verification .............................................................................. 85 
4.9.3 Test Procedure Development .................................................................... 85 
4.9.4 Test Procedure Verification....................................................................... 86 
4.9.5 Coverage Analysis Verification .................................................................. 86 
4.9.6 Testing Environment ............................................................................... 87 
4.9.7 Test Execution ........................................................................................ 87 
4.9.8 All traceability data is reviewed and under CM control with no outstanding (non-
deferrable) PRs Software Testing Process Reviews and Analysis ................................ 88 

4.9.8.1 Software Verification Cases and Procedures Document Review ................ 88 
4.9.8.2 System Verification Review ................................................................. 89 
4.9.8.3 Reviews and Analysis of Test Cases, Test Procedures, and Results ........... 89 

4.9.8.3.1 Review checklists for test cases, procedures, and results ................... 90 
4.9.9 Software Test Execution .......................................................................... 92 

4.9.9.1 Test Environment .............................................................................. 93 
4.9.9.2 Requirements-Based Test Cases .......................................................... 93 
4.9.9.3 Normal Range Test Cases ................................................................... 93 
4.9.9.4 Robustness Test Cases ....................................................................... 94 

4.9.9.4.1 Robustness Test Case Selection Strategy ......................................... 94 
4.9.9.5 Requirements-Based System Verification Testing Methods ...................... 95 

4.9.9.5.1 Requirements-Based Software Verification Testing ............................ 98 
4.9.9.5.2 Requirements-Based Low-Level Testing ........................................... 99 

4.9.10 Effectiveness of Test Program .................................................................. 99 
4.9.10.1 Assess results of requirements-based tests ........................................... 99 
4.9.10.2 Assess failure explanations and rework ............................................... 100 
4.9.10.3 Assess coverage achievement ........................................................... 100 

4.10 Coverage Analysis Methods ......................................................................... 101 
4.10.1 Requirements Coverage Analysis ............................................................ 102 
4.10.2 Structural Coverage Analysis .................................................................. 102 

4.10.2.1 Achieving Coverage ......................................................................... 103 
4.10.2.2 Statement Coverage ........................................................................ 105 
4.10.2.3 Decision Coverage ........................................................................... 105 
4.10.2.4 Modified Condition Decision Coverage ................................................ 105 
4.10.2.5 Coverage Analysis Tools ................................................................... 120 

4.10.3 Source Code to Object Code Traceability.................................................. 122 
4.10.4 Data Coupling and Control Coupling Analysis ............................................ 122 

4.10.4.1 Structural Coverage Analysis of Data and Control Coupling ................... 122 
4.10.4.2 Data Coupling Analysis ..................................................................... 123 
4.10.4.3 Control Coupling Analysis ................................................................. 124 
4.10.4.4 Outputs of Data and Control Coupling Activity ..................................... 126 

Process-Specific Activities ..................................................................................... 127 
4.10.5 Test Case Development ......................................................................... 127 
4.10.6 Test Case Verification ............................................................................ 128 
4.10.7 Test Procedure Development .................................................................. 128 
4.10.8 Test Procedure Verification..................................................................... 129 
4.10.9 Coverage Analysis Verification ................................................................ 129 
4.10.10 Testing Environment ............................................................................. 130 
4.10.11 Test Execution ...................................................................................... 130 
4.10.12 Test Results Verification ........................................................................ 131 

5.0 VERIFICATION ENVIRONMENT ................................................................... 132 

5.1 Test Environment Description ...................................................................... 132 
5.1.1 Block Diagram of Test Environment......................................................... 132 



Software Verification Plan 

 

 
 

<Doc Number> Page 6 of 188 Rev.   -    

 

5.2 List of Test Equipment Used To Verify Software ............................................. 132 
5.3 Testing and Analysis Tools .......................................................................... 132 

5.3.1 Guidelines for Applying the Tools and Hardware Test Environment .............. 132 
5.4 Test Procedure Structure ............................................................................ 133 

6.0 TRANSITION CRITERIA............................................................................... 135 

7.0 PARTITIONING CONSIDERATIONS ............................................................. 136 

7.1 Guidelines for Evaluating Protection ............................................................. 136 
7.1.1 Time ................................................................................................... 137 
7.1.2 Space .................................................................................................. 138 

7.2 Project Specific Partitioning ......................................................................... 138 

8.0 COMPILER ASSUMPTIONS ........................................................................... 139 

9.0 REVERIFICATION GUIDELINES ................................................................... 140 

9.1 Inspect, Review, or Analyze Changes ........................................................... 140 
9.2 Perform Regression Testing ......................................................................... 140 
9.3 Perform Other Verification .......................................................................... 141 

10.0 PREVIOUSLY DEVELOPED SOFTWARE ......................................................... 142 

11.0 MULTIPLE VERSION DISSIMILIAR SOFTWARE............................................ 143 

Appendix A: Software Planning Review Checklist ............................................... 144 

Appendix B: Software Requirements Review Checklist....................................... 149 

Appendix C: Software Preliminary Design Review Checklist ............................... 151 

Appendix D: Software Critical Design Review Checklist...................................... 153 

Appendix E: Software Code Review Checklist ..................................................... 155 

Appendix F: Integration Review Checklist .......................................................... 157 

Appendix G: Software Verification Review Checklist .......................................... 159 

Appendix H: Software Conformity Review Checklist ........................................... 163 

Appendix I: Peer Review Checklist - Planning .................................................... 165 

Appendix J: Peer Review Checklist - Requirements ............................................ 171 

Appendix J: Peer Review Checklist - Design ....................................................... 175 

Appendix K: Peer Review Checklist - Code ......................................................... 180 

Appendix L: Peer Review Checklist - Integration................................................ 183 

Appendix M: Peer Review Checklist – Test Procedures ....................................... 184 



Software Verification Plan 

 

 
 

<Doc Number> Page 7 of 188 Rev.   -    

 

Appendix N: Peer Review Checklist – Test Results ............................................. 187 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 8 of 188 Rev.   -    

 

1.0 INTRODUCTION 

1.1 Purpose  

This plan describes the Software Verification Process to be implemented on the Program.  
This plan has been prepared in accordance with the requirements of RTCA/DO-178C.  The 

purpose of the verification process is to detect and report errors that have been introduced 

in the development processes. The verification process does not produce software; its 

responsibility is to ensure that the produced software implements its intended function 
completely and correctly, while avoiding unintended functions. Because each development 

process may introduce errors, verification is an integral process, which is coupled with every 

development process.   The verification process ensures that the software product is built as 

designed, with no unexpected functionality.  The verification process is also intended to 
ensure that the software will perform under any foreseeable operating conditions. 

1.2 Scope  

This plan will be used by the certification authority to determine if the Software Life Cycle 

Process is commensurate with the rigor required for the level of software being developed. 
Once approved, it is implemented during the development and product life cycle of the 

deliverable airborne software. This Software Verification Plan complies with the 

documentation requirements of RTCA/DO-178C, Section 11.3. 

 

The following diagram illustrates the lifecycle process and shows the Verification Process as 
an integral process associated with all other planning and development processes. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 9 of 188 Rev.   -    

 

1.3 Acronyms and Abbreviations 

<PROJ> <Add Project Acronyms in Alphabetical Order> 

RAMS Reviews and Analysis Management System 
CAMS Coverage Analysis Management System 

CC1 DO-178C Control Category 1 

CC2 DO-178C Control Category 2 

CI  Configuration Item 
CM  Configuration Management 

COTS Commercial off the Shelf 

CPU Central Processing Unit 

CSC Computer Software Component 
CSCI Computer Software Configuration Item 

CSU Computer Software Unit 

DER Designated Engineering Representative  

DRMS Document Review Management System 
FAA Federal Aviation Administration 

FHA Functional Hazard Assessment 

IVT  Independent Verification Testing 

MC/DC Modified Condition/Decision Coverage 

MISRA Motor Industries Software Reliability Association 
MLCP Master Load Control Procedure 

PEMS Project Event Management System 

PRMS Problem Reporting Management System 

PSAC Plan for Software Aspects of Certification 
PSSA Preliminary System Safety Assessment 

PVCS Serena PVCS Version Control Software 

QA  Quality Assurance 

RTCA Radio Technical Commission for Aeronautics 
RTMS Requirements Traceability Management System 

SAS Status Accounting System 

SCI Software Configuration Index 

SCM Software Configuration Management 

SCMP Software Configuration Management Plan 
SCS Software Coding Standard 

SDD Software Design Description 

SDS Software Design Standard 

SDP Software Development Plan 
SECI Software Environment Configuration Index 

SQA Software Quality Assurance 

SQAP Software Quality Assurance Plan 

SQE Software Quality Engineer 
SRS Software Requirements Standard 

SSA System Safety Assessment 

SVC&P Software Verification Cases and Procedures 

SVCP Software Verification Cases and Procedures  
SVP Software Verification Plan 

SWRD Software Requirements Document 

VR  Verification Results 

VSS Visual Source Safe 



Software Verification Plan 

 

 
 

<Doc Number> Page 10 of 188 Rev.   -    

 

1.4 Applicable Documents 

The following documents are listed for reference only.  Each document is applicable to this 

plan only to the extent specified herein. 
 

1.4.1 External Documents 

RTCA/DO-178C Software Considerations in Airborne Systems and Equipment 

Certification 

FAA Order 8110.4C Type Certification  

FAA Order 8110.49  FAA, Software Approval Guidelines 

AC 20-115C Advisory Circular, RTCA Inc., Document DO-178C, Software 

Considerations in Airborne Systems and Equipment Certification 

CAST-19 Certification Authorities Software Team (CAST) Position Paper 

CAST-19: Clarification of Structural Coverage Analyses of Data 

Coupling and Control Coupling (Rev 2). 

<Spec Number> <Customer Specification> 

<Spec Number> <Regulatory Specification> 

1.4.2 Internal Documents 

 

<Ref Doc> Plan for Software Aspects of Certification (Ref. DO-178C, 11.1) 

<Ref Doc> Software Development Plan (Ref. DO-178C, 11.2) 

<Ref Doc> Software Verification Plan (Ref. DO-178C, 11.3) 

<Ref Doc> Software Configuration Management Plan (Ref. DO-178C, 11.4) 

<Ref Doc> Software Quality Assurance Plan (Ref. DO-178C, 11.5) 

<Ref Doc> Software Design Standards (Ref. DO-178C, 11.7) 

<Ref Doc> Software Code Standards (Ref. DO-178C, 11.8) 

<Ref Doc> Software Requirements Document (Ref. DO-178C, 11.9) 

<Ref Doc> Software Design Description (Ref. DO-178C, 11.10) 

<Ref Doc> Build Procedure for Source Code (Ref. DO-178C, 11.11) 

<Ref Doc> Load Control for Executable Object Code (Ref. DO-178C, 11.12) 

<Ref Doc> Software Verification Cases and Procedures (Ref. DO-178C, 11.13) 

<Ref Doc> Software Verification Results (Ref. DO-178C, 11.14) 

<Ref Doc> Software Environment Configuration Index (Ref. DO-178C, 11.15) 

<Ref Doc> Software Configuration Index (Ref. DO-178C, 11.16) 

<Ref Doc> Software Accomplishment Summary (Ref. DO-178C, 11.20) 



Software Verification Plan 

 

 
 

<Doc Number> Page 11 of 188 Rev.   -    

 

2.0 ORGANIZATION 

Software verification activities will be performed by an individual or individuals other than 

the developer.  The following matrix summarizes the allocation: 
 

Verification Activity Team Out 
Source 

Other 

 

Verification of Outputs of Software Requirements Process 
 

    

Verification of Outputs of Software Design Process 

 

    

Verification of Outputs of Coding & Integration Process 

 

   

Testing of Outputs of Integration Process 

 

   

Verification of Verification Process Results 

 

   

2.1 Team Member Responsibilities  

Systems Engineering & Software Engineering 
 

Plan for Software Aspects of Certification 

Software Verification Plan 

Software Requirements Standards 

Analysis of System Requirements (Complete Requirements Peer Review Checklists) 

Software Requirements Document 

Software Accomplishment Summary 

Complete System Requirements Document Checklist 

Complete Software Requirements Document Checklist 

Complete Software Verification Cases and Procedures 

Complete Software Verification Results 

Structural Coverage Analysis Results 

 

Software Configuration Management 
 

Software Configuration Management Plan 

Software Lifecycle Environment Configuration Index 

Software Configuration Index 

Release Plan for Software Aspects of Certification 

Release Software Development Plan 

Release Software Verification Plan 

Release Software Configuration Management Plan 

Release Software Quality Assurance Plan 

Release Software Requirements Standards 

Release Software Design Standards 



Software Verification Plan 

 

 
 

<Doc Number> Page 12 of 188 Rev.   -    

 

Software Configuration Management 
 

Release Software Code Standards 

Release System Requirements Document 

Release Software Requirements Document 

Release Software Design Description 

Establish Software Library 

Release Low Level Software Verification Cases and Procedures 

Release Low Level Verification Results 

Release Source Code 

Release Software Verification Cases and Procedures 

Release Software Verification Results 

Release Structural Coverage Analysis Results 

Release Software Lifecycle Environment Configuration Index 

Release Software Configuration Index 

Release Software Accomplishment Summary 
 

 
 

Software Engineering & Independent Verification Engineers 
 

Software Development Plan 

Software Design Standards 

Software Code Standards 

Software Design Description 

Source Code 

Analysis of Requirements (Complete Requirements Peer Review Checklists) 

Analysis of Design (Complete Design Peer Review Checklists) 

Analysis of Code (Complete Code Peer Review Checklists) 

Analysis of Integration (Complete Integration Peer Review Checklists) 

Analysis of Test Cases, Procedures and Results (Complete Test Peer Review Checklists) 

Low Level Verification Cases and Procedures 

Low Level Verification Results 

Executable Object Code 

Complete Software Design Description Checklist 

Complete Low Level Software Verification Cases and Procedures Checklist 

Complete Low Level Software Verification Results Checklist 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 13 of 188 Rev.   -    

 

 

Transition Review Team 
 

Software Planning Review 

Software Requirements Review 

Software Preliminary Design Review 

Software Critical Design Review 

Software Code Review 

System Integration Review 

System Verification Review 
 

 

Safety Engineering 
 

Review & Approval of Derived Requirements  

Functional Hazard Assessment  

Preliminary System Safety Assessment  

System Safety Assessment  
 

 

Software Quality Assurance 
 

Software Quality Assurance Plan 

Complete Plan for Software Aspects of Certification Checklist 

Complete Software Development Plan Checklist 

Complete Software Verification Plan Checklist 

Complete Software Configuration Management Plan Checklist 

Complete Software Quality Assurance Plan Checklist 

Complete Software Requirements Standards Checklist 

Complete Software Design Standards Checklist 

Complete Software Code Standards Checklist 

Complete Software Requirements Document Review Checklist 

Complete Software Design Document Review Checklist 

Complete Software Verification Cases and Procedures Document Review Checklist 

Complete Software Verification Results Review Checklist 

Complete Software Lifecycle Environment Configuration Index Checklist 

Complete Software Configuration Index Checklist 

Complete Software Accomplishment Summary Checklist 

Transition Criteria Verification (Planning Review Checklists) 

Transition Criteria Verification (Requirements Review Checklists) 

Transition Criteria Verification (Preliminary Design Review Checklists) 

Transition Criteria Verification (Critical Design Review Checklists) 

Transition Criteria Verification (Code Review Checklists) 

Transition Criteria Verification (Integration Review Checklists) 

Transition Criteria Verification (Verification Review Checklists) 

Software Conformity Review 

Perform Surveillance and Pre-SOI Audits 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 14 of 188 Rev.   -    

 

 

FAA Software DER 
 

Plan for Software Aspects of Certification Approval 

Stages of Involvement Audit #1 Audit (Planning Review) 

Stages of Involvement Audit #2 Audit (Design Review) 

Stages of Involvement Audit #3 Audit (Verification Review) 

Stages of Involvement Audit #4 Audit (Final Review) 

Software Configuration Index Approval 

Software Accomplishment Summary Approval 

Complete FAA Form 8110-3 
 



Software Verification Plan 

 

 
 

<Doc Number> Page 15 of 188 Rev.   -    

 

3.0 INDEPENDENCE 

Independence is achieved through the “No Sole Perspective” method.  This perspective 

proposes that that there is value in having someone other than the developer of the data 
review the data, and that it satisfies the criteria for having an “objective evaluation” without 

requiring organizational independence. In fact, this perspective recommends that there is 

additional benefit in having multiple other persons involved in each review from different 

disciplines (such as systems engineers, safety specialists, test engineers, human factors 
specialists, technical writers, etc.). Also, by having other disciplines involved in the review, 

one could potentially be getting the greatest possible “objective evaluation” of the data. 

Independent reviews help prevent a biased perspective since it may be difficult to 

impartially review one’s own work. 

Additionally, the value of having an independent reviewer involved in the software 

engineering discipline is supported by extensive research and application.  It is also intuitive 

and reasonable that having someone other than the author or developer of an artifact, 

review (inspect) that artifact from their different perspectives, disciplines, and experiences 
will provide for higher quality, safer, easier to maintain, and less expensive (in the long run) 

products. 

This project expands on the “No Sole Perspective,” and proposes the following guidelines: 

a. General Position: To achieve verification independence, the person performing or 

responsible for the verification activity will not be the same person who developed 
the data being verified.  

b. Tool Qualification: If a tool is used to eliminate, reduce or automate the activities 

associated with a DO-178C objective needing verification independence and that 

tool’s output will not be completely verified with independence, then that tool will be 
qualified. 

c. Test Case and Procedure Development: The test cases and procedures will not be 

developed by the same person who developed the low-level requirements or source 

code to be verified by those test cases and procedures.  

d. Test Case and Procedure Review: The person responsible for performing the test 

cases and procedures review will not be the same person who developed the test 

cases and procedures to be verified.  

e. Test Execution: The person responsible for executing the tests will not be the same 

person who developed the requirements or code being verified by the tests, nor the 
developer of the test cases and procedures being executed.  If the test execution is 

fully automated (e.g., scripted “batch” run with no need for human intervention or 

observation), then this guideline would not apply. However, that test “tool” may 

need to be qualified and the developer of the testing tool (that person setting up the 
automated test execution and environment) will not be the same person who 

developed the test cases and procedures. 

f. Test Results Review and Coverage Analysis: The person responsible for performing 

the test results review or test coverage analysis will not be the same person who 
developed the test cases and procedures, or the same person who executed the 

tests. 



Software Verification Plan 

 

 
 

<Doc Number> Page 16 of 188 Rev.   -    

 

3.1 Peer Reviews 

Peer reviews will be used as the primary means to obtain verification independence.  Within 

the scope of this project, peer review is defined as the evaluation of the conceptual and 
technical soundness of a design by individuals qualified by their education, training and 

experience in the same discipline, or a closely related field of science, to judge the 

worthiness of a design or to assess a design for its likelihood of achieving the intended 

objectives and the anticipated outcomes. A peer review may be conducted on any or all 
components of a design, conceptual approaches or recommendations, application or 

interpretation of code requirements or supporting analysis and calculations. 

The scope of the peer review may be a complete review of the entire documentation, 

including compliance with applicable requirements, design, coding and verification standards 
and the appropriateness of the assumptions, engineering methods and input data used to 

support the design. Alternatively, the scope of the peer review might be limited to specific 

aspects of the design documentation, such as specific models or methods and their 

associated input data and conclusions drawn from the output data.  Agreement on the scope 
of the peer review is achieved between the contracting stakeholder and the peer reviewer 

and documented in the Reviews and Analysis Management System (see screen shot below). 

The scope of the review explicitly identified in this tool at the time of execution of the 

agreement to undertake the peer review. Any changes to the scope must be agreed to by 

both the contracting stakeholder and the peer reviewer.  The peer review is limited to only 
the technical aspects of the design documentation.   

 

Sample Screen Short: Action Item Management System 



Software Verification Plan 

 

 
 

<Doc Number> Page 17 of 188 Rev.   -    

 

 

3.2 Independence of DO-178C Objectives 

The following matrix shows the DO-178C objectives that will be satisfied with independence. 
 

 

 Table Objective Verification 

Activity 

Item Being 

Verified 

Interpretation 

A-3(1) Software high-

level 

requirements 

comply with 
system 

requirements. 

Reviews and 

Analyses of 

the High-

Level 
Requirement

s 

High-level 

requirements 

The reviews and analyses of 

the high-level requirements 

will be performed by a 

person(s) other than the 
developer of the high-level 

requirements. 

A-3(2) High-level 

requirements 

are accurate 

and 
consistent. 

A-3(7) Algorithms are 

accurate. 

A-4(1) Low-level 

requirements 
comply with 

high-level 

requirements. 

Reviews and 

Analyses of 
the Low-

Level 

Requirement

s 

Low-level 

requirements 

The reviews and analyses of 

the low-level requirements 
will be performed by a 

person(s) other than the 

developer of the low-level 

requirements. A-4(2) Low-level 

requirements 

are accurate 
and 

consistent. 

A-4(7) Algorithms are 

accurate. 

A-4(8) Software 

architecture is 

compatible 

with high-level 

requirements. 

Reviews and 

Analyses of 

the Software 

Architecture 

Software 

architecture 

The reviews and analyses of 

the software architecture will 

be performed by a person(s) 

other than the developer of 

the software architecture. 

A-4(9) Software 

architecture is 
consistent. 

A-4(13) Software 
partitioning 

integrity is 

confirmed. 

A-5(1) Source Code 

complies with 

low-level 
requirements. 

Reviews and 

Analyses of 

the Source 
Code 

Source Code The reviews and analyses of 

the Source Code will be 

performed by a person(s) 
other than the developer of 



Software Verification Plan 

 

 
 

<Doc Number> Page 18 of 188 Rev.   -    

 

 Table Objective Verification 
Activity 

Item Being 
Verified 

Interpretation 

A-5(2) Source Code 
complies with 

software 

architecture. 

the Source Code. 

A-5(6) Source Code 

is accurate 

and 
consistent. 

A-6(3) Executable 
Object Code 

complies with 

low-level 

requirements. 

Requirement
s-Based 

Testing 

Executable 
Object Code 

The person(s) who created a 
set of low-level requirements-

based test cases should not 

be the same person(s) who 

developed the associated 
Source Code from those low-

level requirements. It follows 

that: 

 

1. The same person(s) could 
develop the low-level 

requirements and the Source 

Code, provided another 

person(s) develops the test 
cases from those low-level 

requirements, or 

 

2. The same person(s) could 
develop the low-level 

requirements and their 

associated test cases, 

provided another person(s) 
develops the Source Code. 

A-6(4) Executable 

Object Code is 
robust with 

low-level 

requirements. 

A-7(1) Test 

procedures 
and expected 

results are 

correct. 

Reviews and 

Analyses of 
the Test 

Procedures 

Test procedures The reviews and analyses of 

the test procedures will be 
performed by a person(s) 

other than the developer of 

the test procedures. 

A-7(2) Test results 

are correct 

and 
discrepancies 

explained. 

Reviews and 

Analyses of 

the Test 
Results 

Test results The reviews and analyses of 

the test results will be 

performed by a person(s) 
other than the person(s) who 

performed the tests. 

A-7(3) Test coverage 

of high-level 

requirements 

is achieved. 

Requirement

s-Based Test 

Coverage 

Analysis 

Test cases The requirements-based test 

coverage analysis will be 

performed by a person(s) 

other than the developer of 
the test cases. A-7(4) Test coverage 

of low-level 

requirements 
is achieved. 



Software Verification Plan 

 

 
 

<Doc Number> Page 19 of 188 Rev.   -    

 

 Table Objective Verification 
Activity 

Item Being 
Verified 

Interpretation 

A-7(5) Test coverage 
of software 

structure 

(modified 

condition/deci
sion) is 

achieved. 

Structural 
Coverage 

Analysis 

Test cases, test 
procedures, 

and/or test 

results 

The exact independence 
required depends on how the 

structural coverage analysis 

is carried out. For example, if 

the structural coverage 
analysis is performed on the 

test cases, then the structural 

coverage analysis will be 

performed by a person(s) 
other than the developer of 

the test cases. Similarly, if 

the structural coverage 

analysis is performed on the 
test procedures and test 

results, then the structural 

coverage analysis will be 

performed by a person(s) 

other than the developer of 
the test procedures and test 

results. 

A-7(6) Test coverage 

of software 

structure 

(decision 
coverage) is 

achieved. 

A-7(7) Test coverage 

of software 

structure 

(statement 

coverage) is 
achieved. 

A-7(8) Test coverage 

of software 

structure 

(data coupling 
and control 

coupling) is 

achieved. 

   

A-7(9) Verification of 

additional 

code, that 
cannot be 

traced to 

Source Code, 

is achieved. 

   

 



Software Verification Plan 

 

 
 

<Doc Number> Page 20 of 188 Rev.   -    

 

4.0 VERIFICATION METHODS  

The Software Verification Process utilizes three methods to verify that the objectives of each 

process have been satisfied.  These methods include review, analysis and test.  Reviews and 
analysis are applied to the results of the software development and software testing 

processes. Reviews provide a quantitative assessment of correctness and consist of 

inspection of outputs of the processes guided by checklists.  Analysis provides repeatable 

evidence of correctness and examines in detail the functionality, performance, traceability 
and safety implications of a software component and its relationship to other components.  

Testing will be used to exercise the software to verify that it satisfies specific requirements 

and to detect errors in the software.  

4.1 V-Model Verification Approach 

A V-Model approach, as detailed in the Software Development Plan, will be used during 

development and verification. This model is summarized below. 

 

Development Activity Validation & Verification Activity 

 

Requirements Validate Requirements & Trace Data 

Preliminary Design Verify Conceptual Design & Trace Data 

Detail Design Verify Detail Design & Trace Data 

Integration Verify Integration & Trace Data 

Requirements-Based Test Case Creation Verify Test Cases & Trace Data 

Test Procedure Case Creation Verify Test Procedures & Trace Data 

Implementation 

Requirements-Based Test Execution Verify Test Results & Trace Data 

Structural Coverage Execution  Verify Structural Coverage 

Structural Coverage Analysis Perform Coverage Analysis Resolution 

 

4-1 V-Model Relationship Table 



Software Verification Plan 

 

 
 

<Doc Number> Page 21 of 188 Rev.   -    

 

Early in the review process, the Software Verification Plan is reviewed to ensure that 

activities planned for achieving test coverage, if followed, will satisfy the DO-178C objective. 

Other plans including the Plan for Software Aspects of Certification, Software Configuration 
Management Plan, Software Quality Assurance Plan, and tool plans (if applicable) may 

contain additional information related to test coverage. 

The following questions are considered when reviewing the plans: 

 Are the plans sufficiently clear and detailed to allow the development and quality 
engineers to follow them consistently? 

 Do the plans specify who is allowed to perform verification tasks? 

 Do the plans specify how each requirement will be tested (e.g., module test, 

software integration, etc.)? 

 Do the plans address all aspects of test coverage analysis? For example, are the 

following addressed: 

 tools and tool qualification, if tools are used for test coverage 

 the relationship between requirements-based testing and measuring test coverage 
 a process for determining when additional requirements-based tests should be 

added, if coverage is not achieved as expected 

 a procedure for regression analysis and testing, if necessary 

 the transition criteria to start and end test coverage 

 Do the plans address the software change process for the airborne software? 

 Do the plans address regression analysis and testing with respect to the unique 

requirements for test coverage? 

 Do the plans address possible reuse of verification tools? For example, is credit being 

claimed from previous tool qualifications or will the tool qualification data be used in 
a future program? 

 Is there evidence that the plans are being followed (such as, progress against 

timeframes, staffing, verification records, and SQE records)? 

 

Testing is a method as well as a process, similar to the development processes.  The 

Software Testing Process invokes the integral processes of Verification, Configuration 

Management, Quality Assurance and Certification Liaison.  As such, it will be identified in 

this Software Verification Plan as both a method and a process, detailing the reviews and 

analysis that occur during the Software Testing Process.     



Software Verification Plan 

 

 
 

<Doc Number> Page 22 of 188 Rev.   -    

 

4.2 Analysis of Outputs Methods 

The analysis of outputs methods are specific to each analysis being performed. The 

following diagram, and subsequent paragraphs, details the methods which will be used for 
each analysis performed as part of the software verification process. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 23 of 188 Rev.   -    

 

4.2.1 Traceability of Reviews and Analysis Results 

 

Traceability between review artifacts and review and analysis results will be facilitated by 
applying a unique ID (including the Project ID and Review ID) to each review activity via the 

Reviews and Analysis Management System.  The review item, review sign-in sheet, review 

checklist and related action items will be will be traceable to each other based in this ID.  In 

addition, a review folder which contains the review artifacts is maintained using the same 
ID, ensuring complete traceability and archiving.  A final review of all verification evidence 

and related traceability will be conducted as part of the Software Conformity Reviews. 

 

 
Review Artifacts 

 

Unique ID 
<Project> - <Review> 

Item 

 

Review Item (What was reviewed) RI: 01-025 -01, 02, 03, etc. 

Review Sign-In Sheet (Who reviewed it) SS: 01-025  

Review Checklist (Review criteria) RC: 01-025  

Action Items (Review effectiveness) AI: 01-025 -01, 02, 03, etc. 

 

 
Reviews and Analysis Management System 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 24 of 188 Rev.   -    

 

4.2.2 Transition Review Planning 

 

Transition reviews will be held for entry into each of the Software Requirements, Software 
Design, Software Coding and Integration Processes as well as the Software Verification, 

Software Configuration Management, Software Quality Assurance and Certification Liaison 

Integral Processes.  The number of transition reviews will be based on the number of 

iterations through the lifecycle and the number of times a process has been re-entered.   
 

The following model illustrates three spirals and a final integration spiral.  In all cases, 

planning is done first and integration is done together.  In addition, the final transition 

criteria where final credit is provided occurs during the final integration spiral.  Partial (P) 
transition criteria are provided for each spiral.  Partial transition criteria includes the 

following as a minimum: 

 

1. The Configuration Item being transitioned is under CC1 control 
2. The Configuration Item has been peer reviewed (see Peer Review Planning below) 

3. Peer review verification results are under CC2 control 

4. SQA has verified that the planned partial transition criteria has been satisfied 

 

 

Process PLN REQ DES COD INT VER SCM SQA SQA 

Spiral 1  

 

P P P  P P P P 

Spiral 2 P P P P P P P 

Spiral 3 P P P P P P P 

        

Integration Spiral        
 

4.2.3 Peer Review Planning 

Peer reviews will be held for each of the main functional components identified during the 

initial analysis of system requirements allocated to software.  At least one peer review will 
be held for each main function for High-Level Requirements (HLR), Architecture (ARCH), 

Code (CODE), Integration (INT), Test Cases (TC), Test Procedures (TP), Test Results, 

including Structural Coverage Analysis Results and Results Resolution (TR). 

 

Review Title HLR ARCH LLR CODE INT TC TP TR 

Main Function 1         

Main Function 2         

Main Function 3         

         

Functional Interface         



Software Verification Plan 

 

 
 

<Doc Number> Page 25 of 188 Rev.   -    

 

4.3 Software Planning Process Verification Methods 

4.3.1 Planning Process Verification Activities 

 

 
DO-178C Activities 

 

 

DO-178C Table 

Reference 

 

 

DO-178C Paragraph 

Reference 

 

Methods are chosen that enable the 

objectives of DO-178C to be satisfied. 
NA 4.6a 

Software life cycle processes can be 

applied consistently. 
NA 4.6b 

Each process produces evidence that its 

outputs can be traced to their activity 
and inputs, showing the degree of 

independence of the activity, the 

environment, and the methods to be 

used. 

NA 4.6c 

The outputs of the software planning 

process are consistent and comply with 

section 11 of DO-178C. 

NA 4.6d 

4.3.2 Software Planning Process Inputs  

Software Planning Process inputs to the Software Verification Process include the Software 
Verification Plan. 

4.3.3 Software Planning Process Reviews and Analysis 

4.3.3.1 Software Verification Plan Review 

Review of the Software Verification Plan occurs when the document is mature enough to be 
reviewed. Once prepared, the Software Verification Plan is submitted to Software 

Configuration Management and entered into the document control system. 

The Software Quality Assurance Engineer coordinates the document review process using 

the Document Review Management System.  Each reviewer adds his or her comments in the 
Document Review Management System.  A cycle of comment incorporation and re-review 

occurs through Configuration Management until all comments are closed.  The Project Lead 

is responsible for closing all document comments prior to formal release. 

Once all comments have been closed, the Software Verification Plan is reviewed by the 

Software Quality Assurance Engineer against the Document Review Checklist and a cross 
references from each section of the Software Verification Plan to the DO-178C Section 11 

Objective to ensure that full compliance is achieved (See sample screenshot below).  Once 

complete, the Software Quality Assurance Engineer signs and dates the checklists, which is 

maintained by Software Configuration Management as CC2 compliance evidence.  The 
Software Verification Plan is then signed and released. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 26 of 188 Rev.   -    

 

Sample Screen Shot: Action Item Detail 

 

 

4.3.3.2 Software Planning Review 

The Software Planning Process concludes with a Software Planning Review conducted by the 

Project Engineer.  Transition Criteria from the Software Planning Process to the Software 

Development Process are discussed at this review.  

When the Software Planning Review is held, action items are recorded in the Reviews and 

Analysis Management System database file associated with that review.  The review 

includes a discussion of the status of the development and integral activities, a review and 

status of the Planning Documents, and a discussion of any special considerations. The 
Software Quality Assurance representative steps through the Software Planning Review 

Checklist.  If deficiencies are revealed during the review, action items are generated, and 

corrective actions to resolve the deficiencies are fed back into the appropriate process. 

 
Lifecycle data to be considered at the Software Planning Review include the following: 

 Review and approval of the Plan for Software Aspects of Certification  

 Review and approval of the Software Development Plan 

 Review and approval of the Software Verification Plan 

 Review and approval of the Software Configuration Management Plan 

 Review and approval of the Software Quality Assurance Plan 

 Review and approval of the Software Requirements Standards 

 Review and approval of the Software Design Standards 

 Review and approval of the Software Code Standards 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 27 of 188 Rev.   -    

 

A review checklist is used to identify the Review Inputs, Objectives and Activities that must 

be satisfied in order to transition to the next process (See Checklist Below). 

 

Sample Screen Shot: Transition Review Checklist 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 28 of 188 Rev.   -    

 

4.4 Software Requirements Process Verification Methods 

4.4.1 Software Requirements Process Verification Objectives 

 

 
DO-178C Objectives 
 

 
DO-178C Table 

Reference 
 

 
DO-178C Paragraph 

Reference 
 

Software high-level requirements comply 

with system requirements. 
A-3.1 6.3.1a 

High-level requirements are accurate and 

consistent. 
A-3.2 6.3.1b 

High-level requirements are compatible 

with target computer.    
A-3.3 6.3.1c 

High-level requirements are verifiable.   A-3.4 6.3.1d 

High-level requirements conform to 

standards.   
A-3.5 6.3.1e 

High-level requirements are traceable to 

system requirements.    
A-3.6 6.3.1f 

Algorithms are accurate.    A-3.7 6.3.1g 

 

4.4.2 Software Requirements Process Inputs  

Software Requirements Process inputs to the Software Verification Process include the 

system requirements, high-level software requirements and traceability data. 

 

4.4.3 Transition Criteria for Entering The Verification of Requirements Process 

This section includes the conditions necessary to consider the verification closed and 

successful for the Planning Process which establishes the transition criteria required for 

entering the Verification of Requirements Process. 

 Planning documents are correct, released and under the applicable CC control 

 Planning document checklists are complete and are under CC2 control 

 Standards checklists are complete and are under CC2 control 

 Document comments have been implemented, verified and are under CC2 control 

 Peer review checklists are complete and under CC2 control 

 Transition review checklist is complete and under CC2 control 

 Action items have been recorded, implemented, closed and under CC2 control 

 Signature sheets have been produced and are under CC2 control 

 Verification Independence has been shown where required and under CC2 control 

 SQA review results have been produced and are under CC2 control 

 Other artifacts (i.e., customer comments) are recorded and are under CC2 control 



Software Verification Plan 

 

 
 

<Doc Number> Page 29 of 188 Rev.   -    

 

4.4.4 Software Requirements Process Reviews and Analysis 

Prior to development of the Software Requirements Document and formal release of the 

software high-level requirements, peer reviews are held to review and analyze the high-
level software requirements to determine if they are compliant with the criteria detailed in 

the Software Requirements Standards and correctly implement the system requirements.   

Peer review entry and exit criteria, along with signature sheets and action items are 

recorded in the Reviews and Analysis Management System. 
 

Sample Screen Shot: QCMS Peer Review 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 30 of 188 Rev.   -    

 

During the Software Requirements Process, the high-level software requirements and 

related traceability data are reviewed and analyzed by the project team based on the 

objectives identified in the Software Requirements Document Checklist and Software 
Requirements Review Checklist.  The project team participants involved in this peer review 

must include the signature authority; that is it must include those individuals who are 

responsible for the release approval of the finalized document. The review checklists are 

contained in the Software Verification Plan. 

The verification review comments for the Software Requirements Document are placed in 

the Document Review Management System and managed by the Project Engineer through 

closure.  Upon acceptance, each team member signs the document, acknowledging 

acceptance.  The document is then released and controlled through the SCM Process.  The 
released document is provided upon request to the Certification Authority for review.  

Comments provided by the Certification Authority are added to the Document Review 

Management System and managed to closure.  Re-verification of the Planning Documents 

occurs until final acceptance by the Certification Authority is reached.  On-going change 
control and change authorization is provided through the SCM Process. 

Upon final acceptance of the Software Requirements Documents by the development team 

and Certification Authority, a formal Software Requirements Review is conducted.  The 

Requirements Review is used to demonstrate that all outstanding issues have been 

addressed to closure and that the established transition compliance criteria have been 
satisfied.  Final transition criteria assurance and acceptance is obtained by Software Quality 

Assurance, in conjunction with the Certification Authority. 

4.4.4.1 Software Requirements Document Review 

Review of the Software Requirements Document occurs when the document is mature 
enough to be reviewed. Once prepared, the Software Requirements Document is submitted 

to Software Configuration Management and entered into the document control system. 

The software requirements document review is part of the process for developing and 

verifying the written form of the software requirements for release and further use in the 
project. 

The Software Quality Assurance Engineer coordinates the document review process using 

the Document Review Management System.  Each reviewer adds his or her comments in the 

Document Review Management System.  A cycle of comment incorporation and re-review 

occurs through Configuration Management until all comments are closed.  The Project Lead 
is responsible for closing all document comments prior to formal release. 

Once all comments have been closed, the Software Requirements Document is reviewed by 

the Software Quality Assurance Engineer against the Document Review Checklist and a 

cross references from each section of the Software Requirements Document to the DO-178C 
Section 11 Objective to ensure that full compliance is achieved (See screenshot below).  

Once complete, the Software Quality Assurance Engineer signs and dates the checklists, 

which is maintained by Software Configuration Management as CC2 compliance evidence.  

The Software Requirements Document is then signed and released. 



Software Verification Plan 

 

 
 

<Doc Number> Page 31 of 188 Rev.   -    

 

4.4.4.2 Software Requirements Review 

The Software Requirements Review follows the Software Requirements Definition Process.  

The Project Engineer conducts the Software Requirements Review using the Software 
Review Checklist as an aid.  When the Software Requirements Review is held, the Project 

Engineer records the minutes or assigns someone to do so.  The minutes include a 

discussion of the results, agreements and disagreements reached during the review, 

updates to the project schedule, resource estimates, and action item assignments with 
estimated completion dates.   

The software requirements review is used to show completion of the software requirements 

definition process. 

The review is conducted to demonstrate compliance with the objectives of the Software 
Requirements Process.  Members of the project team, which includes the Project Engineer, 

Software Engineer assigned to the project, Hardware Engineer, Software Quality Assurance 

Engineer, and the Configuration Management representative, will be present at the review. 

Other concerned individuals, such as Manufacturing Test Engineering, Business 
Development or Sales, may be invited.  The review will include a presentation of the naming 

conventions used for the software requirements and a review and discussion of each 

software requirement. 

The objective of the Software Requirements Review is to detect and report errors that may 

have been introduced during the Software Requirements Definition Process. 

 The review ensures that the system functions to be performed by the software are 

completely defined, that the performance and safety requirements have been 

correctly reflected in the software requirements, and that justification is provided for 

any derived requirements. 

 The review ensures that each requirement is accurate, unambiguous, and sufficiently 

detailed, and that the requirements do not conflict with each other. 

 The review confirms that no conflicts exist between the high-level requirements and 

the hardware features of the target system.  Special attention is given to the use of 
system resources, system response times, and input/output hardware. 

 The review ensures that each requirement can be verified. 

 

The Software Quality Engineer steps through the Software Review Checklist.  If deficiencies 

are revealed during the review, action items are generated, and corrective actions to 
resolve the deficiencies are fed back into the appropriate process. 

Items to be considered at the Software Requirements Review include, but are not limited to, 

the following: 

 Review and approval of the Software Requirements Document 

 Review and acceptance of all functional requirements, performance requirements, 

interface requirements and design constraints. 

 High-level and Derived requirements are recorded in the Software Requirements 

Document. 

 The top-level software design is documented in the preliminary release of the 

Software Design Description. 

 The Software Requirements Process includes a Software Preliminary Design Review. 



Software Verification Plan 

 

 
 

<Doc Number> Page 32 of 188 Rev.   -    

 

Following the review, the program proceeds to the Software Design process. 

4.4.4.3 Analysis of High-Level Software Requirements 

The software requirements review is used to show completion of the software requirements 
definition process. 

Peer reviews are conducted to analyze the high-level requirements. The following 

characteristics are evaluated and form the exit criteria for the peer review: 

 Compliance with system requirements: The objective is to ensure that the system 
functions to be performed by the software are defined, that the functional, 

performance, and safety-related requirements of the system are satisfied by the 

software high-level requirements, and that derived requirements of the system are 

satisfied by the software high-level requirements, and that derived requirements and 
the reason for their existence are correctly defined.  

 Accuracy and consistency: The objective is to ensure that each high-level 

requirement is accurate, unambiguous, and sufficiently detailed, and that the 

requirements do not conflict with each other. 

 Compatibility with the target computer: The objective is to ensure that no conflicts 

exist between the high-level requirements and the system features of the target 

computer, especially, system response times and input/output hardware. 

 Verifiability: The objective is to ensure that each high-level requirement can be 

verified. 

 Conformance to standards: The objective is to ensure the Software Requirements 

Standards were followed during the software requirements process and that 

deviations from the standards are justified. 

 Traceability: The objective is to ensure that the functional, performance, and safety-
related requirements of the system that are allocated to software were developed 

into the software high-level requirements. 

 Algorithm aspects: The objective is to ensure the accuracy and behavior of the 

proposed algorithms, especially in the area of discontinuities. 

 

4.4.4.4 System and Software Requirements Trace Analysis 

The results of this analysis are contained in the system requirements trace matrix. This 

requirements trace matrix is constructed as follows: 

 The requirement identifier for each system requirement allocated to software will be 
entered into one field of the matrix. 

 The requirement identifier for each software requirement that satisfies the system 

requirement will be entered into the other field of the matrix. 

 When multiple software requirements satisfy one system requirement, an entry with 
the duplicate system requirement identifier field will be entered. 

 When multiple system requirements are satisfied by one software requirement, an 

entry with the duplicate software requirement identifier field will be entered. 

 All software requirements derived due to implementation will be designated as 
“Derived” in the system requirement identifier field. 



Software Verification Plan 

 

 
 

<Doc Number> Page 33 of 188 Rev.   -    

 

4.5 Software Design Process Verification Methods 

4.5.1 Software Design Process Verification Objectives 

 

 
DO-178C Objectives 
 

 
DO-178C Table 

Reference 
 

 
DO-178C Paragraph 

Reference 
 

Low-level requirements comply with 

high-level requirements. 
A-4.1 6.3.2a 

Low-level requirements are accurate and 

consistent.    
A-4.2 6.3.2b 

Low-level requirements are compatible 

with target computer.    
A-4.3 6.3.2c 

Low-level requirements are verifiable.    A-4.4 6.3.2d 

Low-level requirements conform to 

standards.    
A-4.5 6.3.2e 

Low-level requirements are traceable to 

high-level requirements. 
A-4.6 6.3.2f 

Algorithms are accurate.    A-4.7 6.3.2g 

Software architecture is compatible with 

high-level requirements. 
A-4.8 6.3.3a 

Software architecture is consistent.    A-4.9 6.3.3b 

Software architecture is compatible with 

target computer.   
A-4.10 6.3.3c 

Software architecture is verifiable. A-4.11 6.3.3d 

Software architecture conforms to 
standards. 

A-4.12 6.3.3e 

Software partitioning integrity is 
confirmed.   

A-4.13 6.3.3f 

 

4.5.2 Software Design Process Inputs  

Software Design Process inputs to the Software Verification Process include the software 

architecture, low-level software requirements and traceability data. 

 

4.5.3 Transition Criteria for Entering The Verification of Design Process 

This section includes the conditions necessary to consider the verification closed and 

successful for the Requirements Process which establishes the transition criteria required for 

entering the Verification of Design Process. 

 Requirements document is correct, released and under the applicable CC control 

 Requirements document checklists are complete and are under CC2 control 

 Document comments have been implemented, verified and are under CC2 control 

 Peer review checklists are complete and under CC2 control 



Software Verification Plan 

 

 
 

<Doc Number> Page 34 of 188 Rev.   -    

 

 Transition review checklist is complete and under CC2 control 

 Action items have been recorded, implemented, closed and under CC2 control 

 Signature sheets have been produced and are under CC2 control 

 Verification Independence has been shown where required and under CC2 control 

 SQA review results have been produced and are under CC2 control 

 Other artifacts (i.e., customer comments) are recorded and are under CC2 control 

 

4.5.4 Software Design Process Reviews and Analysis 

Prior to development of the Software Design Description and formal release of the software 

architecture and software low-level requirements, peer reviews are held to review and 

analyze the proposed architecture and software low-level requirements to determine if they 
are compliant with the criteria detailed in the Software Requirements Standards and 

Software Design Standards and correctly implement the high-level software requirements.   

Peer review entry and exit criteria, along with signature sheets and action items are 

recorded in the Reviews and Analysis Management System. 

During the Software Design Process, the software architecture, software low-level 

requirements and related traceability data are reviewed and analyzed by the project team 

based on the objectives identified in the Software Design Description Checklist and Software 

Preliminary Design Review and Software Critical Design Review Checklists.  The project 

team participants involved in this peer review must include the signature authority; that is it 
must include those individuals who are responsible for the release approval of the finalized 

document. The review checklists are contained in the Software Verification Plan. 

The Verification review comments for the Software Design Description are placed in the 

Document Review Management System and managed by the Project Engineer through 
closure.  Upon acceptance, each team member signs the document, acknowledging 

acceptance.  The document is then released and controlled through the SCM Process.  The 

released document is provided to the Certification Authority for acceptance.  Comments 

provided by the Certification Authority are added to the Document Review Management 
System and managed to closure.  Re-verification of the Planning Documents occurs until 

final acceptance by the Certification Authority is reached.  On-going change control and 

change authorization is provided through the SCM Process. 

Upon final acceptance of the Software Design Descriptions by the development team and 

Certification Authority, formal Software Preliminary Design and Software Critical Design 
Reviews are conducted.  These reviews are used to demonstrate that all outstanding issues 

have been addressed to closure and that the established transition compliance criteria have 

been satisfied.  Final transition criteria assurance and acceptance is obtained by Software 

Quality Assurance, in conjunction with the Certification Authority. 

 

4.5.4.1 Software Design Description Review 

Review of the Software Design Description occurs when the document is mature enough to 

be reviewed. Once prepared, the Software Design Description is submitted to Software 
Configuration Management and entered into the document control system. 

The Software Quality Assurance Engineer coordinates the document review process using 

the Document Review Management System.  Each reviewer adds his or her comments in the 



Software Verification Plan 

 

 
 

<Doc Number> Page 35 of 188 Rev.   -    

 

Document Review Management System.  A cycle of comment incorporation and re-review 

occurs through Configuration Management until all comments are closed.  The Project Lead 

is responsible for closing all document comments prior to formal release. 

Once all comments have been closed, the Software Design Description is reviewed by the 

Software Quality Assurance Engineer against the Document Review Checklist and a cross 

reference from each section of the Software Design Description to the DO-178C Section 11 

Objective to ensure that full compliance is achieved (See screenshot below).  Once 
complete, the Software Quality Assurance Engineer signs and dates the checklists, which is 

maintained by Software Configuration Management as CC2 compliance evidence.  The 

Software Design Description is then signed and released. 

 

4.5.4.2 Software Preliminary Design Review 

The Software Preliminary Design Review (PDR) follows the Software Requirements Review.  

The Software PDR Checklist is used during the review. 

Representatives from Electrical, Mechanical, Software, Quality Assurance, Manufacturing 
Engineering, and Manufacturing Test Engineering are invited to the Software PDR. 

The Project Engineer conducts the Software PDR.  The review includes a presentation of the 

overall software design structure, module design structure, relationships of the design 

elements and modules, and rationale for the software design. 

The interfaces between the software modules and interfaces between the software and 
hardware devices are presented and discussed. 

If deficiencies are revealed during the review, action items are generated, and corrective 

actions to resolve the deficiencies are fed back into the appropriate process. 

Where applicable, the following items considered at the PDR include: 

 Software Architecture 

 Rationale for the Software Design 

 Review and approval of the Context Level Data Flow Diagram 

 Review and approval of the Software Block Diagrams 

 Review and approval of Control Flows and Data Flows 

 Review and approval of State Transition Diagrams 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 36 of 188 Rev.   -    

 

4.5.4.3 Software Critical Design Review 

The Software Critical Design Review (CDR) is integrated into the Software Design process.  

The Software CDR Checklist will be used during the review. 

The Project Engineer conducts the Software CDR. Representatives from Electrical, Software, 

Mechanical, Business Development, Quality Assurance, Manufacturing, and Test 

Departments are invited to the Software CDR. 

The review includes a presentation by the software engineer of the overall detailed design 
structure, module design structure, relationships of the design elements and modules, and 

rationale for the software design. 

The interfaces between the software modules and interfaces between the software and 

hardware devices will be presented and discussed. 

The Software CDR ensures that the components of the software architecture are accurate 

and consistent.  The review will confirm that no conflicts exist between the software 

architecture and the hardware features of the target system. 

If deficiencies are revealed during the review, corrective actions to resolve the deficiencies 
are fed back into the appropriate engineering process or document. This may include the 

Business Development Requirements, Software Design Description, the Electrical Design, 

Mechanical Design, or the Software Design. 

One or more of the following items will be considered at the Software CDR: 

 Software requirements are complete 

 The Software Detailed Design conforms to the requirements 

 Review and approval of the Context Level Data Flow Diagram 

 Review and approval of the Software Block Diagram 

 Review and approval of Control Flow and Data Flow 
 

When the Software CDR is held, the Project Engineer records the Action Items or assigns 

someone to do so.   The Action Items include action item assignments. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 37 of 188 Rev.   -    

 

4.5.5 Reviews and Analysis of Software Architecture 

Peer reviews are conducted to analyze the software architecture. The following 

characteristics are evaluated and form the exit criteria for the peer review: 

 The compatibility with the high-level requirements: The objective is to ensure that 

the software architecture does not conflict with the high-level requirements, 

especially functions that ensure system integrity, for example, partitioning schemes. 

 Consistency: The objective is to ensure that a correct relationship exists via data 
flow and control flow. 

 Compatibility with the target computer: The objective is to ensure that no conflicts 

exist, especially initialization, asynchronous operation, synchronization and 

interrupts, between the software architecture and the system features of the target 
computer. 

 Verifiability: The objective is to ensure that the software architecture can be verified; 

there are no unbounded recursive algorithms, for example. 

 Conformance to standards: The objective is to ensure that the Software Design 
Standards were followed during the software design process and that deviations to 

the standards are justified, especially complexity restrictions and design constructs 

that would not comply with the system safety objectives. 

 Partitioning integrity: The objective is to ensure that partitioning breaches are 

prevented. 

4.5.6 Reviews and Analysis of Low-Level Software Requirements 

Peer reviews are conducted to analyze the low-level software requirements. The following 

characteristics are evaluated and form the exit criteria for the peer review: 

 Compliance with high-level requirements: The objective is to ensure that the 
software low-level requirements satisfy the software high-level requirements and 

that derived requirements and the design basis for their existence are correctly 

defined. 

 Accuracy and consistency: The objective is to ensure that each low-level requirement 
is accurate and unambiguous and that the low-level requirements do not conflict with 

each other. 

 Compatibility with the target computer: The objective is to ensure that no conflicts 

exist between the software requirements and the system features of the target 

computer, especially, the use of resources (such as bus loading), system response 
times, and input/output hardware. 

 Verifiability: The objective is to ensure that each low-level requirement can be 

verified. 

 Conformance to standards: The objective is to ensure that the Software Design 
Standards were followed during the software design process, and that deviations 

from the standards are justified. 

 Traceability: The objective is to ensure that the high-level requirements and derived 

requirements were developed into the low-level requirements. 

 Algorithm aspects: The objective is to ensure the accuracy and behavior of the 

proposed algorithms, especially in the area of discontinuities. 



Software Verification Plan 

 

 
 

<Doc Number> Page 38 of 188 Rev.   -    

 

4.6 Software Coding Process Verification Methods 

4.6.1 Software Coding Process Verification Objectives 

 

 
DO-178C Objectives 
 

 
DO-178C Table 

Reference 
 

 
DO-178C Paragraph 

Reference 
 

Source Code complies with low-level 

requirements.   
A-5.1 6.3.4a 

Source Code complies with software 

architecture.   
A-5.2 6.3.4b 

Source Code is verifiable.   A-5.3 6.3.4c 

Source Code conforms to standards. A-5.4 6.3.4d 

Source Code is traceable to low-level 

requirements.   
A-5.5 6.3.4e 

Source Code is accurate and consistent.   A-5.6 6.3.4f 

 

4.6.2 Software Verification Process Inputs  

Software Coding Process inputs to the Software Verification Process include the software 

source code and traceability data. 

 

4.6.3 Transition Criteria for Entering The Verification of Software Coding Process 

This section includes the conditions necessary to consider the verification closed and 

successful for the Design Process which establishes the transition criteria required for 

entering the Verification of Software Coding Process. 

 Design document is correct, released and under the applicable CC control 

 Design document checklists are complete and are under CC2 control 

 Document comments have been implemented, verified and are under CC2 control 

 Peer review checklists are complete and under CC2 control 

 Transition review checklist is complete and under CC2 control 

 Action items have been recorded, implemented, closed and under CC2 control 

 Signature sheets have been produced and are under CC2 control 

 Verification Independence has been shown where required and under CC2 control 

 SQA review results have been produced and are under CC2 control 

 Other artifacts (i.e., customer comments) are recorded and are under CC2 control 

 

4.6.4 Software Coding Process Reviews and Analysis 

Throughout the coding process, peer reviews are held to review and analyze the source 



Software Verification Plan 

 

 
 

<Doc Number> Page 39 of 188 Rev.   -    

 

code to determine that it is in compliance with the Software Design Standards and Software 

Coding Standards and correctly implements the low-level software requirements.   Peer 

review entry and exit criteria, along with signature sheets and action items are recorded in 
the Reviews and Analysis Management System. 

4.6.4.1 Source Code File Review 

Review of the Source Code Files occurs when the code is mature enough to be reviewed. 

Once developed, the code is added to the Software Library and turned over to Software 
Configuration Management for control. 

4.6.4.2 Source Code Review 

Following the peer reviews, where each of the source files has been reviewed and analyzed, 

a Software Code Review is conducted.  The Software Code Review Checklist and the 
Software Verification Plan are used during the review to verify code completion and 

adherence to standards. 

The Software Engineer and Independent Verification Engineer conduct the Software Code 

Review or assigns someone with the same authority to do so.  Action items are recorded in 
the Reviews and Analysis Management System database file associated with that review.  

The Action Items include the action item assignments and space for the completion date. 

Representatives from Software, Electrical and Mechanical Engineering, Quality Assurance, 

Manufacturing, and Test Departments are invited to the Software Code Review. 

If deficiencies are revealed during the review, corrective actions to resolve the deficiencies 
are documented in the Reviews and Analysis Management System and fed back into the 

appropriate software development process. 

The following items will be reviewed at the Software Code Review: 

 Compliance with low level requirements 

 Compliance with software architecture 

 Verifiability 

 Conformance to standards 

 Traceability 

 Accuracy and consistency 

 

4.6.5 Reviews and Analysis of Source Code 

Peer reviews are conducted to analyze the source code. The following characteristics are 

evaluated and form the exit criteria for the peer review: 

 Compliance with the low-level requirements: The objective is to ensure that the 

Source Code is accurate and complete with respect to the software low-level 

requirements, and that no Source Code implements an undocumented function. 

 Compliance with the software architecture: The objective is to ensure that the 
Source Code matches the data flow defined in the software architecture. 

 Verifiability: The objective is to ensure the Source Code does not contain statements 

and structures that cannot be verified and that the source code does not have to be 

altered to test it. 



Software Verification Plan 

 

 
 

<Doc Number> Page 40 of 188 Rev.   -    

 

Peer reviews are also conducted to verify conformance to standards.  The intent is to ensure 

that the Software Code Standards were followed during the development of the code, 

especially complexity restrictions and code constraints that would be consistent with the 
system safety objectives.  The following characteristics are evaluated and form the exit 

criteria for the peer review: 

 Traceability: The objective is to ensure that the software low-level requirements 

were developed into Source Code. 

 Accuracy and consistency: The objective is to determine the correctness and 

consistency of the Source Code, including stack usage, fixed point arithmetic 

overflow and resolution, resource contention, worst-case execution timing, exception 

handling, use of uninitialized variables or constants, and data corruption due to task 
or interrupt conflicts. 

o NOTE: Worst-case execution timing is evaluated during code review by the 

examination of looping constructs for execution length, and by examining the 

code for timing related construction, including excessive call stack depth and 
successive or stacked interrupts. 



Software Verification Plan 

 

 
 

<Doc Number> Page 41 of 188 Rev.   -    

 

4.7 Integration Process Verification Methods 

4.7.1 Integration Process Verification Objectives 

 

 
DO-178C Objectives 
 

 
DO-178C Table 

Reference 
 

 
DO-178C Paragraph 

Reference 
 

Output of software integration process is 

complete and correct.  
A-5.7 6.3.5 

Parameter Data Item File is correct and 

complete 
A-5.8 6.6a 

Verification of Parameter Data Item File 

is achieved. 
A-5.9 6.6b 

Executable Object Code complies with 

high-level requirements. 
A-6.1 6.4a 

Executable Object Code is robust with 

high-level requirements. 
A-6.2 6.4b 

Executable Object Code complies with 

low-level requirements. 
A-6.3 6.4c 

Executable Object Code is robust with 

low-level requirements. 
A-6.4 6.4d 

Executable Object Code is compatible 
with target computer.   

A-6.5 6.4e 

 

4.7.2 Integration Process Inputs  

Software Integration Process inputs to the Software Verification Process include the 

Executable Object Code and traceability data. 

 

4.7.3 Transition Criteria for Entering The Verification of Integration Process 

This section includes the conditions necessary to consider the verification closed and 

successful for the Software Coding Process which establishes the transition criteria required 

for entering the Verification of Integration Process. 

 Source Code is correct, released and under the applicable CC control 

 Code review checklists are complete and are under CC2 control 

 Comments have been implemented, verified and are under CC2 control 

 Peer review checklists are complete and under CC2 control 

 Transition review checklist is complete and under CC2 control 

 Action items have been recorded, implemented, closed and under CC2 control 

 Signature sheets have been produced and are under CC2 control 

 Verification Independence has been shown where required and under CC2 control 

 SQA review results have been produced and are under CC2 control 



Software Verification Plan 

 

 
 

<Doc Number> Page 42 of 188 Rev.   -    

 

 Other artifacts (i.e., customer comments) are recorded and are under CC2 control 

 

4.7.4 Integration Process Reviews and Analysis 

During the Integration Process, a peer review is held to review and analyze the Executable 

Object Code to determine that it is compatible with the target computer.  Issues addressed 

at the peer reviews include, but may not be limited to, incorrect hardware addresses; 

memory overlays and missing software components.  If deactivated code is integrated into 
the Executable Object Code, these peer reviews produce the evidence that the deactivated 

code will remain deactivated during normal operation.  Objective evidence is also produced 

which addresses analysis o the verification activities that need to occur when unintended 

activation occurs due to abnormal conditions.  Peer review entry and exit criteria, along with 
signature sheets and action items are recorded in the Reviews and Analysis Management 

System. 

4.7.4.1 Executable Object Code Handling 

When the source code and object code are mature enough to be built and installed on the 
target computer, the Executable Object Code is entered into configuration management.  

Once built and target compatibility is assured, the Executable Object Code is added to the 

Software Library and turned over to Software Configuration Management for control.  This is 

a prerequisite for formal review of the integration data. 

4.7.4.2 System Integration Review 

The System Integration Review is conducted at the conclusion of the System Integration 

process.  The System Integration Review Checklist will be used during the review. 

The Project Engineer conducts the System Integration Review.  When the System 

Integration Review is held, the Project Engineer records the minutes or assigns someone to 
do so. The minutes will include a discussion of the results, agreements and disagreements 

reached during the review, updates to the project schedule and resource estimates, and 

action item assignments with estimated completion dates. 

Representatives from Quality Assurance, Test Engineering, Manufacturing Engineering, 
Mechanical Engineering, and Software Engineering are invited to the System Integration 

Review. 

The review ensures the results of the integration process are complete and correct. If 

deficiencies are revealed during the review, corrective actions to resolve the deficiencies are 

fed back into the appropriate process. 

The system integration review is used to show the satisfaction of transition criteria from the 

integration process to the follow-on verification processes. 

4.7.4.3 Reviews and Analysis of Executable Object Code 

Peer reviews are conducted to analyze the Executable Object Code. The following 
characteristics are evaluated and form the exit criteria for the peer review:   

 Proper resource usage. 

 Incorrect hardware addresses. 

 Memory overlaps and Missing software components. 

This summary review is used to determine that the software integration process 



Software Verification Plan 

 

 
 

<Doc Number> Page 43 of 188 Rev.   -    

 

completeness criteria have been evaluated and found to be satisfied during the Executable 

Object Code reviews and System Integration Review.   



Software Verification Plan 

 

 
 

<Doc Number> Page 44 of 188 Rev.   -    

 

4.8 Software Testing Process Verification Methods 

4.8.1 Software Testing Process Verification Objectives 

 

 
DO-178C Objectives 
 

 
DO-178C Table 

Reference 
 

 
DO-178C Paragraph 

Reference 
 

Test procedures are correct.   A-7.1 6.4.5b 

Test results are correct and discrepancies 

explained.   
A-7.2 6.4.5c 

Test coverage of high-level requirements 

is achieved.   
A-7.3 6.4.4a 

Test coverage of low-level requirements 

is achieved. 
A-7.4 6.4.4b 

Test coverage of software structure 

(modified condition/decision) is achieved. 
A-7.5 6.4.4c 

Test coverage of software structure 

(decision coverage) is achieved. 
A-7.6 6.4.4c 

Test coverage of software structure 

(statement coverage) is achieved. 
A-7.7 6.4.4c 

Test coverage of software structure (data 

coupling and control coupling) is 

achieved. 

A-7.8 6.4.4d 

Verification of additional code, that 

cannot be traced to Source Code, is 
achieved. 

A-7.9 6.4.4c 

 

4.8.2 Software Testing Process Inputs  

Software Testing Process inputs to the Software Verification Process include the test cases, 

test procedures, test results and traceability data. 

4.8.3 Transition Criteria for Entering The Testing of Integration Process Outputs  

This section includes the conditions necessary to consider the verification closed and 

successful for the Integration Process which establishes the transition criteria required for 

entering the Testing of Integration Process Outputs. 

 EOC is correct, released and under the applicable CC control 

 Integration review checklists are complete and are under CC2 control 

 Comments have been implemented, verified and are under CC2 control 

 Peer review checklists are complete and under CC2 control 

 Transition review checklist is complete and under CC2 control 

 Action items have been recorded, implemented, closed and under CC2 control 

 Signature sheets have been produced and are under CC2 control 

 Verification Independence has been shown where required and under CC2 control 



Software Verification Plan 

 

 
 

<Doc Number> Page 45 of 188 Rev.   -    

 

 SQA review results have been produced and are under CC2 control 

 Other artifacts (i.e., customer comments) are recorded and are under CC2 control 

4.8.4 Transition Criteria for Entering The Verification of Verification Outputs 

This section includes the conditions necessary to consider the verification closed and 

successful for the Verification Process. 

 All verification evidence is correct, released and under the applicable CC control 

 Verification review checklists are complete and are under CC2 control 

 Comments have been implemented, verified and are under CC2 control 

 Peer review checklists are complete and under CC2 control 

 Transition review checklist is complete and under CC2 control 

 Action items have been recorded, implemented, closed and under CC2 control 

 Signature sheets have been produced and are under CC2 control 

 Verification Independence has been shown where required, with records under CC2 

control 

 SQA review results have been produced and are under CC2 control 

 Other artifacts (i.e., customer comments) are recorded and are under CC2 control 

 

4.8.5 Software Testing Process Reviews and Analysis 

Throughout the Software Testing Process, peer reviews are held to review and analyze the 

Test Cases and Test Procedures to determine that they are complete and fully verify the 
high-level and low-level requirements.  In addition, peer reviews are used to brainstorm 

methods for robustness testing. Peer review entry and exit criteria, along with signature 

sheets and action items are recorded in the Reviews and Analysis Management System.  

The resulting Robustness test cases are reviewed for their ability to reveal vulnerabilities in 
the software.   

Throughout the Software Testing Process, peer reviews are held to review and analyze the 

Test Cases and Test Procedures to determine that they are complete comply with the 

Software Verification Plan and cover the software high-level and low-level requirements.     

Peer reviews are held to analyze the coverage achieved as a result of requirements-based 

testing.  Where code structures are not covered, an analysis is performed to determine the 

cause.  If the cause is determined to be untraceable code as a result of dead code, the code 

is removed.  If the cause is inadequate requirements or test cases and procedures, the peer 

review results include action items to resolve this.  If the result is unreachable “required” 
code that is traceable, an analysis of each line of uncovered code is documented in the 

Structural Coverage Analysis Results document.   

4.8.5.1 Software Verification Cases and Procedures Document Review 

Review of the Software Verification Cases and Procedures occurs when the document is 
mature enough to be reviewed. Once prepared, the Software Verification Cases and 

Procedures is submitted to Software Configuration Management and entered into the 

document control system. 

The Software Quality Assurance Engineer coordinates the document review process using 



Software Verification Plan 

 

 
 

<Doc Number> Page 46 of 188 Rev.   -    

 

the Document Review Management System.  Each reviewer adds his or her comments in the 

Document Review Management System.  A cycle of comment incorporation and re-review 

occurs through Configuration Management until all comments are closed.  The Project Lead 
is responsible for closing all document comments prior to formal release. 

Once all comments have been closed, the Software Verification Cases and Procedures is 

reviewed by the Software Quality Assurance Engineer against the Document Review 

Checklist and a cross reference from each section of the Software Verification Cases and 
Procedures to the DO-178C Section 11 Objective to ensure that full compliance is achieved.  

Once complete, the Software Quality Assurance Engineer signs and dates the checklists, 

which is maintained by Software Configuration Management as CC2 compliance evidence.  

The Software Verification Cases and Procedures is then signed and released. 

4.8.5.2 System Verification Review 

The System Verification Review is conducted at the conclusion of the Software Testing 

Process.  The System Verification Review Checklist will be used during the review. 

The Project Engineer conducts the System Verification Review.  When the System 
Verification Review is held, the Project Engineer records the minutes or assigns someone to 

do so. The minutes will include a discussion of the results, agreements and disagreements 

reached during the review, updates to the project schedule and resource estimates, and 

action item assignments with estimated completion dates. 

Representatives from Quality Assurance, Test Engineering, Manufacturing Engineering, 
Mechanical Engineering, and Software Engineering are invited to the System Integration 

Review. 

The review ensures the results of the integration process are complete and correct. If 

deficiencies are revealed during the review, corrective actions to resolve the deficiencies are 
fed back into the appropriate process. 

4.8.5.3 Reviews and Analysis of Test Cases, Test Procedures, and Results  

Peer reviews are conducted to analyze Test Cases, Test Procedures, and Results. The 

following characteristics are evaluated and form the exit criteria for the peer review: 

 Test cases: Independent verification of test cases is presented later in this 

document. 

 Test procedures: The objective is to verify that the test cases were accurately 

developed into test procedures and expected results. 

 Test results: The objective is to ensure that the test results are correct and that 
discrepancies between actual and expected results are explained. 



Software Verification Plan 

 

 
 

<Doc Number> Page 47 of 188 Rev.   -    

 

During the verification process, the Independent Verification Engineer (along with select 

members of the development team) reviews the requirements-based test cases to assure 

that all requirements are adequately covered.  If the requirements-based tests are not 
adequate to achieve test coverage, then additional requirements-based tests or analysis 

may be needed. 

The following questions are considered when evaluating test cases and procedures: 

  Do the test cases and procedures adhere to the relevant plans and standards?  

 If plans or standards have not been followed, is there documented rationale for 

deviations from stated plans and standards? 

 Is the rationale for each test case clearly explained? 

 Are the test cases and procedures appropriately commented to allow future updates? 

 Have the test cases and procedures been subjected to appropriate change and 

configuration control? 

 Is the separation between test cases clear? For example, are test starts and stops 

identified? 

 Do the test cases and procedures specify required input data and expected output 

data? 

 Were the inputs for each test case derived from the requirements? 

 Are the test cases and procedures sufficient to cover all the relevant requirements? 

That is, do the traceability matrices provide clear association between test cases and 
requirements? 

 Are the test cases and procedures sufficient to achieve test coverage? 

 Are sufficient tests identified to provide test coverage for each logic construct? 

 Are there sufficient robustness test cases and procedures? 

 Are test cases and procedures correct? 

4.8.5.3.1 Review checklists for test cases, procedures, and results 



Software Verification Plan 

 

 
 

<Doc Number> Page 48 of 188 Rev.   -    

 

A checklist is used during review of test procedures and results (See Document Review 

Management System in the Software Quality Assurance Plan).  During this review, the 

checklists themselves are assessed, considering the following questions for test coverage: 

 Are the checklists sufficient to determine that the requirements-based test cases, 

procedures, and results meet the test coverage objective? 

 Have the checklists been prepared and/or reviewed by quality? 

 Do the checklists specify: 
 who performed the review? 

 what data was reviewed (with revision)? 

 when it was reviewed? 

 what was found? 
 what corrective actions were taken, if necessary? 

 Do the checklists require evaluation of tolerances specified in the requirements? 

 Do the checklists ensure that results of the test cases can be visually verified? (e.g., 

can the SQE, or other reviewer, visually determine when requirements-based tests 
have passed or failed?) 

 Will the checklists reveal whether the results of the test cases that are counted for 

credit towards test coverage are observable? 

 Will the checklists address limitations of the structural coverage analysis tool as 

documented in the tool qualification? 

 Will the checklists reveal test cases that violate project standards? 



Software Verification Plan 

 

 
 

<Doc Number> Page 49 of 188 Rev.   -    

 

4.8.6 Software Test Execution 

Verification testing of software has two objectives.  One objective is to demonstrate that the 

software satisfies its requirements.  The second objective is to demonstrate with a high 
degree of confidence that errors that could lead to unacceptable failure conditions, as 

determined by the system safety assessment process, have been removed.  The following 

three types of testing are used: 

 Hardware Software Integration Testing:  To verify correct operation of the software 
in the target computer environment. 

 Software Integration Testing:  To verify the interrelationships between software 

requirements and components and to verify the implementation of the software 

requirements and software components within the software architecture. 

 Low-level Testing:  To verify the implementation of software and low-level 

requirements. 

 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 50 of 188 Rev.   -    

 

Peer reviews are conducted to ensure that software testing objectives have been satisfied. 

The following characteristics are evaluated and form the exit criteria for the peer review: 

 Test cases are developed based primarily on the software requirements. 

 Test cases are developed to verify correct functionality and to establish conditions 

that reveal potential errors. 

 Software requirements coverage and traceability analysis are used to determine 

what software requirements were not tested. 

 Structural coverage analysis techniques are used to determine what software 

structures were not exercised (for Levels A, B, and C software). 

4.8.6.1 Test Environment 

More than one test environment may be needed to satisfy the objectives for software 
testing. The test environment includes the (independently built) software loaded into the 

target computer and tested in the target computer environment. 

Note: This section must be tailored to specify the actual test environments in use. 

4.8.6.2 Requirements-Based Test Cases 

Requirements-based testing is emphasized because this strategy has been found to be the 

most effective at revealing errors.  Requirements-based test case selection includes the 

following: 

 Implementation of both normal range and robustness (abnormal range) test cases. 

The specific test cases should be developed from the software requirements and the 
error sources inherent in the software development process. 

4.8.6.3 Normal Range Test Cases 

Normal Range test cases are developed to demonstrate the ability of the software to 

respond to normal inputs and conditions.  Normal range test cases include: 

 Real and integer input variables are exercised using valid equivalence classes and 

boundary values. 

 For time-related functions, such as filters, integrators and delays, multiple iterations 

of the code are performed to check the characteristics of the function in context. 

 For state transitions, test cases are developed to exercise the transitions possible 

during normal operation. 

 For software requirements expressed by logical equations, the normal range test 

cases verify the variable usage and the Boolean operators. 



Software Verification Plan 

 

 
 

<Doc Number> Page 51 of 188 Rev.   -    

 

4.8.6.4 Robustness Test Cases  

Robustness test cases are developed to demonstrate the ability of the software to respond 

to abnormal inputs and conditions.  Robustness test cases include: 

 Real and integer variables are exercised using equivalence class selection of invalid 

values. 

 System initialization is exercised during abnormal conditions. 

 The possible failure modes of the incoming data are determined, especially complex, 
digital data strings from an external system. 

 For loops where the loop count is a computed value, test cases may be developed to 

attempt to compute out-of-range loop count values, and thus demonstrate the 

robustness of the loop-related code. 

 For time-related functions, such as filters, integrators, and delays, test cases may be 

developed for arithmetic overflow protection mechanisms. 

 For state transitions, test cases may be developed to provoke transitions that are not 

allowed by the software requirements. 

4.8.6.4.1 Robustness Test Case Selection Strategy 

The following criteria will be used, at a minimum, to select robustness test cases: 

 

1. Starting with the Functional Hazard Assessment (FHA), produce each hazard 

conditions and verify expected result. 

2. Test multiple combinations of hazard conditions.  Combine hazards. 

3. Identify all range / boundary requirements.  Test outside the boundaries of each 

range requirement. 

4. Identify all conditions where a fault is asserted.  Test all of those conditions. 

5. Combine fault conditions (without reset) and verify expected results. 

6. Perform negative testing.  If A AND B THEN X, test If NOT A and B THEN NOT X. 

7. If not required by DO-160 Testing, test critical functionality and other key 

functionality over temperature. 

8. Perform testing over non-standard electrical conditions (i.e., power glitching, power 

up, power down, brown out) 



Software Verification Plan 

 

 
 

<Doc Number> Page 52 of 188 Rev.   -    

 

4.8.6.5 Requirements-Based System Verification Testing Methods 

Requirements-based system verification testing methods concentrate on error sources 

associated with the software operating within the target computer environment, and on the 
high-level functionality.  The objective of requirements-based testing is to ensure that the 

software in the target computer will satisfy the high-level requirements.  

Typical errors revealed by this level of testing include: 

 Incorrect input handling. 

 Failure to satisfy execution requirements. 

 Incorrect software response to hardware transients or hardware failures, for 

example, start-up sequencing, transient input loadds and input power transients. 

 Data bus and other resource contention problems, for example, memory mapping. 

 Inability of built-in test to detect failures. 

 Errors in system interfaces. 

 Incorrect behavior of feedback loops. 

 Incorrect control of memory management hardware or other hardware devices under 
software control. 

 Stack overflow. 

 Incorrect operation of mechanism(s) used to confirm the correctness and 

compatibility of field-loadable software. 

 Violations of software partitioning. 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 53 of 188 Rev.   -    

 

Peer reviews are conducted to ensure that common software errors were not introduced into 

the design.  The review includes the focus on the following most common error conditions:   

 

 Implementation Error Source (Data Bugs) 

1) Logic bugs  (x = 0; x <= 10; x++)  Expect a result of 10 

2) Parameter Passing  Incorrect arguments passed 

3) Return Codes  Unexpected return codes passed 

4) Math Overflow / Underflow  Exceeding integer value 

5) Logic Processing Error  Too many nested conditions or calculations 

6) Reentrance Problem  If a section of code can be interrupted before it completes its 

execution, and can be called again before the first execution has completed, the code 

must be designed to be reentrant.  This typically requires that all variables 
referenced by the reentrant routine exist on the stack and not in static memory. 

7) Incorrect Control Flow  The intended sequence of operations can be corrupted by 

incorrectly designed conditional loops.  This may cause problems such as missing 

execution paths, unreachable code, and incorrect control logic. 

8) Pointer Errors  Pointing to a NULL pointer in a linked list, improperly incrementing 

pointer used to step through look-up tables or lists, bad function pointers. 

9) Indexing Problems  Improper use of Index Registers in assembly language have 

similar problems to those identified with pointers.  Provides the same type of 

indirection useful for table look-up, walking through lists, trees, and other data 

structures. 

10) Variable Scope Errors  Using the same name and applying it to different data items 

that exist in different scopes. 

11) Improper Data Usage  Using an uninitialized variable or using the same variable for 

more than one purpose. 

12) Incorrect Flag Usage  Flags are usually global in scope and are almost always static 

(stored in a fixed memory location).  Flag may inadvertently be used for more than 

one purpose or used to indicate more than one condition.  Every flag should be SET, 

CLEARED and tested at some point in the program.  

13) Incorrect Address  Usually the result of an incorrect pointer.  It's possible to code a 

bad address into the code.  This generally happens when the memory subsystem 

changes (i.e., Reduce memory size). 

14) Data / Range Overflow / Underflow  May result in passing a parameter that is out 

of bounds or storing a data type not large enough to hold the data. 

15) Signed / Unsigned data errors  Mixed sign arithmetic can easily lead to calculations 

that overflow the data types.  Assembly languages have different branch instructions 

used after comparing signed and unsigned data.  Using the wrong branch instruction 

may cause a critical error.  

16) Incorrect Conversion / Type-Casting / Scaling  Converting a data value from one 

representation to another is common and may cause bugs.  Conversion from signed 

to unsigned or string to numeric type is common.  Typecasts are useful to get data 

into whatever representation is needed, but circumvent compiler type-checking, 

increasing the risk of making a mistake. 



Software Verification Plan 

 

 
 

<Doc Number> Page 54 of 188 Rev.   -    

 

17) Data Synchronization Errors   Embedded systems share data among separate 

threads of execution.  An operation that uses a number of different data inputs must 

be synchronized in order to perform its processing.  If the data values are updated 
asynchronously, the processing may be using some "new" data items with some 

"old" data items, and compute the wrong result. 

 Implementation Error Source (Real-Time Bugs) 

1) Interrupt Handling  It is critical to handle all interrupts that the system will ever 

receive. Receiving an unexpected interrupt without being able to handle it will likely 

cause failures.   

2) Task Synchronization  Tasks must be synchronized correctly.  One task may 

acquire raw data; another may process this data as a set; still another may make 

control decisions on the processed data values.  Proper synchronization usually is 
implemented by relying on flags or semaphores to control task regular intervals. 

 Implementation Error Source (System Bugs) 

1) Stack Overflow / Underflow  Pushing more data into the stack than it can hold is 

referred to as a stack overflow.  Pulling more data from the stack than was put on 
the stack is referred to as a stack underflow.  Both result in using bad data and can 

cause an unintended jump to an arbitrary address, resulting in a failure. 

2) Race Conditions  A race condition occurs when two or more independent threads 

each access the same resource at the same time. The effects of a race condition vary 

widely; they're dependent on the specifics of the situation. 

3) Deadlock  When race conditions are avoided by "locking" a resource, preventing 

any other thread from accessing it, the design must be evaluated to ensure that 

deadlock will never occur. Testing for deadlock is generally ineffective, since only a 

particular order of resource locking may produce it, and that ordering may not result 
from the most common tests.    

Deadlock is only a problem in multi-threading environments that lock resources. The 

following four conditions must be present in order for a deadlock to occur. Breaking 

any one of these conditions eliminates deadlock:  

a. Mutual exclusion—only one thread can use a locked resource at a time  

b. Nonpreemption—threads cannot force another thread to release a resource  

c. Hold-and-wait—threads hold resources that they have locked while waiting for 

any additional needed resources  

d. Circular wait—a circular chain of threads exist, such that each thread holds a 
resource needed by the next thread in the chain 

4) Resource Sharing Problems  In the case where a peripherial such as an analog 

multiplexer may be used to direct one of a number of different inputs to a single A/D 

converter; If one task alters the mux setting to measure a given signal and another 
preempts it and sets the mux to pass a different signal, when control returns to the 

first task, it will be measuring the wrong signal, likely causing a failure condition. 



Software Verification Plan 

 

 
 

<Doc Number> Page 55 of 188 Rev.   -    

 

 Implementation Error Source (Other Bugs) 

1) Syntax / Typing  Compilers do a good job of syntax checking; however, special 

attention needs to be placed on coding standards. 

2) Interface  Complex interfaces are a common source of failures.  Interface problem 

may include incorrect EEPROM erase / write sequence, improper use of LCD 

controller chip commands, wrong sequence in reading / writing serial communication 

interface registers, etc. 

3) Memory Allocation / Deallocation  Using memory management routines can greatly 

simplify the efficient use of available memory.  It can also be an added source of 

errors.  For example, not checking for successful allocation before using the memory, 

not freeing memory when it is no longer needed (memory leak). 

4) Peripheral Register Initialization  Peripherals typically have different modes of 

operation, increasing the number of applications for which they're useful.  This can 

complicate the initialization and use of these devices producing another source for 

errors. 

5) Watchdog Servicing  Watchdog timers help ensure that if something in the system 

goes exceptionally wrong, it will fail in a safe, or at least a predictable, manner.  
Servicing the watchdog timer must be done properly and at the right time.  The 

watchdog must be enabled, and set to timeout at the correct interval.   

 

4.8.6.5.1 Requirements-Based Software Verification Testing 

This testing method is used and concentrates on the inter-relationships between the 

software requirements, and on the implementation of requirements by the software 

architecture.  The objective of the requirements-based Software Verification Testing is to 

ensure that the software components interact correctly with each other and satisfy the 
software requirements through successive integration of code components with a 

corresponding expansion of the scope of the test cases.   

Typical errors revealed by this testing method include: 

 Incorrect initialization of variables and constants. 

 Parameter passing errors. 

 Data corruption, especially global data. 

 Inadequate end-to-end numerical resolution. 

 Incorrect sequencing of events and operations. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 56 of 188 Rev.   -    

 

4.8.6.5.2 Requirements-Based Low-Level Testing 

This testing method is used and concentrates on demonstrating that each software 

component complies with its low-level requirements.  The objective of requirements-based 
low-level testing is to ensure that the software components satisfy their low-level 

requirements: 

Typical errors revealed by this testing method include: 

 Failure of an algorithm to satisfy a software requirement. 

 Incorrect loop operations. 

 Incorrect logic decisions. 

 Failure to process correctly legitimate combinations of input conditions. 

 Incorrect responses to missing or corrupted input data. 

 Incorrect handling of exceptions, such as arithmetic faults or violations of array 

limits. 

 Incorrect computation sequence. 

 Inadequate algorithm precision, accuracy, or performance. 

4.8.7 Effectiveness of Test Program 

The following tasks are performed to determine the effectiveness of the test program.  

4.8.7.1 Assess results of requirements-based tests  

The first step after test execution is to determine whether all requirements-based tests 

pass. In addition to checking the final pass/fail results, the test cases and results for some 
randomly selected requirements should be examined to ensure that the results reflect the 

given inputs for those cases. Test results are also checked carefully with respect to any 

specified tolerances. 

The following questions are considered to assess the requirements-based test results: 

 Are the test result files clearly linked to the test procedures and codes?  

 Are failed test cases obvious from the test results? 

 Do the test results indicate whether each procedure passed or failed and the final 

pass/fail results? 

 Do the test results adhere to the relevant plans, standards, and procedures? 

 Have the test results been subjected to appropriate configuration control? 



Software Verification Plan 

 

 
 

<Doc Number> Page 57 of 188 Rev.   -    

 

4.8.7.2 Assess failure explanations and rework  

Each failed test case is documented with an explanation for why it failed, including 

references to applicable Action Request.  In some cases, rework of some life cycle data will 
be required; in other cases, only an explanation for the failed test cases is needed. If 

rework is required, the impact of changes should be carefully evaluated and the changed 

items should be subjected to the appropriate change and configuration control.  

Once all rework is complete, test cases should be rerun in compliance with plans for 
regression testing. Note: there may be cases where failed requirements-based tests are 

acceptable; however, it is typical for them to be fixed and rerun. 

The following questions are considered to assess failures and rework: 

 Is there an acceptable rationale for deviations from expected results, standards, or 
plans? 

 Are explanations for the failed test cases technically sound and accurate? 

 Do explanations for failed test cases contain accurate references to relevant problem 

reports? 

 Are explanations for code or test rework suitable to address the failure? 

 Have test cases been re-executed in compliance with plans for regression testing? 

 Have the test results from regression testing been documented appropriately?  

4.8.7.3 Assess coverage achievement  

The Verification Engineer produces test cases that are expected to achieve 100% test 
coverage (i.e., the purpose of test documentation is to show compliance with all of the 

requirements).  If all the requirements have been covered by tests without achieving full 

test coverage, dead code, unintended functionality, or incorrectly documented de-activated 

code may be indicated.  It is the policy to remove all dead code.   

The following questions are considered when assessing coverage achievement: 

 Has the test coverage criteria been correctly applied? 

 Is 100% structural coverage achieved through requirements-based testing? 

 If 100% structural coverage is not achieved through requirements-based testing, is 
there an explanation detailing which parts of the code were not executed, and why?  

Have additional test cases been added? 

 Are explanations for drops in coverage sufficiently detailed and acceptable? 

 Are there problem reports associated with dead code? 

 Has dead code been analyzed and/or removed? 
 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 58 of 188 Rev.   -    

 

4.9 Coverage Analysis Methods 

The subsequent paragraphs detail the methods that will be used for coverage analysis as 

part of the software verification process.   

Coverage refers to the extent to which a given verification activity has satisfied its 

objectives. Coverage analysis measures will be applied to both requirements definitions and 

testing activities.  Appropriate coverage measures will be used by SQA to audit verification 

activities.  This will aid in determining the adequacy of the verification accomplished. 

Coverage is viewed as a measure, not a method or a test.   As such, results will be 

expressed as the percentage of an activity that is accomplished. Two specific measures of 

test coverage are identified in the following figure: requirements coverage and software 

structure coverage.  

Requirements coverage analysis will be used to determine how well the requirements-based 

testing verifies the implementation of the software requirements and establishes traceability 

between the software requirements and the test cases.  Structural coverage analysis will be 

used to determine how much of the code structure will be executed by the requirements-
based tests and establishes traceability between the code structure and the test cases.  

 



Software Verification Plan 

 

 
 

<Doc Number> Page 59 of 188 Rev.   -    

 

4.9.1 Requirements Coverage Analysis  

Each software requirement contains a finite list of behaviors and features, and each 

requirement is written to be verifiable. Testing based on requirements will be performed 
from the perspective of the user (providing a demonstration of intended function), and will 

provide a means for the development of test cases concurrently with development of the 

requirements. 

Peer reviews will go beyond requirements coverage in evaluating the project.  Reasons 
include: 

 The software requirements and the design description (used as the basis for the test 

set) may not contain a complete and accurate specification of all the behavior 

represented in the executable code. 

 The software requirements may not be written with sufficient granularity to assure 

that all the functional behaviors implemented in the source code are tested. 

 Requirements-based testing alone cannot confirm that the code does not include 

unintended functionality. 

In addition, software structure may be created that cannot be determined from top-level 

software specifications.  Derived requirements, as described in DO-178C, will be used for 

this reason.  Derived requirements will be tested as part of requirements-based testing.  

4.9.2 Structural Coverage Analysis  

The purpose of structural coverage analysis with the associated structural coverage analysis 
resolution is to complement requirements-based testing as follows: 

 Provide evidence that the code structure was verified to the degree required for the 

applicable software level. 

 Provide a means to support demonstration of absence of unintended functions. 

 Establish the thoroughness of requirements-based testing. 

With respect to intended function, evidence that testing was rigorous and completed is 

provided by the combination of requirements-based testing (both normal range testing and 

robustness testing) and requirements-based test coverage analysis. 

Requirements-based testing cannot completely provide this kind of evidence with respect to 

unintended functions. Code that is implemented without being linked to requirements may 

not be exercised by requirements-based tests. Such code could result in unintended 

functions.  In this case, it will be designated this "Dead Code" or require that a requirement 

be written for the code.  Should a new requirement be added, the applicable lifecycle 
artifacts (i.e., the Software Requirements Document) will be updated and the required 

processes will be repeated. 



Software Verification Plan 

 

 
 

<Doc Number> Page 60 of 188 Rev.   -    

 

If requirements-based testing proves that all intended functions are properly implemented, 

and if structural coverage analysis demonstrates that all existing code is reachable and 

adequately tested, these two together provide a greater level of confidence that there are 
no unintended functions. Structural coverage analysis will: 

 Indicate to what extent the requirements-based test procedures exercise the code 

structure. 

 Reveal code structure that was not exercised during testing. 

 

Run-time libraries are subject to the same coverage requirements as the rest of the 

application code.  

It should be noted that the structural coverage tools employed on the project must support 
resolution of overloaded operators and/or functions to the extent overloading is used on the 

project. 

4.9.2.1 Achieving Coverage 

To achieve test coverage, a structural coverage analysis tool or a code instrumentation 
method will be used to monitor statements, entry and exit points, decision and branching 

statements, and Boolean conditions. Some tools do not support all of the coverage points 

required for test coverage. For example, not all structural coverage tools support coverage 

of entry and exit points. Such a tool can support part of the structural coverage analysis if 

other means are used to cover entry and exit points.  

The structural coverage analysis tool will monitor a statement for multiple coverage points, 

as illustrated below:  

Return (A and B) or C; 

This statement will be monitored for the following coverage points: 

 Statement–must be invoked at least once 

 Exit Point–must be invoked at least once 

 Decision–must take all possible outcomes (false, true) at least once 

  
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 61 of 188 Rev.   -    

 

 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 62 of 188 Rev.   -    

 

4.9.2.2 Coverage Analysis Methods 

A structural coverage analysis tool will be used to provide visibility into testing by either 

instrumenting code or providing other intervention techniques to gain visibility. The tool will 
be capable of instrumenting the code, provide flags, or other monitoring mechanisms to the 

original source code or object code. This enables the analysis tool to determine exactly what 

parts of the code are exercised. Once the code is instrumented, test cases are executed and 

the coverage analysis tool tracks which parts of the code are exercised by the test cases 
and, where complex analysis is required, how they are exercised.  Pass/fail criteria for 

structural coverage are specified and tool analyzes the code against these criteria. If the 

pass/fail criteria are not specified, the tool will report the level of structural coverage the 

test cases achieve. 

The Coverage Analysis Management System will be used to obtain both Statement and 

Decision Coverage.   

Coverage Analysis Management System Screen Shot 

 
 

 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 63 of 188 Rev.   -    

 

The Coverage Analysis Management System process is as follows.  Specifics of this process 

and this tool are described in the CAMS Tool Qualification Accomplishment Summary. 

 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 64 of 188 Rev.   -    

 

4.9.2.3 Statement Coverage  

To achieve statement coverage, every executable statement in the program is invoked at 

least once during software testing. Achieving statement coverage shows that all code 
statements are reachable (in the context of DO-178C, reachable based on test cases 

developed from the requirements). Note that statement coverage is considered a weak 

criterion because it is insensitive to some control structures.  Consider the following code 

segment: 

If ( x > 1 ) and ( y = 0 ) then z := z / x; end if; 

By choosing x = 2, y = 0, and z = 4 as input to this code segment, every statement is 

executed at least once. However, if an “or” is coded by mistake (see code segment below) 

in the first statement instead of an “and”, the test case will not detect a problem. This 
makes sense because analysis of logic expressions is not part of the statement coverage 

criterion.  

If ( z = 2 ) or ( y > 1 ) then z := z + 1; end if; 

4.9.2.4 Modified Condition Decision Coverage  

Decision coverage requires two test cases: one for a true outcome and another for a false 

outcome.  For simple decisions (i.e., decisions with a single condition), decision coverage 

ensures complete testing of control constructs. But, not all decisions are simple. For the 

decision (A or B), test cases (TF) and (FF) will toggle the decision outcome between true 

and false. However, the effect of B is not tested; that is, those test cases cannot distinguish 
between the decision (A or B) and the decision A. 

Condition coverage requires that each condition in a decision take on all possible outcomes 

at least once (to overcome the problem in the previous example), but does not require that 

the decision take on all possible outcomes at least once. In this case, for the decision (A or 
B) test cases (TF) and (FT) meet the coverage criterion, but do not cause the decision to 

take on all possible outcomes. As with decision coverage, a minimum of two tests cases is 

required for each decision. 

Condition/decision coverage combines the requirements for decision coverage with those for 
condition coverage. That is, there must be sufficient test cases to toggle the decision 

outcome between true and false and to toggle each condition value between true and false. 

Hence, a minimum of two test cases are necessary for each decision. Using the example (A 

or B), test cases (TT) and (FF) would meet the coverage requirement. However, these two 

tests do not distinguish the correct expression (A or B) from the expression A or from the 
expression B or from the expression (A and B). 

MC/DC enhances the condition/decision coverage criterion by requiring that each condition 

be shown to independently affect the outcome of the decision. The independence 

requirement ensures that the effect of each condition is tested relative to the other 
conditions. However, achieving MC/DC requires more thoughtful selection of the test cases, 

as will be discussed further in chapter 3, and, in general, a minimum of n+1 test cases for a 

decision with  n inputs. For the example (A or B), test cases (TF), (FT), and (FF) provide 

MC/DC. For decisions with a large number of inputs, MC/DC requires considerably more test 
cases than any of the coverage measures discussed above. 

Multiple Condition Coverage requires test cases that ensure each possible combination of 

inputs to a decision is executed at least once. Thus, multiple condition coverage requires 

exhaustive testing of the input combinations to a decision. In theory, multiple condition 
coverage is the most desirable structural coverage measure; but, it is impractical for many 

cases. For a decision with n inputs, multiple condition coverage requires 2 to the n’th tests. 



Software Verification Plan 

 

 
 

<Doc Number> Page 65 of 188 Rev.   -    

 

 

 

Representations for Elementary Logical Expressions 

 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 66 of 188 Rev.   -    

 

AND Gate 

The following tests will be performed to achieve test coverage for an “and” gate: 

 All inputs are set true with the output observed to be true. This requires one test 
case for each n-input “and” gate. 

 Each and every input is set exclusively false with the output observed to be false. 

This requires n test cases for each n-input “and” gate. 

 

Changing a single condition starting from a state where all inputs are true will change the 

outcome; that is, an “and” gate is sensitive to any false input. Hence, a specific set of n+1 

test cases is needed for an n-input “and” gate. These specific n+1 test cases meet the 

intent of test coverage by demonstrating that the “and” gate is correctly implemented. 

The following is an example of the minimum testing required for a three-input “and” gate.  

In this case, it takes four test cases to show that each input "independently" affects the 

output.  

If ( A = 1 ) and ( B = 1 ) and ( C = 1 ) then D := 1; end if; 

 

 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 67 of 188 Rev.   -    

 

OR Gate 

The following tests will be performed to achieve test coverage for an “or” gate: 

 All inputs are set false with the output observed to be false. This requires one test 
case for each n-input “or” gate. 

 Each and every input is set exclusively true with the output observed to be true. This 

requires n test cases for each n-input “or” gate. 

 

These requirements are based on an “or” gate’s sensitivity to a true input. Here again, n+1 

specific test cases are needed to test an n-input “or” gate. These specific n+1 test cases 

meet the intent of test coverage by demonstrating that the “or” gate is correctly 

implemented. 

The following is an example of the minimum testing required for a three-input “or” gate.  In 

this case, it takes four test cases to show that each input "independently" affects the 

output. 

If ( A = 1 ) or ( B = 1 ) or ( C = 1 ) then D := 1; end if; 
  

 

  

 



Software Verification Plan 

 

 
 

<Doc Number> Page 68 of 188 Rev.   -    

 

XOR Gate 

The “xor” gate differs from both the “and” and the “or” gates with respect to test coverage 

in that there are multiple minimum test sets for an “xor”. Consider the two-input “xor” 
gate. All of the possible test cases for this “xor” gate are shown below. For a two-input 

“xor” gate, any combination of three test cases will provide test coverage. 

The following is an example of the minimum testing required for a two-input “xor” gate. 

Minimum testing to meet test coverage requires one of the following sets of test cases: 

 test cases 1, 2, and 3 

 test cases 1, 2, and 4 

 test cases 1, 3, and 4 

 test cases 2, 3, and 4 
 

If ( A = 1 ) xor ( B = 1 ) then C := 1; end if; 

 

  

 

Note that for a test set to distinguish between an “or” and an “xor” gate it must contain 
test case 1.  Test sets 1, 2, and 3 above can detect when an “or” is coded incorrectly for an 

“xor”, and vice versa.  While not explicitly required by test coverage, elimination of test set 

4 as a valid test set is worth considering.  Note also that minimum tests to achieve test 

coverage for an “xor” gate with more than two inputs are implementation dependent. 
Hence, no single set of rules applies universally to an “xor” gate with more than two inputs. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 69 of 188 Rev.   -    

 

Not Gate 

The logical “not” works differently from the previous gates: the “not” works only on a single 

operand.  That operand may be a single condition or a logical expression. But, with respect 
to a gate level representation, there is a single input to the “not” gate as shown below. 

  

 

Minimum testing to achieve test coverage for a logical “not” requires the following: 

 The input is set false with the output observed to be true. 

 The input is set true with the output observed to be false. 

  



Software Verification Plan 

 

 
 

<Doc Number> Page 70 of 188 Rev.   -    

 

Comparator 

 

A comparator evaluates two numerical inputs and returns a Boolean based on the 
comparison criteria.  Within the context of DO-178C, a comparator is a condition and also a 

simple decision. The following comparison criteria are considered in this tutorial: 

 

 < less than 
 > greater than 

 <= less than or equal to 

 >= greater than or equal to 

 == equal to 
 != not equal to 

 

In general, the comparison point can be a constant or another variable. 

   

In either case, two test cases will be used to confirm test coverage for a comparator—one 

test case with a true outcome, and one test case with a false outcome. Minimum testing for 

a comparator requires the following: 

 Input x set at a value above the comparison point (or y) 

 Input x set at a value below the comparison point (or y) 

 

Typically, three test cases will be used to assure that simple coding errors have not been 
made; that is, that the correct relational operator and comparison point are used in the 

code. So, while test coverage only requires two tests, minimum good requirements-based 

testing for a comparator requires: 

 Input x set at a value slightly above the comparison point 

 Input x set at a value slightly below the comparison point 

 Input x set at a value equal to the comparison point 

 

The definition of “slightly” is determined by engineering judgment based on the numerical 

resolution of the data type and/or target computer, the test equipment driving the inputs, 
and the resolution of the output device.  Consider for example, the following set of test 

cases for a design that sets the output A true when altitude is greater than 2500. 

  

 



Software Verification Plan 

 

 
 

<Doc Number> Page 71 of 188 Rev.   -    

 

  

  

Test cases 1 and 2 give the desired test coverage output. However, those test cases do not 

confirm that the toggle occurred at 2500, and not elsewhere. Even adding test case 3 does 

not improve the test suite much.  The design could have been implemented with a 
comparison point anywhere between 2501 and 32000, and give the same result for test 

cases 1, 2, and 3. Test cases 3, 4, and 5 are a better set, because this set confirms that the 

transition occurs at 2500. 

  
 



Software Verification Plan 

 

 
 

<Doc Number> Page 72 of 188 Rev.   -    

 

If Then Else: 

The if-then-else statement is a switch that controls the execution of the software. Consider 

the following example where x, y, and z are integers and C is a Boolean: 

If C then z := x else z := y;  

 

  
  



Software Verification Plan 

 

 
 

<Doc Number> Page 73 of 188 Rev.   -    

 

The following tests will be performed for the if-then-else statement: 

 Inputs that force the execution of the then path (that is, the decision evaluates to true) 

 Inputs that force the execution of the else path (that is, the decision evaluates to false)  
 Inputs to exercise any logical gates in the decision 

 

Note that the decision must evaluate to false with confirmation that the then path did not 

execute, even if there is no else path.  

For example, for a single condition Z, the statement if Z then…else… requires only two test 

cases to achieve test coverage. The decision in if X or Y or Z then… else… requires four test 

cases to achieve test coverage. 

A minimal test set for the statement if Z then a := x else a := y is shown in Table 9. Note 
that a case statement may be handled similarly to the if-then-else statement. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 74 of 188 Rev.   -    

 

While Loop: 

 

Consider the following example where Weight_On_Wheels is a Boolean: 

While Weight_On_Wheels loop radar_mode := Off; end loop; 

A schematic representation of this code is shown in Figure 10. In this case, 

Weight_On_Wheels is the decision for the while loop construct. 

  
 

  

 

The following tests will be performed for the while loop: 

 Inputs to force the execution of the statements in the loop (that is, the decision 
evaluates to true) 

 Inputs to force the exit of the loop (that is, the decision evaluates to false) 

 Inputs to exercise any logical gates in the decision 

 
Two test cases may be used to achieve test coverage. One test case confirms that 

radar_mode remains off as long as Weight_On_Wheels is true. The second test case 

confirms that radar_mode could be set to something other than off when 

Weight_On_Wheels is false. In the case where Weight_On_Wheels is replaced by a Boolean 
expression, the Boolean expression would also need to be evaluated, and the setting of 

radar_mode to off confirmed. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 75 of 188 Rev.   -    

 

Applying Boolean Logic to Requirements-Based Testing 

This process takes the inputs from the requirements-based test cases and maps them to the 

schematic representation. This provides a view of the test cases and the source code in a 
convenient format. Inputs and expected observable outputs for the requirements-based test 

cases for example 1 are given. 

  

 

This example shows the test cases annotated on the schematic representation. Note that 

intermediate results are also determined from the test inputs and shown on the schematic 

representation. 

 
 



Software Verification Plan 

 

 
 

<Doc Number> Page 76 of 188 Rev.   -    

 

Knowing the intermediate results is important because some inputs may mask the effect of 

other inputs when two or more logic constructs are evaluated together. Test cases where 

the output is masked do not contribute to achieving test coverage.  Using the annotated 
figure, the requirements-based tests cases that do not contribute (or count for credit) 

towards achieving test coverage can be identified. Once those test cases are eliminated 

from consideration, the remaining test cases can be compared to the building blocks to 

determine if they are sufficient to meet the test coverage criteria. 

Expression: Z := (A or B) and (C or D); 

Step 1: Show the source code schematically. 

 

 

 

Step 2: Map test cases to the source code picture. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 77 of 188 Rev.   -    

 

Step 3: Eliminate masked tests. In this case, any false input to the “and” gate will mask the 

other input. In this case, the false outcome of “or1” will mask test case 1 for the “or2” 

gate. Similarly, the false outcome of “or2” will mask test case 3 for the “or1” gate. 

 

 

Step 4: Determine test coverage.  

 

 

Step 5: Confirm output. The outputs computed match those provided. 



Software Verification Plan 

 

 
 

<Doc Number> Page 78 of 188 Rev.   -    

 

Symbols for Source Code Representation 

 

  

 



Software Verification Plan 

 

 
 

<Doc Number> Page 79 of 188 Rev.   -    

 

4.9.3 Data Coupling and Control Coupling Analysis 

Analysis of data coupling and control coupling will be performed to ensure the adequacy of 

integration testing. This objective will be achieved in conjunction with hardware/software 
integration testing or software integration testing. A structural coverage analysis will be 

used to confirm that the requirements based testing has exercised the data and control 

coupling between code components. A separate peer review will be to verify that the source 

code matches the data flow and control flow defined in the software architecture. 
 

Structural Coverage Analysis of Data and Control Coupling 

 

Structural coverage analyses of data coupling and control coupling will be used to provide a 
measurement and assurance of the correctness of these modules/components’ interactions 

and dependencies. The intent of this analysis is to show that the software 

modules/components affect one another in the ways in which the software designer 

intended and do not affect one another in ways in which they were not intended, thus 
resulting in unplanned, anomalous, or erroneous behavior. Typically, the measurements and 

assurance should be conducted on R-BT of the integrated components (that is, on the final 

software program build) in order to ensure that the interactions and dependencies are 

correct, the coverage is complete, and the objective is satisfied.  

 
Satisfaction of this objective will be based on the detailed high and low level requirements 

of the modules/components’ interfaces and the thorough requirements-based normal range 

and robustness tests of the software program. The interfaces and dependencies will be 

specified in the design requirements, and if those requirements are tested for both normal 
functioning and robustness.  Satisfaction of the data and control coupling objective becomes 

a by-product of the design and verification processes.  

 

The sections below identify the areas that are applicable and the means with which 
verification will occur. 

4.9.3.1 Data Coupling Analysis 

Data coupling manifests as:  

 

(1) Parameters passed to a function.  

 In the case of parameters passed to the function (case 1); statement coverage is sufficient 

to determine whether all control paths through the function that might be influenced by the 

parameter set have been exercised.  

 
(2) Global data set or used by the function whose value is determined at compile-time or as 

part of system configuration.  

In the case of global configuration data (case 2); analysis should determine the equivalency 

classes of all potential configurations. Structural coverage analysis should be executed 
under all equivalency classes.  

 

 

(3) Global data set or used by the function which represents the current state of execution 
of the system.  



Software Verification Plan 

 

 
 

<Doc Number> Page 80 of 188 Rev.   -    

 

In the case of global state data (case 3); analysis should determine the potential states (or 

their equivalency classes). Structural coverage analysis through instrumentation should 

determine if all states have been entered and all legal transitions between states have been 
exercised.  

 

Note 1: Sub-functions exist where a function parameter determines which of multiple 

independent execution paths is taken through a function. Usually the parameter is used to 
determine which case of a large switch statement is executed.  

 

 

An Approach 

 

Perform a review of the flight software to confirm data coupling and control coupling among 

the software components.  

 
To satisfy the control coupling objective, use the structural coverage results to provide 

evidence that all functions were executed through high-level test cases. For functions that 

could not be exercised by high-level tests, develop additional functional analyses and add to 

the Software Verification Cases and Procedures (SVCP). The intent is to provide confidence 

that the requirements-based testing has completely exercised the code structure.  
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 81 of 188 Rev.   -    

 

To satisfy the data coupling objective, this analysis includes functional parameters, global 

variables, external data, stored data, and resource contention. Analyze the SVCP and 

associated test code to confirm the verification coverage of the data coupling in the code. As 
with the control coupling, structural coverage results can be used to provide evidence that 

the data coupling through parameters was covered. 

Although Certification Authority Software Team (CAST) Position Papers are not considered 

guidance, the approach outlined in CAST-19 is voluntarily adopted as a reasonable method 
for the demonstration of data coupling and control coupling coverage analysis.  The table 

below examines the objectives of the data coupling coverage approach discussed in CAST-

19. 

 

 

CAST-19 Objective 
 

Where and how the objective is met 

Identify data dependencies. This objective is met by defining the data items in 
the requirements and during the software 

requirements and code reviews ensuring proper 

setting and using of the data. 

 

Identify inappropriate data 

dependencies. 

This objective is met by the performance of the 

software requirements and code reviews. 

 

Define and evaluate the extent of 

interface depth 

This objective is met by the simplicity and small 

size of the project and verified by the code review. 
 

Determine and minimize coupling 
interdependencies. 

This objective is met by the simplicity and small 
size of the project.  There will be no specific review 

test or analysis to verify this objective. 

 

Evaluate accurate use of global data This objective is met by code review and 

requirements base testing.  The requirements 

based tests will ensure the software performs as 

required.  The combination of these verifications 
adequately verifies the use of global data. 

 

Evaluate input/output data buffers This objective will be met by the accumulation of 

all the requirements based tests being executed, 

with passed results.  The Software Verification 

Review checklist addresses this objective. 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 82 of 188 Rev.   -    

 

4.9.3.2 Control Coupling Analysis 

In the C language control coupling manifests in one of three ways:  

 

(1) Static function calls.  

In the case of static function calls (case 1); statement coverage is sufficient to determine if 

all possible calling points for a function have been executed by the test procedures.  

 

(2) Sub-functions (See Note 1)  

- In the case of sub-functions (case 2); analysis should reveal if the controlling parameter a 

constant determined at compile-time or whether the controlling parameter may be 

dynamically modified during execution.  

- If the controlling parameter is a constant determined at compile-time, this case is 

equivalent to case 1.  

- If the controlling parameter may be dynamically modified during execution, this case is 

equivalent to case 3.  

 

(3) Dynamic function calls (i.e. function called through a pointer.)  

- Points where a function is called through a pointer (case 3); it is necessary to determine 

whether (a) the function pointer has been initialized before use, (b) what the range of 

possible values for the function pointer is, and (c) that all possible values of the function 
pointer within that range have been executed.  

- In the case of function pointers which belong to a jump table which is initialized at 

compile-time, this case is reduces to case 1.  

- In the case of function pointers that are initialized at powerup, the calling point must be 
exercised in all potential configurations of the jump table. (Also see Data Coupling case 2.) 

Although Certification Authority Software Team (CAST) Position Papers are not considered 

guidance, the approach outlined in CAST-19 is voluntarily adopted as a reasonable method 

for the demonstration of data coupling and control coupling coverage analysis.  The table 
below examines the objectives of the control coupling coverage approach discussed in 

CAST-19. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 83 of 188 Rev.   -    

 

 

CAST-19 Objective 

 

Where and how the objective is met 

 

Identify control dependencies. This objective is met by defining the data items in 

the requirements and during the software 

requirements and code reviews ensuring proper 
setting and usage of the data  

 

Identify inappropriate control 

dependencies. 

Inappropriate control dependencies will be 

removed. This objective will be verified by the 

performance of the software requirements and 

code reviews. 
 

Verify correct execution call 
sequence, including startup 

sequences. 

This objective is met by reviewing the code against 
the requirements and by testing execution related 

requirements, with passed results. 

 

Define and evaluate the extent of 

interface depth 

This objective is met by the simplicity and small 

size of the project and by the code review. 

 

Verifying scheduling This objective is met by reviewing the code against 

the requirements and by testing execution related 

requirements, with passed results. 
 

Worst-case execution time analysis This analysis will be part of the Software 
Integration Analysis. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 84 of 188 Rev.   -    

 

4.10 Process-Specific Activities 

The following sections detail the planned process-specific activities of the Testing Process. 

4.10.1 Test Case Development  

 

 Test cases will be developed by a person other than the author of the software. 

 Test case development can start after the software requirements have been formally 

reviewed.  An iterative process for updating the test cases works in conjunction with 
any PRs processed to necessary changes in the software requirements.   

 Test cases will be developed using software requirements, any certification 

document, as required for the function being tested, and information from the 

software detailed design that indicates additional boundary and robustness test steps 
are required.  Additionally, test steps will be iteratively modified when preliminary 

coverage data is available to address any coverage deficiencies.  All iterative work in 

the lifecycle will be completed using PRs and CM controls. 

 Test case tools will be chosen based on the verification needs identified.  Software 
Simulation tools, specific lab equipment used in validation, and on-target testing 

tools (script processing tools, external interface stimulation tools) determine the 

specific steps developed.  Refer to the PSAC for a list of verification tools. 

 Test cases will be developed that capture test environment setup and parameters, 

versions of CM controlled Software, versions of CM controlled test documentation 
(including test cases) and industry interface ICDs for verification of external 

interfaces. 

 Test cases will be developed based on functional interfaces and components.  Where 

applicable, a test case may be used to verify multiple requirements concerning the 
same function or functions.  The software trace matrix supports tracing from test 

case to software requirement.  A test case may cover more than one software 

requirement, and the test case and trace matrix will indicate all software 

requirements covered during the test.  Each instance of a core function must employ 
a separate test case with the appropriate tracing to the requirement.  All iterative 

work in the lifecycle is completed using PRs and CM controls. 

 Test cases will be developed to include positive path testing, plus additional testing 

as warranted for robustness.  Robustness testing includes boundary conditions, 

obscure event mitigation, failure compensation, negative path testing, default case 
verification and more.  Developed test cases indicate when test steps are for 

robustness testing, and may not trace to a specific software requirement.  

Additionally, test steps are iteratively modified when preliminary coverage data is 

available to address robustness deficiencies.  All iterative work in the lifecycle will be 
completed using PRs and CM controls.  



Software Verification Plan 

 

 
 

<Doc Number> Page 85 of 188 Rev.   -    

 

4.10.2 Test Case Verification 

 

Test cases will be formally reviewed by an independent party against the software 
requirements claimed in each test step.  The trace matrix will be validated during the review 

to insure proper credit is taken for the software requirements listed.  The software 

development life cycle steps will be followed to insure any discrepancies found in the review 

are addressed. All iterative work in the lifecycle will be completed using PRs and CM 
controls.  Refer to Peer Review Process for the test cases. 

4.10.3 Test Procedure Development  

 

 Test procedures will be developed by a person other than the author of the Software. 
 Test procedure development can start after the software requirements have been 

formally reviewed.  Test procedures may be developed in conjunction with the test 

case.  An iterative process for updating the test procedures works in conjunction with 

any PRs processed to necessary changes in the software requirements or related test 
cases. 

 Test procedures will be developed using software requirements, test cases any 

certification documents as required for the function being tested, and information 

from the software detailed design that indicates additional boundary and robustness 

test steps are required.  Additionally, test procedures are iteratively modified when 
preliminary coverage data is available to address any coverage deficiencies.  All 

iterative work in the life cycle is completed using PRs and CM controls. 

 Test tools will be chosen based on the verification needs identified.   

 Test procedures will be developed using proven test templates that capture test 
environment setup and parameters, versions of CM controlled software, versions of 

CM controlled test documentation (including test cases) and industry interface ICDs 

for verification of external interfaces. 

 When test procedure gaps are discovered during testing, the PR process will be used 
to address the gaps. 

 Test procedures will be developed based on functional interfaces and components.  

Where applicable, a test procedure may be used to verify multiple requirements 

concerning the same function or functions.  Test procedures will be tied directly to a 

test case – one for one.  The software trace matrix will support tracing from test 
case to software requirement.  The test procedure will be an integral part of the test 

case trace.  As discrepancies in test procedures are identified, iterative changes will 

be made as necessary to resolve the discrepancy.  All iterative work in the lifecycle 

will be completed using PRs and CM controls. 



Software Verification Plan 

 

 
 

<Doc Number> Page 86 of 188 Rev.   -    

 

 Test procedures will be developed to include positive path testing, plus additional 

testing as warranted for robustness.  Robustness testing will include boundary 

conditions, obscure event mitigation, failure compensation, negative path testing, 
default case verification and more.  Test procedures will be developed to indicate 

when test steps are for robustness testing, and may not trace to a specific software 

requirement.  Additionally, test procedures will be iteratively modified when 

preliminary coverage data is available to address robustness deficiencies.  All 
iterative work in the lifecycle will be completed using PRs and CM controls. 

4.10.4 Test Procedure Verification 

 

Test procedures will be formally reviewed by an independent party against the respective 
test case and software requirements claimed in each test step.  The trace matrix will be 

validated during the review to insure proper credit is taken for the software requirements 

listed.  The software development life cycle steps will be followed to insure any 

discrepancies found in the review are addressed.  All iterative work in the lifecycle will be 
completed using PRs and CM controls.  Refer to Peer Review Process of test cases. 

 

4.10.5 Coverage Analysis Verification  

 

 
Structural coverage analysis results will be formally reviewed by an independent party.  

Where code structures are not covered by requirements-based testing, the review will 

ensure that: 

 If the uncovered code is dead code (extraneous code for which no requirements 
exist), it is removed. 

 If the uncovered code contains intended functionality not included in the 

requirements and/or design, additional requirements (and related test procedures) 

are added to address the undocumented functionality. 

 If the uncovered code is deactivated code used only in certain configurations of the 

airborne product, the code is reachable in the appropriate configuration of the 

product, and that the deactivation mechanism prevents inadvertent activation of the 

code. 

 If the uncovered code is deactivated code not used in any approved configuration 
(such as test related code), the deactivated code structure is specifically identified in 

the Coverage Results and that the behavior of the code structure is deterministic and 

would not cause unintended behavior (determined by analysis).   



Software Verification Plan 

 

 
 

<Doc Number> Page 87 of 188 Rev.   -    

 

4.10.6 Testing Environment 

 

 Each test case will include the following information: 
 

o Test Description 

o Tester Name 

o Test Date 
o Software Version tested 

o Test Method used 

o Tool(s) Version(s) used (if applicable) 

 
 If appropriate (i.e., special equipment required) the test procedure will describe 

the specific bench configuration, test tool configuration, and any special 

instruction required to insure the tester sets up the correct environment.  

 If appropriate (i.e., conformed unit, or special test rig) the test procedure will 
describe the following to insure the proper equipment and rig configuration is 

achieved before testing 

  

o P/N of test unit 

o S/N of test unit 
o Identification of special test rig components and gear 

 

 SQA person will audit the test setup before testing. 

 Once a test rig or environment has been conformed, the apparatus will be “Locked 
Down” for the time required to complete the test procedure.  (“Locked Down” means 

the equipment and test gear involved in the test setup is physically or electronically 

secured from other personnel changing the environment.) 

 

4.10.7 Test Execution 

 

 On-Target testing consists of normal system level test such as TSO, normal flight 

test simulation and DO-178C requirements based test.  Additionally, special test 

cases will be created to exercise areas of the software where normal system level 
tests do not obtain full coverage, or configured options on the standard product may 

not be enabled.  All system level testing will be identified in the software trace matrix 

for evaluation and review. 

 Specific test procedures will be designed to exercise timing interfaces, critical data 
functions and configured options.  Validation of the software at the low level will be 

achieved by capturing artifacts using lab equipment with electronic output.  These 

resultant artifacts will be formally reviewed by an independent source and put under 

CM control.  Data from these tests will also be used in verification by analysis efforts 
as required based on total test coverage analysis. 



Software Verification Plan 

 

 
 

<Doc Number> Page 88 of 188 Rev.   -    

 

 Each test case will include the following test run information: 

 

o Test Description 
o Tester Name 

o Test Date 

o software Version tested 

o Test Method used 
o Tool(s) Version(s) used (if applicable) 

 

 Testing will commence once the following are complete: 

o All software requirements are reviewed and under CM control with no 
outstanding (non-deferrable) PRs 

o All Test Cases/Procedures are reviewed and under CM control with no 

outstanding (non-deferrable) PRs 

o All software source files are reviewed and under CM control with no 
outstanding (non-deferrable) PRs 

4.10.8 Test Results Verification 

All traceability data is reviewed and under CM control with no outstanding (non-deferrable) 

PRs Software Testing Process Reviews and Analysis 

Throughout the Software Testing Process, peer reviews are held to review and analyze the 
Test Cases and Test Procedures to determine that they are complete and fully verify the 

high-level and low-level requirements.  In addition, peer reviews are used to brainstorm 

methods for robustness testing. Peer review entry and exit criteria, along with signature 

sheets and action items are recorded in the Reviews and Analysis Management System.  
The resulting Robustness test cases are reviewed for their ability to reveal vulnerabilities in 

the software.   

Throughout the Software Testing Process, peer reviews are held to review and analyze the 

Test Cases and Test Procedures to determine that they are complete comply with the 
Software Verification Plan and cover the software high-level and low-level requirements.     

Peer reviews are held to analyze the coverage achieved as a result of requirements-based 

testing.  Where code structures are not covered, an analysis is performed to determine the 

cause.  If the cause is determined to be untraceable code as a result of dead code, the code 

is removed.  If the cause is inadequate requirements or test cases and procedures, the peer 
review results include action items to resolve this.  If the result is unreachable “required” 

code that is traceable, an analysis of each line of uncovered code is documented in the 

Structural Coverage Analysis Results document.   

4.10.8.1 Software Verification Cases and Procedures Document Review 

Review of the Software Verification Cases and Procedures occurs when the document is 

mature enough to be reviewed. Once prepared, the Software Verification Cases and 

Procedures is submitted to Software Configuration Management and entered into the 

document control system. 

The Software Quality Assurance Engineer coordinates the document review process using 

the Document Review Management System.  Each reviewer adds his or her comments in the 

Document Review Management System.  A cycle of comment incorporation and re-review 

occurs through Configuration Management until all comments are closed.  The Project Lead 
is responsible for closing all document comments prior to formal release. 



Software Verification Plan 

 

 
 

<Doc Number> Page 89 of 188 Rev.   -    

 

Once all comments have been closed, the Software Verification Cases and Procedures is 

reviewed by the Software Quality Assurance Engineer against the Document Review 

Checklist and a cross references from each section of the Software Verification Cases and 
Procedures to the DO-178B Section 11 Objective to ensure that full compliance is achieved 

(See screenshot below).  Once complete, the Software Quality Assurance Engineer signs 

and dates the checklists, which is maintained by Software Configuration Management as 

CC2 compliance evidence.  The Software Verification Cases and Procedures is then signed 
and released. 

4.10.8.2 System Verification Review 

The System Verification Review is conducted at the conclusion of the Software Testing 

Process.  The System Verification Review Checklist will be used during the review. 

The Project Engineer conducts the System Verification Review.  When the System 

Verification Review is held, the Project Engineer records the minutes or assigns someone to 

do so. The minutes will include a discussion of the results, agreements and disagreements 

reached during the review, updates to the project schedule and resource estimates, and 
action item assignments with estimated completion dates. 

Representatives from Quality Assurance, Test Engineering, Manufacturing Engineering, 

Mechanical Engineering, and Software Engineering are invited to the System Integration 

Review. 

The review ensures the results of the integration process are complete and correct. If 
deficiencies are revealed during the review, corrective actions to resolve the deficiencies are 

fed back into the appropriate process. 

4.10.8.3 Reviews and Analysis of Test Cases, Test Procedures, and Results  

Peer reviews are conducted to analyze Test Cases, Test Procedures, and Results. The 
following characteristics are evaluated and form the exit criteria for the peer review: 

 Test cases: Independent verification of test cases is presented later in this 

document. 

 Test procedures: The objective is to verify that the test cases were accurately 
developed into test procedures and expected results. 

 Test results: The objective is to ensure that the test results are correct and that 

discrepancies between actual and expected results are explained. 



Software Verification Plan 

 

 
 

<Doc Number> Page 90 of 188 Rev.   -    

 

During the verification process, the Independent Verification Engineer (along with select 

members of the development team) reviews the requirements-based test cases to assure 

that all requirements are adequately covered.  If the requirements-based tests are not 
adequate to achieve test coverage, then additional requirements-based tests or analysis 

may be needed. 

The following questions are considered when evaluating test cases and procedures: 

  Do the test cases and procedures adhere to the relevant plans and standards?  

 If plans or standards have not been followed, is there documented rationale for 

deviations from stated plans and standards? 

 Is the rationale for each test case clearly explained? 

 Are the test cases and procedures appropriately commented to allow future updates? 

 Have the test cases and procedures been subjected to appropriate change and 

configuration control? 

 Is the separation between test cases clear? For example, are test starts and stops 

identified? 

 Do the test cases and procedures specify required input data and expected output 

data? 

 Were the inputs for each test case derived from the requirements? 

 Are the test cases and procedures sufficient to cover all the relevant requirements? 

That is, do the traceability matrices provide clear association between test cases and 
requirements? 

 Are the test cases and procedures sufficient to achieve test coverage? 

 Are sufficient tests identified to provide test coverage for each logic construct? 

 Are there sufficient robustness test cases and procedures? 

 Are test cases and procedures correct? 

4.10.8.3.1 Review checklists for test cases, procedures, and results 



Software Verification Plan 

 

 
 

<Doc Number> Page 91 of 188 Rev.   -    

 

A checklist is used during review of test procedures and results (See Document Review 

Management System in the Software Quality Assurance Plan).  During this review, the 

checklists themselves are assessed, considering the following questions for test coverage: 

 Are the checklists sufficient to determine that the requirements-based test cases, 

procedures, and results meet the test coverage objective? 

 Have the checklists been prepared and/or reviewed by quality? 

 Do the checklists specify: 
 who performed the review? 

 what data was reviewed (with revision)? 

 when it was reviewed? 

 what was found? 
 what corrective actions were taken, if necessary? 

 Do the checklists require evaluation of tolerances specified in the requirements? 

 Do the checklists ensure that results of the test cases can be visually verified? (e.g., 

can the SQE, or other reviewer, visually determine when requirements-based tests 
have passed or failed?) 

 Will the checklists reveal whether the results of the test cases that are counted for 

credit towards test coverage are observable? 

 Will the checklists address limitations of the structural coverage analysis tool as 

documented in the tool qualification? 

 Will the checklists reveal test cases that violate project standards? 



Software Verification Plan 

 

 
 

<Doc Number> Page 92 of 188 Rev.   -    

 

4.10.9 Software Test Execution 

Verification testing of software has two objectives.  One objective is to demonstrate that the 

software satisfies its requirements.  The second objective is to demonstrate with a high 
degree of confidence that errors that could lead to unacceptable failure conditions, as 

determined by the system safety assessment process, have been removed.  The following 

three types of testing are used: 

 Hardware Software Integration Testing:  To verify correct operation of the software 
in the target computer environment. 

 Software Integration Testing:  To verify the interrelationships between software 

requirements and components and to verify the implementation of the software 

requirements and software components within the software architecture. 

 Low-level Testing:  To verify the implementation of software and low-level 

requirements. 

 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 93 of 188 Rev.   -    

 

Peer reviews are conducted to ensure that software testing objectives have been satisfied. 

The following characteristics are evaluated and form the exit criteria for the peer review: 

 Test cases are developed based primarily on the software requirements. 

 Test cases are developed to verify correct functionality and to establish conditions 

that reveal potential errors. 

 Software requirements coverage and traceability analysis are used to determine 

what software requirements were not tested. 

 Although not required, structural coverage analysis techniques may be used to 

determine what software structures were not exercised. 

4.10.9.1 Test Environment 

More than one test environment may be needed to satisfy the objectives for software 
testing. The test environment includes the (independently built) software loaded into the 

target computer and tested in the target computer environment. 

Note: This section must be tailored to specify the actual test environments in use. 

4.10.9.2 Requirements-Based Test Cases 

Requirements-based testing is emphasized because this strategy has been found to be the 

most effective at revealing errors.  Requirements-based test case selection includes the 

following: 

 Implementation of both normal range and robustness (abnormal range) test cases. 

The specific test cases should be developed from the software requirements and the 
error sources inherent in the software development process. 

4.10.9.3 Normal Range Test Cases 

Normal Range test cases are developed to demonstrate the ability of the software to 

respond to normal inputs and conditions.  Normal range test cases include: 

 Real and integer input variables are exercised using valid equivalence classes and 

boundary values. 

 For time-related functions, such as filters, integrators and delays, multiple iterations 

of the code are performed to check the characteristics of the function in context. 

 For state transitions, test cases are developed to exercise the transitions possible 

during normal operation. 

 For software requirements expressed by logical equations, the normal range test 

cases verify the variable usage and the Boolean operators. 



Software Verification Plan 

 

 
 

<Doc Number> Page 94 of 188 Rev.   -    

 

4.10.9.4 Robustness Test Cases  

Robustness test cases are developed to demonstrate the ability of the software to respond 

to abnormal inputs and conditions.  Robustness test cases include: 

 Real and integer variables are exercised using equivalence class selection of invalid 

values. 

 System initialization is exercised during abnormal conditions. 

 The possible failure modes of the incoming data are determined, especially complex, 
digital data strings from an external system. 

 For loops where the loop count is a computed value, test cases may be developed to 

attempt to compute out-of-range loop count values, and thus demonstrate the 

robustness of the loop-related code. 

 For time-related functions, such as filters, integrators, and delays, test cases may be 

developed for arithmetic overflow protection mechanisms. 

 For state transitions, test cases may be developed to provoke transitions that are not 

allowed by the software requirements. 

4.10.9.4.1 Robustness Test Case Selection Strategy 

The following criteria will be used, at a minimum, to select robustness test cases: 

 

9. Starting with the Functional Hazard Assessment (FHA), produce each hazard 

conditions and verify expected result. 

10. Test multiple combinations of hazard conditions.  Combine hazards. 

11. Identify all range / boundary requirements.  Test outside the boundaries of each 

range requirement. 

12. Identify all conditions where a fault is asserted.  Test all of those conditions. 

13. Combine fault conditions (without reset) and verify expected results. 

14. Perform negative testing.  If A AND B THEN X, test If NOT A and B THEN NOT X. 

15. If not required by DO-160 Testing, test critical functionality and other key 

functionality over temperature. 

16. Perform testing over non-standard electrical conditions (i.e., power glitching, power 

up, power down, brown out) 



Software Verification Plan 

 

 
 

<Doc Number> Page 95 of 188 Rev.   -    

 

4.10.9.5 Requirements-Based System Verification Testing Methods 

Requirements-based system verification testing methods concentrate on error sources 

associated with the software operating within the target computer environment, and on the 
high-level functionality.  The objective of requirements-based testing is to ensure that the 

software in the target computer will satisfy the high-level requirements.  

Typical errors revealed by this level of testing include: 

 Incorrect input handling. 

 Failure to satisfy execution requirements. 

 Incorrect software response to hardware transients or hardware failures, for 

example, start-up sequencing, transient input loadds and input power transients. 

 Data bus and other resource contention problems, for example, memory mapping. 

 Inability of built-in test to detect failures. 

 Errors in system interfaces. 

 Incorrect behavior of feedback loops. 

 Incorrect control of memory management hardware or other hardware devices under 
software control. 

 Stack overflow. 

 Incorrect operation of mechanism(s) used to confirm the correctness and 

compatibility of field-loadable software. 

 Violations of software partitioning. 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 96 of 188 Rev.   -    

 

Peer reviews are conducted to ensure that common software errors were not introduced into 

the design.  The review includes the focus on the following most common error conditions:   

 

 Implementation Error Source (Data Bugs) 

18) Logic bugs  (x = 0; x <= 10; x++)  Expect a result of 10 

19) Parameter Passing  Incorrect arguments passed 

20) Return Codes  Unexpected return codes passed 

21) Math Overflow / Underflow  Exceeding integer value 

22) Logic Processing Error  Too many nested conditions or calculations 

23) Reentrance Problem  If a section of code can be interrupted before it completes its 

execution, and can be called again before the first execution has completed, the code 

must be designed to be reentrant.  This typically requires that all variables 
referenced by the reentrant routine exist on the stack and not in static memory. 

24) Incorrect Control Flow  The intended sequence of operations can be corrupted by 

incorrectly designed conditional loops.  This may cause problems such as missing 

execution paths, unreachable code, and incorrect control logic. 

25) Pointer Errors  Pointing to a NULL pointer in a linked list, improperly incrementing 

pointer used to step through look-up tables or lists, bad function pointers. 

26) Indexing Problems  Improper use of Index Registers in assembly language have 

similar problems to those identified with pointers.  Provides the same type of 

indirection useful for table look-up, walking through lists, trees, and other data 

structures. 

27) Variable Scope Errors  Using the same name and applying it to different data items 

that exist in different scopes. 

28) Improper Data Usage  Using an uninitialized variable or using the same variable for 

more than one purpose. 

29) Incorrect Flag Usage  Flags are usually global in scope and are almost always static 

(stored in a fixed memory location).  Flag may inadvertantly be used for more than 

one purpose or used to indicate more than one condition.  Every flag should be SET, 

CLEARED and tested at some point in the program.  

30) Incorrect Address  Usually the result of an incorrect pointer.  It's possible to code a 

bad address into the code.  This generally happens when the memory subsystem 

changes (i.e., Reduce memory size). 

31) Data / Range Overflow / Underflow  May result in passing a parameter that is out 

of bounds or storing a data type not large enough to hold the data. 

32) Signed / Unsigned data errors  Mixed sign arithmetic can easily lead to calculations 

that overflow the data types.  Assembly languages have different branch instructions 

used after comparing signed and unsigned data.  Using the wrong branch instruction 

may cause a critical error.  

33) Incorrect Conversion / Type-Casting / Scaling  Converting a data value from one 

representation to another is common and may cause bugs.  Conversion from signed 

to unsigned or string to numeric type is common.  Typecasts are useful to get data 

into whatever representation is needed, but circumvent compiler type-checking, 

increasing the risk of making a mistake. 



Software Verification Plan 

 

 
 

<Doc Number> Page 97 of 188 Rev.   -    

 

34) Data Synchronization Errors   Embedded systems share data among separate 

threads of execution.  An operation that uses a number of different data inputs must 

be synchronized in order to perform its processing.  If the data values are updated 
asynchronously, the processing may be using some "new" data items with some 

"old" data items, and compute the wrong result. 

 Implementation Error Source (Real-Time Bugs) 

3) Interrupt Handling  It is critical to handle all interrupts that the system will ever 

receive. Receiving an unexpected interrupt without being able to handle it will likely 

cause failures.   

4) Task Synchronization  Tasks must be synchronized correctly.  One task may 

acquire raw data; another may process this data as a set; still another may make 

control decisions on the processed data values.  Proper synchronization usually is 
implemented by relying on flags or semaphores to control task regular intervals. 

 Implementation Error Source (System Bugs) 

5) Stack Overflow / Underflow  Pushing more data into the stack than it can hold is 

referred to as a stack overflow.  Pulling more data from the stack than was put on 
the stack is referred to as a stack underflow.  Both result in using bad data and can 

cause an unintended jump to an arbitrary address, resulting in a failure. 

6) Race Conditions  A race condition occurs when two or more independent threads 

each access the same resource at the same time. The effects of a race condition vary 

widely; they're dependent on the specifics of the situation. 

7) Deadlock  When race conditions are avoided by "locking" a resource, preventing 

any other thread from accessing it, the design must be evaluated to ensure that 

deadlock will never occur. Testing for deadlock is generally ineffective, since only a 

particular order of resource locking may produce it, and that ordering may not result 
from the most common tests.    

Deadlock is only a problem in multi-threading environments that lock resources. The 

following four conditions must be present in order for a deadlock to occur. Breaking 

any one of these conditions eliminates deadlock:  

a. Mutual exclusion—only one thread can use a locked resource at a time  

b. Nonpreemption—threads cannot force another thread to release a resource  

c. Hold-and-wait—threads hold resources that they have locked while waiting for 

any additional needed resources  

d. Circular wait—a circular chain of threads exist, such that each thread holds a 
resource needed by the next thread in the chain 

8) Resource Sharing Problems  In the case where a peripherial such as an analog 

multiplexer may be used to direct one of a number of different inputs to a single A/D 

converter; If one task alters the mux setting to measure a given signal and another 
preempts it and sets the mux to pass a different signal, when control returns to the 

first task, it will be measuring the wrong signal, likely causing a failure condition. 



Software Verification Plan 

 

 
 

<Doc Number> Page 98 of 188 Rev.   -    

 

 Implementation Error Source (Other Bugs) 

6) Syntax / Typing  Compilers do a good job of syntax checking; however, special 

attention needs to be placed on coding standards. 

7) Interface  Complex interfaces are a common source of failures.  Interface problem 

may include incorrect EEPROM erase / write sequence, improper use of LCD 

controller chip commands, wrong sequence in reading / writing serial communication 

interface registers, etc. 

8) Memory Allocation / Deallocation  Using memory management routines can greatly 

simplify the efficient use of available memory.  It can also be an added source of 

errors.  For example, not checking for successful allocation before using the memory, 

not freeing memory when it is no longer needed (memory leak). 

9) Peripheral Register Initialization  Peripherials typically have different modes of 

operation, increasing the number of applications for which they're useful.  This can 

complicate the initialization and use of these devices producing another source for 

errors. 

10) Watchdog Servicing  Watchdog timers help ensure that if something in the system 

goes exceptionally wrong, it will fail in a safe, or at least a predictable, manner.  
Servicing the watchdog timer must be done properly and at the right time.  The 

watchdog must be enabled, and set to timeout at the correct interval.   

 

4.10.9.5.1 Requirements-Based Software Verification Testing 

This testing method is used and concentrates on the inter-relationships between the 

software requirements, and on the implementation of requirements by the software 

architecture.  The objective of the requirements-based Software Verification Testing is to 

ensure that the software components interact correctly with each other and satisfy the 
software requirements through successive integration of code components with a 

corresponding expansion of the scope of the test cases.   

Typical errors revealed by this testing method include: 

 Incorrect initialization of variables and constants. 

 Parameter passing errors. 

 Data corruption, especially global data. 

 Inadequate end-to-end numerical resolution. 

 Incorrect sequencing of events and operations. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 99 of 188 Rev.   -    

 

4.10.9.5.2 Requirements-Based Low-Level Testing 

This testing method is used and concentrates on demonstrating that each software 

component complies with its low-level requirements.  The objective of requirements-based 
low-level testing is to ensure that the software components satisfy their low-level 

requirements: 

Typical errors revealed by this testing method include: 

 Failure of an algorithm to satisfy a software requirement. 

 Incorrect loop operations. 

 Incorrect logic decisions. 

 Failure to process correctly legitimate combinations of input conditions. 

 Incorrect responses to missing or corrupted input data. 

 Incorrect handling of exceptions, such as arithmetic faults or violations of array 

limits. 

 Incorrect computation sequence. 

 Inadequate algorithm precision, accuracy, or performance. 

4.10.10 Effectiveness of Test Program 

The following tasks are performed to determine the effectiveness of the test program.  

4.10.10.1 Assess results of requirements-based tests  

The first step after test execution is to determine whether all requirements-based tests 

pass. In addition to checking the final pass/fail results, the test cases and results for some 
randomly selected requirements should be examined to ensure that the results reflect the 

given inputs for those cases. Test results are also checked carefully with respect to any 

specified tolerances. 

The following questions are considered to assess the requirements-based test results: 

 Are the test result files clearly linked to the test procedures and codes?  

 Are failed test cases obvious from the test results? 

 Do the test results indicate whether each procedure passed or failed and the final 

pass/fail results? 

 Do the test results adhere to the relevant plans, standards, and procedures? 

 Have the test results been subjected to appropriate configuration control? 



Software Verification Plan 

 

 
 

<Doc Number> Page 100 of 188 Rev.   -    

 

4.10.10.2 Assess failure explanations and rework  

Each failed test case is documented with an explanation for why it failed, including 

references to applicable Action Request.  In some cases, rework of some life cycle data will 
be required; in other cases, only an explanation for the failed test cases is needed. If 

rework is required, the impact of changes should be carefully evaluated and the changed 

items should be subjected to the appropriate change and configuration control.  

Once all rework is complete, test cases should be rerun in compliance with plans for 
regression testing. Note: there may be cases where failed requirements-based tests are 

acceptable; however, it is typical for them to be fixed and rerun. 

The following questions are considered to assess failures and rework: 

 Is there an acceptable rationale for deviations from expected results, standards, or 
plans? 

 Are explanations for the failed test cases technically sound and accurate? 

 Do explanations for failed test cases contain accurate references to relevant problem 

reports? 

 Are explanations for code or test rework suitable to address the failure? 

 Have test cases been re-executed in compliance with plans for regression testing? 

 Have the test results from regression testing been documented appropriately?  

4.10.10.3 Assess coverage achievement  

The Verification Engineer produces test cases that are expected to achieve 100% test 
coverage (i.e., the purpose of test documentation is to show compliance with all of the 

requirements).  If all the requirements have been covered by tests without achieving full 

test coverage, dead code, unintended functionality, or incorrectly documented de-activated 

code may be indicated.  It is the policy to remove all dead code.   

The following questions are considered when assessing coverage achievement: 

 Has the test coverage criteria been correctly applied? 

 Is 100% structural coverage achieved through requirements-based testing? 

 If 100% structural coverage is not achieved through requirements-based testing, is 
there an explanation detailing which parts of the code were not executed, and why?  

Have additional test cases been added? 

 Are explanations for drops in coverage sufficiently detailed and acceptable? 

 Are there problem reports associated with dead code? 

 Has dead code been analyzed and/or removed? 
 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 101 of 188 Rev.   -    

 

4.11 Coverage Analysis Methods 

The subsequent paragraphs detail the methods that will be used for coverage analysis as 

part of the software verification process.   

Coverage refers to the extent to which a given verification activity has satisfied its 

objectives. Coverage analysis measures will be applied to both requirements definitions and 

testing activities.  Appropriate coverage measures will be used by SQA to audit verification 

activities.  This will aid in determining the adequacy of the verification accomplished. 

Coverage is viewed as a measure, not a method or a test.   As such, results will be 

expressed as the percentage of an activity that is accomplished. Two specific measures of 

test coverage are identified in the following figure: requirements coverage and software 

structure coverage.  

Requirements coverage analysis will be used to determine how well the requirements-based 

testing verifies the implementation of the software requirements and establishes traceability 

between the software requirements and the test cases.  Structural coverage analysis will be 

used to determine how much of the code structure will be executed by the requirements-
based tests and establishes traceability between the code structure and the test cases.  

 



Software Verification Plan 

 

 
 

<Doc Number> Page 102 of 188 Rev.   -    

 

4.11.1 Requirements Coverage Analysis  

Each software requirement contains a finite list of behaviors and features, and that each 

requirement is written to be verifiable. Testing based on requirements will be performed 
from the perspective of the user (providing a demonstration of intended function), and will 

provide a means for the development of test cases concurrently with development of the 

requirements. 

Peer reviews will go beyond requirements coverage in evaluating the project.  Reasons 
include: 

 The software requirements and the design description (used as the basis for the test 

set) may not contain a complete and accurate specification of all the behavior 

represented in the executable code. 

 The software requirements may not be written with sufficient granularity to assure 

that all the functional behaviors implemented in the source code are tested. 

 Requirements-based testing alone cannot confirm that the code does not include 

unintended functionality. 

In addition, software structure may be created that cannot be determined from top-level 

software specifications.  Derived requirements, as described in DO-178B, will be used for 

this reason.  Derived requirements will be tested as part of requirements-based testing.  

4.11.2 Structural Coverage Analysis  

The purpose of structural coverage analysis with the associated structural coverage analysis 
resolution is to complement requirements-based testing as follows: 

 Provide evidence that the code structure was verified to the degree required for the 

applicable software level. 

 Provide a means to support demonstration of absence of unintended functions. 

 Establish the thoroughness of requirements-based testing. 

With respect to intended function, evidence that testing was rigorous and completed is 

provided by the combination of requirements-based testing (both normal range testing and 

robustness testing) and requirements-based test coverage analysis. 

Requirements-based testing cannot completely provide this kind of evidence with respect to 

unintended functions. Code that is implemented without being linked to requirements may 

not be exercised by requirements-based tests. Such code could result in unintended 

functions.  In this case, it will be designated this "Dead Code" or require that a requirement 

be written for the code.  Should a new requirement be added, the applicable lifecycle 
artifacts (i.e., the Software Requirements Document) will be updated and the required 

processes will be repeated. 



Software Verification Plan 

 

 
 

<Doc Number> Page 103 of 188 Rev.   -    

 

If requirements-based testing proves that all intended functions are properly implemented, 

and if structural coverage analysis demonstrates that all existing code is reachable and 

adequately tested, these two together provide a greater level of confidence that there are 
no unintended functions. Structural coverage analysis will: 

 Indicate to what extent the requirements-based test procedures exercise the code 

structure. 

 Reveal code structure that was not exercised during testing. 

 

Run-time libraries are subject to the same coverage requirements as the rest of the 

application code.  

It should be noted that the structural coverage tools employed on the project must support 
resolution of overloaded operators and/or functions to the extent overloading is used on the 

project. 

4.11.2.1 Achieving Coverage 

To achieve test coverage, a structural coverage analysis tool or a code instrumentation 
method will be used to monitor statements, entry and exit points, decision and branching 

statements, and Boolean conditions. Some tools do not support all of the coverage points 

required for test coverage. For example, not all structural coverage tools support coverage 

of entry and exit points. Such a tool can support part of the structural coverage analysis if 

other means are used to cover entry and exit points.  

The structural coverage analysis tool will monitor a statement for multiple coverage points, 

as illustrated below:  

Return (A and B) or C; 

This statement will be monitored for the following coverage points: 

 Statement–must be invoked at least once 

 Exit Point–must be invoked at least once 

 Decision–must take all possible outcomes (false, true) at least once 

  
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 104 of 188 Rev.   -    

 

 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 105 of 188 Rev.   -    

 

4.11.2.2 Statement Coverage  

To achieve statement coverage, every executable statement in the program is invoked at 

least once during software testing. Achieving statement coverage shows that all code 
statements are reachable (in the context of DO-178B, reachable based on test cases 

developed from the requirements). Note that statement coverage is considered a weak 

criterion because it is insensitive to some control structures.  Consider the following code 

segment: 

If ( x > 1 ) and ( y = 0 ) then z := z / x; end if; 

By choosing x = 2, y = 0, and z = 4 as input to this code segment, every statement is 

executed at least once. However, if an “or” is coded by mistake (see code segment below) 

in the first statement instead of an “and”, the test case will not detect a problem. This 
makes sense because analysis of logic expressions is not part of the statement coverage 

criterion.  

If ( z = 2 ) or ( y > 1 ) then z := z + 1; end if; 

 

4.11.2.3 Decision Coverage 

Decision coverage requires two test cases: one for a true outcome and another for a false 

outcome.  For simple decisions (i.e., decisions with a single condition), decision coverage 

ensures complete testing of control constructs. But, not all decisions are simple. For the 

decision (A or B), test cases (TF) and (FF) will toggle the decision outcome between true 
and false. However, the effect of B is not tested; that is, those test cases cannot distinguish 

between the decision (A or B) and the decision A. 

 

4.11.2.4 Modified Condition Decision Coverage  

Condition coverage requires that each condition in a decision take on all possible outcomes 

at least once (to overcome the problem in the previous example), but does not require that 

the decision take on all possible outcomes at least once. In this case, for the decision (A or 

B) test cases (TF) and (FT) meet the coverage criterion, but do not cause the decision to 
take on all possible outcomes. As with decision coverage, a minimum of two tests cases is 

required for each decision. 

Condition/decision coverage combines the requirements for decision coverage with those for 

condition coverage. That is, there must be sufficient test cases to toggle the decision 

outcome between true and false and to toggle each condition value between true and false. 
Hence, a minimum of two test cases are necessary for each decision. Using the example (A 

or B), test cases (TT) and (FF) would meet the coverage requirement. However, these two 

tests do not distinguish the correct expression (A or B) from the expression A or from the 

expression B or from the expression (A and B). 

MC/DC enhances the condition/decision coverage criterion by requiring that each condition 

be shown to independently affect the outcome of the decision. The independence 

requirement ensures that the effect of each condition is tested relative to the other 

conditions. However, achieving MC/DC requires more thoughtful selection of the test cases, 
as will be discussed further in chapter 3, and, in general, a minimum of n+1 test cases for a 

decision with  n inputs. For the example (A or B), test cases (TF), (FT), and (FF) provide 

MC/DC. For decisions with a large number of inputs, MC/DC requires considerably more test 



Software Verification Plan 

 

 
 

<Doc Number> Page 106 of 188 Rev.   -    

 

cases than any of the coverage measures discussed above. 

Multiple Condition Coverage requires test cases that ensure each possible combination of 

inputs to a decision is executed at least once. Thus, multiple condition coverage requires 
exhaustive testing of the input combinations to a decision. In theory, multiple condition 

coverage is the most desirable structural coverage measure; but, it is impractical for many 

cases. For a decision with n inputs, multiple condition coverage requires 2 to the n’th tests. 

 
 

Representations for Elementary Logical Expressions 

 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 107 of 188 Rev.   -    

 

AND Gate 

The following tests will be performed to achieve test coverage for an “and” gate: 

 All inputs are set true with the output observed to be true. This requires one test 
case for each n-input “and” gate. 

 Each and every input is set exclusively false with the output observed to be false. 

This requires n test cases for each n-input “and” gate. 

 

Changing a single condition starting from a state where all inputs are true will change the 

outcome; that is, an “and” gate is sensitive to any false input. Hence, a specific set of n+1 

test cases is needed for an n-input “and” gate. These specific n+1 test cases meet the 

intent of test coverage by demonstrating that the “and” gate is correctly implemented. 

The following is an example of the minimum testing required for a three-input “and” gate.  

In this case, it takes four test cases to show that each input "independently" affects the 

output.  

If ( A = 1 ) and ( B = 1 ) and ( C = 1 ) then D := 1; end if; 

 

 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 108 of 188 Rev.   -    

 

OR Gate 

The following tests will be performed to achieve test coverage for an “or” gate: 

 All inputs are set false with the output observed to be false. This requires one test 
case for each n-input “or” gate. 

 Each and every input is set exclusively true with the output observed to be true. This 

requires n test cases for each n-input “or” gate. 

 

These requirements are based on an “or” gate’s sensitivity to a true input. Here again, n+1 

specific test cases are needed to test an n-input “or” gate. These specific n+1 test cases 

meet the intent of test coverage by demonstrating that the “or” gate is correctly 

implemented. 

The following is an example of the minimum testing required for a three-input “or” gate.  In 

this case, it takes four test cases to show that each input "independently" affects the 

output. 

If ( A = 1 ) or ( B = 1 ) or ( C = 1 ) then D := 1; end if; 
  

 

  

 



Software Verification Plan 

 

 
 

<Doc Number> Page 109 of 188 Rev.   -    

 

XOR Gate 

The “xor” gate differs from both the “and” and the “or” gates with respect to test coverage 

in that there are multiple minimum test sets for an “xor”. Consider the two-input “xor” 
gate. All of the possible test cases for this “xor” gate are shown below. For a two-input 

“xor” gate, any combination of three test cases will provide test coverage. 

The following is an example of the minimum testing required for a two-input “xor” gate. 

Minimum testing to meet test coverage requires one of the following sets of test cases: 

 test cases 1, 2, and 3 

 test cases 1, 2, and 4 

 test cases 1, 3, and 4 

 test cases 2, 3, and 4 
 

If ( A = 1 ) xor ( B = 1 ) then C := 1; end if; 

 

  

 

Note that for a test set to distinguish between an “or” and an “xor” gate it must contain 
test case 1.  Test sets 1, 2, and 3 above can detect when an “or” is coded incorrectly for an 

“xor”, and vice versa.  While not explicitly required by test coverage, elimination of test set 

4 as a valid test set is worth considering.  Note also that minimum tests to achieve test 

coverage for an “xor” gate with more than two inputs are implementation dependent. 
Hence, no single set of rules applies universally to an “xor” gate with more than two inputs. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 110 of 188 Rev.   -    

 

Not Gate 

The logical “not” works differently from the previous gates: the “not” works only on a single 

operand.  That operand may be a single condition or a logical expression. But, with respect 
to a gate level representation, there is a single input to the “not” gate as shown below. 

  

 

Minimum testing to achieve test coverage for a logical “not” requires the following: 

 The input is set false with the output observed to be true. 

 The input is set true with the output observed to be false. 

  



Software Verification Plan 

 

 
 

<Doc Number> Page 111 of 188 Rev.   -    

 

Comparator 

 

A comparator evaluates two numerical inputs and returns a Boolean based on the 
comparison criteria.  Within the context of DO-178B, a comparator is a condition and also a 

simple decision. The following comparison criteria are considered in this tutorial: 

 

 < less than 
 > greater than 

 <= less than or equal to 

 >= greater than or equal to 

 == equal to 
 != not equal to 

 

In general, the comparison point can be a constant or another variable. 

   

In either case, two test cases will be used to confirm test coverage for a comparator—one 

test case with a true outcome, and one test case with a false outcome. Minimum testing for 

a comparator requires the following: 

 Input x set at a value above the comparison point (or y) 

 Input x set at a value below the comparison point (or y) 

 

Typically, three test cases will be used to assure that simple coding errors have not been 
made; that is, that the correct relational operator and comparison point are used in the 

code. So, while test coverage only requires two tests, minimum good requirements-based 

testing for a comparator requires: 

 Input x set at a value slightly above the comparison point 

 Input x set at a value slightly below the comparison point 

 Input x set at a value equal to the comparison point 

 

The definition of “slightly” is determined by engineering judgment based on the numerical 

resolution of the data type and/or target computer, the test equipment driving the inputs, 
and the resolution of the output device.  Consider for example, the following set of test 

cases for a design that sets the output A true when altitude is greater than 2500. 

  

 



Software Verification Plan 

 

 
 

<Doc Number> Page 112 of 188 Rev.   -    

 

  

  

Test cases 1 and 2 give the desired test coverage output. However, those test cases do not 

confirm that the toggle occurred at 2500, and not elsewhere. Even adding test case 3 does 

not improve the test suite much.  The design could have been implemented with a 
comparison point anywhere between 2501 and 32000, and give the same result for test 

cases 1, 2, and 3. Test cases 3, 4, and 5 are a better set, because this set confirms that the 

transition occurs at 2500. 

  
 



Software Verification Plan 

 

 
 

<Doc Number> Page 113 of 188 Rev.   -    

 

If Then Else: 

The if-then-else statement is a switch that controls the execution of the software. Consider 

the following example where x, y, and z are integers and C is a Boolean: 

If C then z := x else z := y;  

 

  
  



Software Verification Plan 

 

 
 

<Doc Number> Page 114 of 188 Rev.   -    

 

The following tests will be performed for the if-then-else statement: 

 Inputs that force the execution of the then path (that is, the decision evaluates to true) 

 Inputs that force the execution of the else path (that is, the decision evaluates to false)  
 Inputs to exercise any logical gates in the decision 

 

Note that the decision must evaluate to false with confirmation that the then path did not 

execute, even if there is no else path.  

For example, for a single condition Z, the statement if Z then…else… requires only two test 

cases to achieve test coverage. The decision in if X or Y or Z then… else… requires four test 

cases to achieve test coverage. 

A minimal test set for the statement if Z then a := x else a := y is shown in Table 9. Note 
that a case statement may be handled similarly to the if-then-else statement. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 115 of 188 Rev.   -    

 

While Loop: 

 

Consider the following example where Weight_On_Wheels is a Boolean: 

While Weight_On_Wheels loop radar_mode := Off; end loop; 

A schematic representation of this code is shown in Figure 10. In this case, 

Weight_On_Wheels is the decision for the while loop construct. 

  
 

  

 

The following tests will be performed for the while loop: 

 Inputs to force the execution of the statements in the loop (that is, the decision 
evaluates to true) 

 Inputs to force the exit of the loop (that is, the decision evaluates to false) 

 Inputs to exercise any logical gates in the decision 

 
Two test cases may be used to achieve test coverage. One test case confirms that 

radar_mode remains off as long as Weight_On_Wheels is true. The second test case 

confirms that radar_mode could be set to something other than off when 

Weight_On_Wheels is false. In the case where Weight_On_Wheels is replaced by a Boolean 
expression, the Boolean expression would also need to be evaluated, and the setting of 

radar_mode to off confirmed. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 116 of 188 Rev.   -    

 

Applying Boolean Logic to Requirements-Based Testing 

This process takes the inputs from the requirements-based test cases and maps them to the 

schematic representation. This provides a view of the test cases and the source code in a 
convenient format. Inputs and expected observable outputs for the requirements-based test 

cases for example 1 are given. 

  

 

This example shows the test cases annotated on the schematic representation. Note that 

intermediate results are also determined from the test inputs and shown on the schematic 

representation. 

 
 



Software Verification Plan 

 

 
 

<Doc Number> Page 117 of 188 Rev.   -    

 

Knowing the intermediate results is important because some inputs may mask the effect of 

other inputs when two or more logic constructs are evaluated together. Test cases where 

the output is masked do not contribute to achieving test coverage.  Using the annotated 
figure, the requirements-based tests cases that do not contribute (or count for credit) 

towards achieving test coverage can be identified. Once those test cases are eliminated 

from consideration, the remaining test cases can be compared to the building blocks to 

determine if they are sufficient to meet the test coverage criteria. 

Expression: Z := (A or B) and (C or D); 

Step 1: Show the source code schematically. 

 

 

 

Step 2: Map test cases to the source code picture. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 118 of 188 Rev.   -    

 

Step 3: Eliminate masked tests. In this case, any false input to the “and” gate will mask the 

other input. In this case, the false outcome of “or1” will mask test case 1 for the “or2” 

gate. Similarly, the false outcome of “or2” will mask test case 3 for the “or1” gate. 

 

 

Step 4: Determine test coverage.  

 

 

Step 5: Confirm output. The outputs computed match those provided. 



Software Verification Plan 

 

 
 

<Doc Number> Page 119 of 188 Rev.   -    

 

Symbols for Source Code Representation 

 

  



Software Verification Plan 

 

 
 

<Doc Number> Page 120 of 188 Rev.   -    

 

4.11.2.5 Coverage Analysis Tools 

A structural coverage analysis tool will be used to provide visibility into testing by either 

instrumenting code or providing other intervention techniques to gain visibility. The tool will 
be capable of instrumenting the code, provide flags, or other monitoring mechanisms to the 

original source code or object code. This enables the analysis tool to determine exactly what 

parts of the code are exercised. Once the code is instrumented, test cases are executed and 

the coverage analysis tool tracks which parts of the code are exercised by the test cases 
and, where complex analysis is required, how they are exercised.  Pass/fail criteria for 

structural coverage are specified and tool analyzes the code against these criteria. If the 

pass/fail criteria are not specified, the tool will report the level of structural coverage the 

test cases achieve. 

The Coverage Analysis Management System will be used to obtain both Statement and 

Decision Coverage.   

Coverage Analysis Management System Screen Shot 

 
 

 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 121 of 188 Rev.   -    

 

The Coverage Analysis Management System process is as follows.  Specifics of this process 

and this tool are described in the CAMS Tool Qualification Accomplishment Summary. 

 
 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 122 of 188 Rev.   -    

 

4.11.3 Source Code to Object Code Traceability 

 

<Level A Only> 
 

To implement certain features, compilers for some languages may produce object code that 

is not directly traceable to the Source Code, for example, initialization, built-in error 

detection, or exception handling. That object code or executable object which cannot be 
traced to Source Code, must be verified.  The software planning process should provide a 

means to detect this object code and to ensure verification coverage, and should define the 

means in the appropriate plan. 

 
Methods for Satisfying this Objective 

 

1. Perform Structural Coverage Analysis at Object Code or EOC Level 

2. Compiler Qualification 
 

 

4.11.4 Data Coupling and Control Coupling Analysis 

Analysis of data coupling and control coupling is to ensure the adequacy of integration 

testing. It follows that this objective cannot be achieved without hardware/software 
integration testing or software integration testing. DO-178C/ED-12C will hopefully clarify 

that this is a structural coverage analysis which confirms that the requirements based 

testing has exercised the data and control coupling between code components. DO-

178B/ED-12B also requires a separate review or analysis to verify that the source code 
matches the data flow and control flow defined in the software architecture. Such a review 

or analysis would satisfy the objective of DO-178B/ED-12B section 6.3.4b. 

4.11.4.1 Structural Coverage Analysis of Data and Control Coupling 

 
The intent of the structural coverage analyses of data coupling and control coupling is to 

provide a measurement and assurance of the correctness of these modules/components’ 

interactions and dependencies. That is, the intent is to show that the software 

modules/components affect one another in the ways in which the software designer 

intended and do not affect one another in ways in which they were not intended, thus 
resulting in unplanned, anomalous, or erroneous behavior. Typically, the measurements and 

assurance should be conducted on R-BT of the integrated components (that is, on the final 

software program build) in order to ensure that the interactions and dependencies are 

correct, the coverage is complete, and the objective is satisfied.  
 

Satisfaction of this objective will be based on the detailed high and low level requirements 

of the modules/components’ interfaces and the thorough requirements-based normal range 

and robustness tests of the software program. The interfaces and dependencies will be 
specified in the design requirements, and if those requirements are tested for both normal 

functioning and robustness.  Satisfaction of the data and control coupling objective becomes 

a by-product of the design and verification processes.  

 
The following sections identify the areas that are applicable and the means with which 



Software Verification Plan 

 

 
 

<Doc Number> Page 123 of 188 Rev.   -    

 

verification will occur. 

4.11.4.2 Data Coupling Analysis 

Data coupling manifests as:  

 

(1) Parameters passed to a function.  

 In the case of parameters passed to the function (case 1); statement coverage is sufficient 

to determine whether all control paths through the function that might be influenced by the 
parameter set have been exercised.  

 

(2) Global data set or used by the function whose value is determined at compile-time or as 

part of system configuration.  

In the case of global configuration data (case 2); analysis should determine the equivalency 

classes of all potential configurations. Structural coverage analysis should be executed 

under all equivalency classes.  

 
 

(3) Global data set or used by the function which represents the current state of execution 

of the system.  

In the case of global state data (case 3); analysis should determine the potential states (or 

their equivalency classes). Structural coverage analysis through instrumentation should 
determine if all states have been entered and all legal transitions between states have been 

exercised.  

 

Note 1: Sub-functions exist where a function parameter determines which of multiple 
independent execution paths is taken through a function. Usually the parameter is used to 

determine which case of a large switch statement is executed.  

 

To satisfy the control coupling objective, use the structural coverage results to provide 
evidence that all functions were executed through high-level test cases. For functions that 

could not be exercised by high-level tests, develop additional functional analyses and add to 

the Software Verification and Procedures (SVCP). The intent is to provide confidence that 

the requirements-based testing has completely exercised the code structure.  

 
To satisfy the data coupling objective, this analysis includes functional parameters, global 

variables, external data, stored data, and resource contention. Analyze the SVCP and 

associate test code to confirm the verification coverage of the data coupling in the code. As 

with the control coupling, structural coverage results can used to provide evidence that the 
data coupling through parameters was covered. 

 

 

 

CAST-19 Objective 

 

Where and how the objective is met 

Identify data dependencies. This objective is met by defining the data items in 

the requirements and during the software 
requirements and code reviews ensuring proper 



Software Verification Plan 

 

 
 

<Doc Number> Page 124 of 188 Rev.   -    

 

 
CAST-19 Objective 

 

Where and how the objective is met 

setting and using of the data. 

 

For global and static scoped objects, this objective 

should be understood to include the explicit 
verification of initialization dependencies.  Because 

the precedence and declaration order of global and 

static scoped objects can cause failure to properly 

initialize, explicit test cases which verify the 
correct instantiation and initialization of objects in 

these scopes. 

 

Identify inappropriate data 

dependencies. 

This objective is met by the performance of the 

software requirements and code reviews. 

 

Define and evaluate the extent of 

interface depth 

This objective is met by the simplicity and small 

size of the project and verified by the code review. 

 

Determine and minimize coupling 

interdependencies. 

This objective is met by the simplicity and small 

size of the project.  There will be no specific review 
test or analysis to verify this objective. 

 

Evaluate accurate use of global data This objective is met by code review and 

requirements base testing.  The requirements 

based tests will ensure the software performs as 

required.  The combination of these verifications 
adequately verifies the use of global data. 

 

Evaluate input/output data buffers This objective will be met by the accumulation of 

all the requirements based tests being executed, 

with passed results.  The Software Verification 

Review checklist addresses this objective. 

 

 

4.11.4.3 Control Coupling Analysis 

In the C language control coupling manifests in one of three ways:  

 

(1) Static function calls.  

In the case of static function calls (case 1); statement coverage is sufficient to determine if 
all possible calling points for a function have been executed by the test procedures.  

 

(2) Sub-functions (See Note 1)  

- In the case of sub-functions (case 2); analysis should reveal if the controlling parameter a 
constant determined at compile-time or whether the controlling parameter may be 

dynamically modified during execution.  



Software Verification Plan 

 

 
 

<Doc Number> Page 125 of 188 Rev.   -    

 

- If the controlling parameter is a constant determined at compile-time, this case is 

equivalent to case 1.  

- If the controlling parameter may be dynamically modified during execution, this case is 
equivalent to case 3.  

 

(3) Dynamic function calls (i.e. function called through a pointer.)  

- Points where a function is called through a pointer (case 3); it is necessary to determine 
whether (a) the function pointer has been initialized before use, (b) what the range of 

possible values for the function pointer is, and (c) that all possible values of the function 

pointer within that range have been executed.  

- In the case of function pointers which belong to a jump table which is initialized at 
compile-time, this case is reduces to case 1.  

- In the case of function pointers that are initialized at powerup, the calling point must be 

exercised in all potential configurations of the jump table. (Also see Data Coupling case 2.) 



Software Verification Plan 

 

 
 

<Doc Number> Page 126 of 188 Rev.   -    

 

 

CAST-19 Objective 

 

Where and how the objective is met 

 

Identify control dependencies. This objective is met by defining the data items in 

the requirements and during the software 

requirements and code reviews ensuring proper 
setting and using of the data  

 

Identify inappropriate control 

dependencies. 

Inappropriate control dependencies will be 

removed. This objective will be verified by the 

performance of the software requirements and 

code reviews. 
 

Verify correct execution call 
sequence, including startup 

sequences. 

This objective is met by reviewing the code against 
the requirements and by testing execution related 

requirements, with passed results. 

 

Define and evaluate the extent of 

interface depth 

This objective is met by the simplicity and small 

size of the project and by the code review. 

 

Verifying scheduling This objective is met by reviewing the code against 

the requirements and by testing execution related 

requirements, with passed results. 
 

Worst-case execution time analysis This analysis will be part of the Software 
Integration Analysis. 

 

 

4.11.4.4 Outputs of Data and Control Coupling Activity 

 

Data and control coupling outputs are produced as a result of requirements-based testing.  

The analysis of these outputs is based on a comparison of the module interface software 
requirements (data and control coupling requirements) plus data and control flow diagrams 

against the results of the requirements-based testing plush structural coverage analysis 

results, showing that the testing was complete and the data and control coupling behavior 

was as expected.  This activity will be performed in one of two ways or in combination: 
 

1. Dynamic Activity (Test) - Using a tool that captures the data and control coupling 

behavior as part of collecting the structural coverage analysis metrics during 

requirements-based testing.  This method involved incrementing the source code and 
collecting outputs of the tool. 

2. Static Activity (Analysis) - Performing a static analysis including analyzing the link 

map or call tree. 



Software Verification Plan 

 

 
 

<Doc Number> Page 127 of 188 Rev.   -    

 

4.12 Process-Specific Activities 

The following sections detail the planned process-specific activities of the Testing Process. 

4.12.1 Test Case Development  

 

 Test cases will be developed by a person other than the author of the software. 

 Test case development can start after the software requirements have been formally 

reviewed.  An iterative process for updating the test cases works in conjunction with 
any PRs processed to necessary changes in the software requirements.   

 Test cases will be developed using software requirements, any certification 

document, as required for the function being tested, and information from the 

software detailed design that indicates additional boundary and robustness test steps 
are required.  Additionally, test steps will be iteratively modified when preliminary 

coverage data is available to address any coverage deficiencies.  All iterative work in 

the lifecycle will be completed using PRs and CM controls. 

 Test case tools will be chosen based on the verification needs identified.  Software 
Simulation tools, specific lab equipment used in validation, and on-target testing 

tools (script processing tools, external interface stimulation tools) determine the 

specific steps developed.  Refer to the PSAC for a list of verification tools. 

 Test cases will be developed that capture test environment setup and parameters, 

versions of CM controlled Software, versions of CM controlled test documentation 
(including test cases) and industry interface ICDs for verification of external 

interfaces. 

 Test cases will be developed based on functional interfaces and components.  Where 

applicable, a test case may be used to verify multiple requirements concerning the 
same function or functions.  The software trace matrix supports tracing from test 

case to software requirement.  A test case may cover more than one software 

requirement, and the test case and trace matrix will indicate all software 

requirements covered during the test.  Each instance of a core function must employ 
a separate test case with the appropriate tracing to the requirement.  All iterative 

work in the lifecycle is completed using PRs and CM controls. 

 Test cases will be developed to include positive path testing, plus additional testing 

as warranted for robustness.  Robustness testing includes boundary conditions, 

obscure event mitigation, failure compensation, negative path testing, default case 
verification and more.  Developed test cases indicate when test steps are for 

robustness testing, and may not trace to a specific software requirement.  

Additionally, test steps are iteratively modified when preliminary coverage data is 

available to address robustness deficiencies.  All iterative work in the lifecycle will be 
completed using PRs and CM controls.  



Software Verification Plan 

 

 
 

<Doc Number> Page 128 of 188 Rev.   -    

 

4.12.2 Test Case Verification 

 

Test cases will be formally reviewed by an independent party against the software 
requirements claimed in each test step.  The trace matrix will be validated during the review 

to insure proper credit is taken for the software requirements listed.  The software 

development life cycle steps will be followed to insure any discrepancies found in the review 

are addressed. All iterative work in the lifecycle will be completed using PRs and CM 
controls.  Refer to Peer Review Process for the test cases. 

4.12.3 Test Procedure Development  

 

 Test procedures will be developed by a person other than the author of the Software. 
 Test procedure development can start after the software requirements have been 

formally reviewed.  Test procedures may be developed in conjunction with the test 

case.  An iterative process for updating the test procedures works in conjunction with 

any PRs processed to necessary changes in the software requirements or related test 
cases. 

 Test procedures will be developed using software requirements, test cases any 

certification documents as required for the function being tested, and information 

from the software detailed design that indicates additional boundary and robustness 

test steps are required.  Additionally, test procedures are iteratively modified when 
preliminary coverage data is available to address any coverage deficiencies.  All 

iterative work in the life cycle is completed using PRs and CM controls. 

 Test tools will be chosen based on the verification needs identified.   

 Test procedures will be developed that capture test environment setup and 
parameters, versions of CM controlled software, versions of CM controlled test 

documentation (including test cases) and industry interface ICDs for verification of 

external interfaces. 

 When test procedure gaps are discovered during testing, the PR process will be used 
to address the gaps. 

 Test procedures will be developed based on functional interfaces and components.  

Where applicable, a test procedure may be used to verify multiple requirements 

concerning the same function or functions.  Test procedures will be tied directly to a 

test case – one for one.  The software trace matrix will support tracing from test 
case to software requirement.  The test procedure will be an integral part of the test 

case trace.  As discrepancies in test procedures are identified, iterative changes will 

be made as necessary to resolve the discrepancy.  All iterative work in the lifecycle 

will be completed using PRs and CM controls. 



Software Verification Plan 

 

 
 

<Doc Number> Page 129 of 188 Rev.   -    

 

 Test procedures will be developed to include positive path testing, plus additional 

testing as warranted for robustness.  Robustness testing will include boundary 

conditions, obscure event mitigation, failure compensation, negative path testing, 
default case verification and more.  Test procedures will be developed to indicate 

when test steps are for robustness testing, and may not trace to a specific software 

requirement.  Additionally, test procedures will be iteratively modified when 

preliminary coverage data is available to address robustness deficiencies.  All 
iterative work in the lifecycle will be completed using PRs and CM controls. 

4.12.4 Test Procedure Verification 

 

Test procedures will be formally reviewed by an independent party against the respective 
test case and software requirements claimed in each test step.  The trace matrix will be 

validated during the review to insure proper credit is taken for the software requirements 

listed.  The software development life cycle steps will be followed to insure any 

discrepancies found in the review are addressed.  All iterative work in the lifecycle will be 
completed using PRs and CM controls.  Refer to Peer Review Process of test cases. 

 

4.12.5 Coverage Analysis Verification  

 

 
Structural coverage analysis results will be formally reviewed by an independent party.  

Where code structures are not covered by requirements-based testing, the review will 

ensure that the uncovered code is removed (dead code) or that additional requirements 

(and related test procedures) are added to address the undocumented functionality or that 
the required code structure that can’t be reached is specifically identified in the Coverage 

Results and that the behavior of the code structure is deterministic and would not cause 

unintended behavior (determined by analysis).  Refer to Peer Review Process. 



Software Verification Plan 

 

 
 

<Doc Number> Page 130 of 188 Rev.   -    

 

4.12.6 Testing Environment 

 

 Each test case will include the following information: 
 

o Test Description 

o Tester Name 

o Test Date 
o Software Version tested 

o Test Method used 

o Tool(s) Version(s) used (if applicable) 

 
 If appropriate (i.e., special equipment required) the test procedure will describe 

the specific bench configuration, test tool configuration, and any special 

instruction required to insure the tester sets up the correct environment.  

 If appropriate (i.e., conformed unit, or special test rig) the test procedure will 
describe the following to insure the proper equipment and rig configuration is 

achieved before testing 

  

o P/N of test unit 

o S/N of test unit 
o Identification of special test rig components and gear 

 

 SQA person will audit the test setup before testing. 

 Once a test rig or environment has been conformed, the apparatus will be “Locked 
Down” for the time required to complete the test procedure.  (“Locked Down” means 

the equipment and test gear involved in the test setup is physically or electronically 

secured from other personnel changing the environment.) 

 

4.12.7 Test Execution 

 

 On-Target testing consists of normal system level test such as TSO, normal flight 

test simulation and DO-178B requirements based test.  Additionally, special test 

cases will be created to exercise areas of the software where normal system level 
tests do not obtain full coverage, or configured options on the standard product may 

not be enabled.  All system level testing will be identified in the software trace matrix 

for evaluation and review. 

 Specific test procedures will be designed to exercise timing interfaces, critical data 
functions and configured options.  Validation of the software at the low level will be 

achieved by capturing artifacts using lab equipment with electronic output.  These 

resultant artifacts will be formally reviewed by an independent source and put under 

CM control.  Data from these tests will also be used in verification by analysis efforts 
as required based on total test coverage analysis. 



Software Verification Plan 

 

 
 

<Doc Number> Page 131 of 188 Rev.   -    

 

 Each test case will include the following test run information: 

 

o Test Description 
o Tester Name 

o Test Date 

o software Version tested 

o Test Method used 
o Tool(s) Version(s) used (if applicable) 

 

 Testing will commence once the following are complete: 

o All software requirements are reviewed and under CM control with no 
outstanding (non-deferrable) PRs 

o All Test Cases/Procedures are reviewed and under CM control with no 

outstanding (non-deferrable) PRs 

o All software source files are reviewed and under CM control with no 
outstanding (non-deferrable) PRs 

o All traceability data is reviewed and under CM control with no outstanding 

(non-deferrable) PRs 

o The final software build has been created and is under CM control 

 
 All discrepancies found as a result from formal testing will be handled in one of the 

following ways: 

 

o Analysis determines the test case/procedure can be modified to produce a 
more complete result.  In this case, an PR is written, and the test 

case/procedure is updated, reviewed and the test re-executed.  The new 

resultant artifacts are then used in the formal data analysis. 

o Analysis determines the deficiency cannot be mitigated by any formal test 
means as described above.  In this case, the deficiency is formally 

documented in the test results.   

 

 All gaps in test coverage results will be documented in the test results document 

deficiencies section.  Additional analysis of the software will commence on the areas 
where the deficiencies are identified.  The analysis findings will be documented as 

additional coverage information in the results document.   

 

4.12.8 Test Results Verification 

 

When all testing is complete, and the results have been evaluated and documented, the 

formal findings will be formally reviewed and put under CM control.  Any issues found in the 

formal review will be documented.  If the issues found warrant a change in the test 
case/procedure, a PR will be used to implement this change.  If this PR is not deferrable, the 

software life cycle will be used to correct any artifacts and re-execute the test procedure 

and re-evaluated the generated results.  Refer to Peer Review Process of test cases. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 132 of 188 Rev.   -    

 

5.0 VERIFICATION ENVIRONMENT 

 

The Software verification environment includes a block diagram of the testing environment, 
description of the equipment for testing, the testing and analysis tools and the guidelines for 

applying the tools and hardware test equipment.  It also identifies the target test 

environment including any emulation. 

5.1 Test Environment Description 

<Describe the test environment here> 

 

5.1.1 Block Diagram of Test Environment 

 

5.2 List of Test Equipment Used To Verify Software 

 

Description Manufacturer & Model No. 

  

  

  

5.3 Testing and Analysis Tools 

 

Description Manufacturer & Model No. 

  

  

 

5.3.1 Guidelines for Applying the Tools and Hardware Test Environment 

<Guidelines Here> 

 

  



Software Verification Plan 

 

 
 

<Doc Number> Page 133 of 188 Rev.   -    

 

5.4 Test Procedure Structure 

 

1. Test Case & Procedure Identifier 
 

2. Test Objective 

 

3. Test Coverage 
 

Test Case No. Test Type Requirement(s) Tested 
 

Case 001 Normal 000.0000 

Case 002 Normal / Robust 000.0000 

000.0000 
000.0000 

Case 003 Normal 000.0000 

Case 004 Normal 000.0000 

Case 005 Normal 000.0000 

Case 006 Normal 000.0000 

Case 007 Robust 000.0000 

 

4. Assumptions 

 
5. Constraints 

 

6. Special Requirements 

 
7. Execution Summary 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 134 of 188 Rev.   -    

 

Setup Identification 

 

Test Date:   __________________________________________________  
 

Test Operator:   __________________________________________________  

 

Test Support Equipment:   __________________________________________________  
 

 

 

Test Setup:  __________________________________________________  
 

 

 

Software Under Test:  __________________________________________________  
 

Comments and Notes 

 

 

 
Procedure Results 

 

Check FAIL if the results of any verify statement in this test procedure produced a fail.  

Otherwise, check PASS. 
 

PASS _____ FAIL _____ 

 

Optional Comment: 
_____________________________________________________________________ 

 

Signatures 

 

Executed By:   _____________________________________________________  
 

Case and Procedure Descriptions 

 

Case 001: Valid Set Command 
 

 

 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 135 of 188 Rev.   -    

 

6.0 TRANSITION CRITERIA 

 

Transition criteria for entering the verification process relative to the planning and 
development processes are included in Section 5.  Specific verification activities are carried 

out when a software data item completes any phase of development. The criterion for 

beginning a verification activity is the indication, by the engineer responsible for the 

production of the data item, that the item is ready for verification.  In addition, the item is 
CM controlled. For-Credit testing cannot be started until the code being tested has been 

formally reviewed. 

 

Section 4 addresses transition criteria for the following: 
 

 Conditions necessary to consider the verification closed and successful for the 

Planning Process. 

 Conditions necessary to consider the verification closed and successful for the 
Requirements Process. 

 Conditions necessary to consider the verification closed and successful for the Design 

Process. 

 Conditions necessary to consider the verification closed and successful for the 

Software Coding Process. 
 Conditions necessary to consider the verification closed and successful for the 

Integration Process. 

 Conditions necessary to consider the verification closed and successful for the 

Testing of Outputs of the Integration Process. 
 Conditions necessary to consider the verification closed and successful for the 

Verification of Verification Process Outputs.  



Software Verification Plan 

 

 
 

<Doc Number> Page 136 of 188 Rev.   -    

 

7.0 PARTITIONING CONSIDERATIONS 

Partitioning established that two or more components are protected from the actions of each 

other. As a definition, partitioning consists of one of the following:  

Strict Protection  

Component X can be said to be strictly protected from Y if any behavior of Y has no effect 

on the operation of X. An example of this type of protection would be two components 

within a line replaceable unit (LRU) with no communication between them. 

Safety Protection 

Component X can be said to be safely protected from Y if any behavior of Y has no effect on 

the safety properties of X. An example of this would be the use of a Cyclic Redundancy Code 

around data passed through a non-assured data link. The only safety property of 
importance would be the corruption of data. Loss of data could not be a safety property of 

interest in this example. This approach requires the identification of the safety properties 

that can be derived from the safety analysis/hazard analysis. 

Two-way protection  

Component X is protected from Y, and Y is protected from X. An example of this type of 

protection would be two components within a line replaceable unit (LRU) with no 

communication between them. 

One-way protection  

Component X is protected from Y, but component Y is not protected from X.  An example of 
this would be a computer that can only receive ARINC 429 data from the primary system. In 

this case, the primary software could affect the maintenance software but the maintenance 

software would not be able to interfere with the primary software. 

7.1 Guidelines for Evaluating Protection 

A component can effect the operation of other components by affecting the temporal (time) 

behavior or the data (space) of the other components. The project team first categorizes 

the type of protection claimed according to the definitions specified above. If the project 

team’s approach to protection is to separate (partition) components in both time and space, 
then the project team is required to demonstrate the partitioning in time and space between 

the two components to demonstrate either one-way or two-way strict protection.   

However, if the project team proposes to use safety protection, then the team must identify 

all the safety properties of time and space which could be affected and then demonstrate 

that the safety properties have not been violated.  In evaluating time properties, the 
following items are considered by SQE as appropriate to the design: 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 137 of 188 Rev.   -    

 

7.1.1 Time 

The following items can affect the time parameters of a program and need to be 

investigated to demonstrate that they either have no effect or that their effect is acceptable 
based on the identified safety parameters. This list is not intended to be all inclusive. 

 Interrupts and interrupt inhibits (software and hardware) 

 Loops (e.g. infinite loops) 

 Real time correspondence: 

1) frame overrun 

2) interference with real time clock 

3) counter/timer corruption 

4) pipeline and caching 

 Control Flow defects (timing aspects): 

1) Incorrect branching into a partition or protected area 

2) Corruption of a jump table (double duty?) 

3) Corruption of the processor sequence control 

4) Corruption of return addresses 

5) Unrecoverable hardware state corruption (e.g., mask and halt) 

6) Memory, I/O contention 

7) Data flags 

 Software traps: 

1) Divide by zero 

2) Un-implemented instruction 

3) Specific software interrupt instructions 

4) Unrecognized instruction 

5) Recursion termination 

6) Indirect non terminating call loops 

7) Holdup commands (performance hedges) 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 138 of 188 Rev.   -    

 

7.1.2 Space 

The following items can affect the space parameters of a program and need to be 

investigated to demonstrate that they either have no effect or that their effect is acceptable 
based on the identified safety parameters. This list is not intended to be all inclusive. 

 Loss of input or output data 

 Corruption of input or output data 

 Corruption of internal data: 

1) Direct or indirect memory writes 

2) Table overrun 

3) Incorrect linking 

4) Calculations involving time 

5) Delayed data 

6) Program overlays 

7) Buffer sequence (double jeopardy) 

 External device interaction (e.g. displays): 

1) Loss of data (e.g. overwritten) 

2) Delayed data 

3) Incorrect data (unlikely across systems) 

4) Protocol halts (e.g. ack nacks) 

 Control Flow defects (space aspects): 

1) Incorrect branching into a partition or protected area 

2) Corruption of a jump table (double duty?) 

3) Corruption of the processor sequence control 

4) Corruption of return addresses 

5) Unrecoverable hardware state corruption (e.g., mask and halt) 

7.2 Project Specific Partitioning  

The project will not use partitioning techniques.  All source code will be developed and 

verified in accordance with applicable DO-178C objectives. 



Software Verification Plan 

 

 
 

<Doc Number> Page 139 of 188 Rev.   -    

 

8.0 COMPILER ASSUMPTIONS  

The C language was chosen because it is an industry standard for embedded applications.  

This makes a wide variety of code development tools available for use.  The nature of the C 
language is such that any ANSI-C compatible compiler for the target processor will be 

acceptable.  If compiler optimizations are used, they are specifically accounted for in the 

software verification overview in the program’s Plan for Software Aspects of Certification.  In 

addition, the project team relies on the DO-178C process to ensure the validity of the 
compiler. 

 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 140 of 188 Rev.   -    

 

9.0 REVERIFICATION GUIDELINES 

Once a modification has been implemented into the source code, reverification guidelines 

are implemented.  These guidelines include reviews, inspections, walkthroughs, analysis, 
and tests of software.  They are divided into three specific tasks: 

9.1 Inspect, Review, or Analyze Changes 

This task includes many of the non-testing aspects of the verification process (i.e., reviews, 

analysis, inspections, and walkthroughs). In this task, the software life cycle data (e.g., 
requirements, design, architecture, code, test cases, and procedures) are reviewed for 

accuracy and consistency. 

9.2 Perform Regression Testing 

Regression testing is another aspect of the verification process that is addressed when 
software changes. Software progresses through several versions before one is ready for 

release.  Regression testing is performed on each version of software.  Any specific change 

can (a) fix only the problem that was reported, (b) fail to fix the problem, (c) fix the 

problem but adversely affect some other function or aspect that was previously working, or 
(d) fail to fix the problem and adversely affect something else.  Since it is not always 

possible to re-run every test on every version of software, analysis is used to determine 

which tests should be run on the interim versions.  The following “types” of tests are 

performed during the regression testing process: 

 Bug verification tests – run to verify that the fix for a bug addresses the problem and 
doesn’t introduce additional problems. 

 Build acceptance tests – tests run to make sure that a build is ready to go to the test 

team. 

 Regression test pass with a regression test suite – running regressions tests that 
have been automated. 

 Regression test pass on closed bugs – rerunning the regression tests even after the 

bugs have been “fixed”.  Includes robustness tests. 

 Regression test pass without a test suit – manually running regression tests. 
Includes robustness tests. 

 

It is a standard practice that the most important tests are run first in order to quickly 

validate operation and assess risks. In some cases, regression testing may be run in parallel 

with other development activities. Generally, a test that has passed twice should be 
considered as regressed, unless the code has been frequently changed.  A test that has 

failed once should not be re-executed unless the developer informs the test team that the 

defect has been fixed.  

For tests that have already passed once, the second execution is  reserved for the final 
regression pass, unless frequent changes to the code indicate otherwise.   In every case, 

the change impact analysis must lead to a set of regression tests that are unique to the set 

of changes being proposed.  All of these identified regression tests are run on the final 

version of the software prior to release. 



Software Verification Plan 

 

 
 

<Doc Number> Page 141 of 188 Rev.   -    

 

9.3 Perform Other Verification 

In addition to the inspections, reviews, analysis, and regression testing, other types of 

verification activities are performed.  Some of these activities are performed at the software 
level, some at the system level, and some at the integrated system level.  For example, 

requirements-based tests, acceptance tests, bench tests, structural coverage analysis, etc. 

may need to be performed.  These additional verification activities will vary, depending on 

the extent of the change and the function(s) affected.  In all cases, these tests are planned 
after the change impact analysis is performed and agreed upon. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 142 of 188 Rev.   -    

 

10.0 PREVIOUSLY DEVELOPED SOFTWARE 

Previously developed software includes software that was developed under a different 

standard, such as MIL-STD-2167A.  It also includes software that was developed under a 
previous revision of DO-178C.  When this occurs, certification credit may be requested.   

There was no previously developed software used in the program.  All software was 

developed under DO-178C objectives. 

 
 



Software Verification Plan 

 

 
 

<Doc Number> Page 143 of 188 Rev.   -    

 

11.0 MULTIPLE VERSION DISSIMILIAR SOFTWARE 

Multiple version dissimilar software is a set of two or more programs developed separately 

to satisfy the same functional requirements.  This has proven to be an effective method for 
implementing software redundancy.  Errors specific to one of the versions are detected by 

comparison of the multiple outputs.   

This project does not contain multiple version dissimilar software. 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 144 of 188 Rev.   -    

 

APPENDIX A: SOFTWARE PLANNING REVIEW CHECKLIST 

 

The complete Software Planning Review objectives and activities checklist is provided below.  
The Software Planning Review Checklist is automatically leveled by the Qualtech Compliance 

Management System.  Each checklist includes the applicable objectives, activities and 

lifecycle data of a particular design assurance level.  The checklists also include the 

applicable control categories. 
 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
The activities of the software development processes and integral 
processes of the software life cycle that will address the system 
requirements and software level(s) have been defined. 

4.1a, 4.3 

6 
The software life cycle(s), including the inter-relationships between the 
processes, their sequencing, feedback mechanisms, and transition criteria 
have been determined. 

4.1b, 4.3 

7 
The software life cycle environment, including the methods and tools to be 
used for the activities of each software life cycle process have been 
selected. 

4.1c 

8 
Additional considerations, such as those discussed in section 12, have been 
addressed. 

4.1d 

9 
Software development standards consistent with the system safety 
objectives for the software to be produced have been defined. 

4.1e 

10 
Software plans that comply with subsection 4.3 and section 11 have been 
produced. 

4.1f, 4.6 

11 Development and revision of the software plans have been coordinated. 4.1g, 4.6 

12 Archive, retrieval, and release have been established. 7.2.7 

13 
The means of compliance has been proposed and FAA ACO is in agreement 
with the Plan for Software Aspects of Certification is obtained. 

9.1 

14 
The software plans were developed at a point in time in the software life 
cycle that provided timely direction to the personnel performing the 
software development processes and integral processes. 

4.2a 

15 
The software development standards to be used for the project have been 
defined or selected. 

4.2b 



Software Verification Plan 

 

 
 

<Doc Number> Page 145 of 188 Rev.   -    

 

ID Checklist Item Reference 

16 
Methods and tools have been chosen that provide error prevention in the 
software development processes. 

4.2c 

17 
The software planning process provides coordination between the software 
development and integral processes to provide consistency among 
strategies in the software plans. 

4.2d 

18 
The software planning process includes a means to revise the software 
plans as a project progresses. 

4.2e 

19 
If multiple-version dissimilar software is used in a system, the software 
planning process includes the methods and tools to achieve the error 
avoidance or detection necessary to satisfy the system safely objectives. 

4.2f 

20 
The software plans and software development standards are under change 
control and reviews of them completed. 

4.2g 

21 
If deactivated code is planned, the software planning process describes 
how the deactivated code (selected options, flight test) will be defined, 
verified and handled to achieve system safety objectives. 

4.2h 

22 
If user-modifiable code is planned, the process, tools, environment, and 
data items substantiating the guidelines of paragraph 5.2.3 are specified in 
the software plans and standards. 

4.2i 

23 
A means for detecting object code that is not directly traceable to the 
source code and a means to ensure its verification coverage are defined. 

4.4.2b 

24 
The SCM process provides a defined and controlled configuration of the 
software throughout the software life cycle. 

7.1a 

25 
The SCM process provides the ability to consistently replicate the 
Executable Object Code for software manufacturing or to generate it in 
case of a need for investigation or modification. 

7.1b 

26 
The SCM process provides control of process inputs and outputs during the 
software life cycle that ensures consistency and repeatability of process 
activities. 

7.1c 

27 
The SCM process provides a known point for review, assessing status, and 
change control by control of configuration items and the establishment of 
baselines. 

7.1d 

28 
The SCM process provides controls that ensure problems receive attention 
and changes are recorded, approved, and implemented. 

7.1e 

29 
The SCM process provides evidence of approval of the software by control 
of the outputs of the software life cycle processes. 

7.1f 

30 
The SCM process provides an assessment of the software product 
compliance with requirements. 

7.1g 

31 
The SCM process ensures that secure physical archiving, recovery and 
control are maintained for the configuration items. 

7.1h 



Software Verification Plan 

 

 
 

<Doc Number> Page 146 of 188 Rev.   -    

 

ID Checklist Item Reference 

32 
A process exists that ensures that configuration identification will be 
established for the software life cycle data. 

7.2.1a 

33 

A process exists that ensures that configuration identification will be 
established for each configuration item, for each separately controlled 
component of a configuration item, and for combinations of configuration 
items that comprise a software product. 

7.2.1b 

34 
A process exists that ensures that configuration items will be configuration-
identified prior to the implementation of change control and traceability 
data recording. 

7.2.1c 

35 

A process exists that ensures that a configuration item will be 
configuration-identified before that item is used by other software life cycle 
processes, referenced by other software life cycle data, or used for 
software manufacture or software loading. 

7.2.1d 

36 

If the software product identification cannot be determined by physical 
examination (for example, part number plate examination), then a process 
exists that ensures that  Executable Object Code will contain configuration 
identification which can be accessed by other parts of the airborne system 
or equipment. 

7.2.1e 

37 

A process exists that ensures that baselines will be established for 
configuration items used for certification credit. (Intermediate baselines 
may be established to aid in controlling software life cycle process 
activities.) 

7.2.2a 

38 
A process exists that ensures that a software product baseline will be 
established for the software product and defined in the Software 
Configuration Index. 

7.2.2b 

39 
A process exists that ensures that baselines will be established in controlled 
software libraries (physical, electronic, or other) to ensure their integrity. 
Once a baseline is established, it will be protected from change. 

7.2.2c 

40 
A process exists that ensures that change control activities are followed 
when developing a derivative baseline from an established baseline. 

7.2.2d 

41 
A process exists that ensures that baselines will be traceable to the baseline 
from which it was derived. 

7.2.2e 

42 
A process exists that ensures that a configuration item will be traceable to 
the configuration item from which it was derived. 

7.2.2f 

43 
A process exists that ensures that each baseline or configuration item will 
be traceable either to the output it identifies or to the process with which it 
is associated. 

7.2.2g 

44 
A process exists that ensures that problem reports will be prepared that 
describes the process non-compliance with plans, output deficiency, or 
software anomalous behavior, and the corrective action taken. 

7.2.3a 



Software Verification Plan 

 

 
 

<Doc Number> Page 147 of 188 Rev.   -    

 

ID Checklist Item Reference 

45 

A process exists that ensures that problem reports will include 
configuration identification of affected configuration items(s) or definition 
of affected process activities, status reporting or problem reports, and 
approval and closure of problem reports. 

7.2.3b 

46 
A process exists that ensures that problem reports requiring corrective 
action of the software product or outputs of software life cycle processes 
invoke the change control activity. 

7.2.3c 

47 
The documented change control process will preserve the integrity of the 
configuration items and baselines by providing protection against their 
change. 

7.2.4a 

48 
The change control process ensures that any change to a configuration item 
requires a change to its configuration identification. 

7.2.4b 

49 

A process exists that ensures that changes to baselines and to configuration 
items under change control will be recorded, approved, and tracked. 
Problem reporting is related to change control, since resolution of a 
reported problem may result in changes to configuration items or 
baselines. 

7.2.4c 

50 

A process exists that ensures that software changes will be traced to their 
origin and the software life cycle processes repeated from the point at 
which the change affects their outputs. (For example, an error discovered 
at hardware/software integration, that is shown to result from an incorrect 
design, should result in design correction, code correction and repetition of 
the associated integral process activities.) 

7.2.4d 

51 
A process exists that ensures that throughout the change activity, software 
life cycle data affected by the change should be updated and records 
should be maintained for the change control activity. 

7.2.4e 

52 
The change review activity includes a confirmation that affected 
configuration items are configuration identified. 

7.2.5a 

53 
The change review activity includes an assessment of the impact on safety-
related requirements with feedback to the system safety assessment 
process. 

7.2.5b 

54 
The change review activity includes an assessment of the problem or 
change, with decisions for action to be taken. 

7.2.5c 

55 
The change review activity includes feedback of problem report or change 
impact and decisions to affected processes. 

7.2.5d 

56 
The status accounting activity includes reporting on configuration item 
identification, baseline identification, problem reporting status, change 
history, and release status. 

7.2.6a 

57 
The status accounting activity includes a definition of the data to be 
maintained and the means of recording and reporting status of this data. 

7.2.6b 



Software Verification Plan 

 

 
 

<Doc Number> Page 148 of 188 Rev.   -    

 

ID Checklist Item Reference 

58 
A process exists that ensures that software life cycle data associated with 
the software product will be retrievable from the approved source. 

7.2.7a 

59 

Procedures have been established to ensure the integrity of the stored data 
(regardless of medium of storage) by: 
 
1. Ensuring that no unauthorized changes can be made. 
2. Selecting storage media that minimize regeneration errors or 
deterioration. 
3. Exercising and/or refreshing archived data at a frequency compatible 
with the storage life of the medium. 
4. Storing duplicated copies in physically separate archives that minimize 
the risk of loss in the event of a disaster. 

7.2.7b 

60 
The duplication process will be verified to produce accurate copies and 
procedures exist that ensure error-free copying of the Executable Object 
Code. 

7.2.7c 

61 

A process exists that ensures that configuration items will be identified and 
released prior to use of software manufacture and the authority for their 
release should be established. As a minimum, the components of the 
software product loaded into the airborne system or equipment (which 
includes the Executable Object code and may also include associated media 
for software loading) will be released. 

7.2.7d 

62 
Data retention procedures have been established to satisfy airworthiness 
requirements and enable software modification. 

7.2.7e 

63 All Review checklist items have been addressed and marked? NA 

64 All action items have been entered into QCMS? NA 

65 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 149 of 188 Rev.   -    

 

APPENDIX B: SOFTWARE REQUIREMENTS REVIEW CHECKLIST 

 

The complete Software Requirements Review objectives and activities checklist is provided 
below.  The Software Requirements Review Checklist is automatically leveled by the 

Qualtech Compliance Management System.  Each checklist includes the applicable 

objectives, activities and lifecycle data of a particular design assurance level.  The checklists 

also include the applicable control categories. 
 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 High-level requirements have been developed. 5.1.1a 

6 
Derived high-level requirements have been defined and have been 
indicated to the System Safety Assessment Process. 

5.1.1b 

7 

System functions to be performed by the software have been defined and 
the functional, performance, and safety-related requirements of the system 
are satisfied by the software high-level requirements, and that derived 
requirements and the reason for their existence have been correctly 
defined. 

6.3.1a 

8 
Each high-level requirement is accurate, unambiguous and sufficiently 
detailed and the requirements do not conflict with each other. 

6.3.1b 

9 
No conflicts exist between the high-level requirements and the 
hardware/software features of the target computer, especially, system 
response times and input/output hardware. 

6.3.1c 

10 Each high-level requirement can be verified. 6.3.1d 

11 
The Software Requirements Standard were followed during the software 
requirements process and deviations from the standards are justified. 

6.3.1e 

12 
The functional, performance, and safety-related requirements of the 
system that are allocated to software were developed into the software 
high-level requirements. 

6.3.1f 

13 Configuration items have been identified. 7.2.1 

14 Baselines and traceability have been established. 7.2.2 

15 
Problem reporting, change control, change review, and configuration status 
accounting have been established. 

7.2.3  -  7.2.6 



Software Verification Plan 

 

 
 

<Doc Number> Page 150 of 188 Rev.   -    

 

ID Checklist Item Reference 

16 
The system functional and interface requirements that are allocated to 
software have been analyzed for ambiguities, inconsistencies and 
undefined conditions. 

5.1.2a 

17 
Input to the software requirements process detected as inadequate or 
incorrect have been reported as feedback to the input source processes for 
clarification correction. 

5.1.2b 

18 
Each system requirement that is allocated to software has been specified in 
the high-level requirements. 

5.1.2c 

19 
High-level requirements that address system requirements allocated to 
software to preclude system hazards have been defined. 

5.1.2d 

20 
The high-level requirements conform to the Software Requirements 
Standards, and are verifiable and consistent. 

5.1.2e 

21 
The high-level requirements are stated in quantitative terms with 
tolerances where applicable. 

5.1.2f 

22 
The high-level requirements do not describe design or verification detail 
except for specified and justified design constraints. 

5.1.2g 

23 
Each system requirement allocated to software is traceable to one or more 
software high-level requirements. 

5.1.2h 

24 
Each high-level requirement is traceable to one or more system 
requirements, except for derived requirements. 

5.1.2i 

25 
Derived high-level requirements have been provided to the system safety 
assessment process. 

5.1.2j 

26 
High-level requirements and traceability to those high-level requirements 
have been verified. 

6.2a 

27 All Review checklist items have been addressed and marked? NA 

28 All action items have been entered into QCMS? NA 

29 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 151 of 188 Rev.   -    

 

APPENDIX C: SOFTWARE PRELIMINARY DESIGN REVIEW CHECKLIST 

 

The complete Software Preliminary Design Review objectives and activities checklist is 
provided below.  The Software Preliminary Design Review Checklist is automatically leveled 

by the Qualtech Compliance Management System.  Each checklist includes the applicable 

objectives, activities and lifecycle data of a particular design assurance level.  The checklists 

also include the applicable control categories. 
 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
The software architecture does not conflict with the high-level 
requirements, especially functions that ensure system integrity, for 
example, partitioning schemes. 

6.3.3a 

6 
The accuracy and behavior of the proposed algorithms have been verified, 
especially in the area of discontinuities. 

6.3.1g 

7 The software architecture was developed from the high-level requirements. 5.2.1a 

8 
A correct relationship exists between the components of the software and 
the architecture.  This relationship exists via data flow and control flow. 

6.3.3b 

9 
No conflicts exist in the architecture, especially initialization, asynchronous 
operation, synchronization and interrupts, between the software 
architecture and the hardware/software features of the target computer. 

6.3.3c 

10 
The software architecture can be verified (e.g., there are no unbounded 
recursive algorithms). 

6.3.3d 

11 

The Software Design Standards were followed during the software design 
process and deviations to the standards were justified, especially 
complexity restrictions and design constructs that would not comply with 
the system safety objectives. 

6.3.3e 

12 All Review checklist items have been addressed and marked? NA 

13 All action items have been entered into QCMS? NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 152 of 188 Rev.   -    

 

ID Checklist Item Reference 

14 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 153 of 188 Rev.   -    

 

APPENDIX D: SOFTWARE CRITICAL DESIGN REVIEW CHECKLIST 

The complete Software Critical Design Review objectives and activities checklist is provided 

below.  The Software Critical Design Review Checklist is automatically leveled by the 
Qualtech Compliance Management System.  Each checklist includes the applicable 

objectives, activities and lifecycle data of a particular design assurance level.  The checklists 

also include the applicable control categories. 

 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
The software low-level requirements satisfy the software high-level 
requirements and derived requirements and the design basis for their 
existence were correctly defined. 

6.3.2a 

6 
Each low-level requirement is accurate and unambiguous and the low-level 
requirements do not conflict with each other. 

6.3.2b 

7 

No conflicts exist between the software requirements and 
hardware/software features of the target computer, especially, the use of 
resources (such as bus loading), system response times, and input/output 
hardware. 

6.3.2c 

8 Each low-level requirements can be verified. 6.3.2d 

9 
The Software Design Standards were followed during the software design 
process, and deviations from the standards were justified. 

6.3.2e 

10 
The high-level requirements and derived requirements were developed 
into the low-level requirements. 

6.3.2f 

11 
The accuracy and behavior of the proposed algorithms, especially in the 
area of discontinuities have been verified. 

6.3.2g 

12 Low-level requirements were developed from high-level requirements. 5.2.1a 

13 
Derived low-level requirements have been defined and provided to the 
System Safety Assessment Process. 

5.2.1b 

14 Partitioning beaches have been prevented or isolated. 6.3.3f 

15 
Low-level requirements and software architecture developed during the 
software design process conform to the Software Design Standards and are 
traceable, verifiable and consistent. 

5.2.2a 



Software Verification Plan 

 

 
 

<Doc Number> Page 154 of 188 Rev.   -    

 

ID Checklist Item Reference 

16 
Derived requirements have been defined and analyzed to ensure that the 
high level requirements are not compromised. 

5.2.2b 

17 

Software design process activities could introduce possible modes of failure 
into the software or, conversely, preclude others.  The use of partitioning 
or other architectural means in the software design may alter the software 
level assignment for some components of the software. In such cases, 
additional data has been defined as derived requirements and proved the 
system safely assessment process. 

5.2.2c 

18 
Control flow and data flow have been monitored when safety-related 
requirements dictate (e.g., watchdog timers, reasonableness-checks and 
cross-channel comparisons). 

5.2.2d 

19 
Responses to failure conditions are consistent with the safety-related 
requirements. 

5.2.2e 

20 

Inadequate or incorrect inputs detected during the software design process 
have been provided to either the system life cycle process, the software 
requirements process, or the software planning process as feedback for 
clarification or correction. 

5.2.2f 

21 All Review checklist items have been addressed and marked? NA 

22 All action items have been entered into QCMS? NA 

23 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 155 of 188 Rev.   -    

 

APPENDIX E: SOFTWARE CODE REVIEW CHECKLIST 

 

The complete Software Code Review objectives and activities checklist is provided below.  
The Software Code Review Checklist is automatically leveled by the Qualtech Compliance 

Management System.  Each checklist includes the applicable objectives, activities and 

lifecycle data of a particular design assurance level.  The checklists also include the 

applicable control categories. 
 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
Source Code has been developed that is traceable, verifiable, consistent 
and correctly implements low-level requirements. 

5.3.1a 

6 
The Source Code is accurate and complete with respect to the software 
low-level requirements, and no Source Code implements and 
undocumented function. 

6.3.4a 

7 
The Source Code matches the data flow and control flow defined in the 
software architecture. 

6.3.4b 

8 
The Source Code does not contain statements and structures that cannot 
be verified and the code does not have to be altered to test it. 

6.3.4c 

9 
The Software Code Standards were followed during the development of the 
code, especially complexity restrictions and code constraints that would be 
consistent with the system safety objectives. 

6.3.4d 

10 The software low-level requirements were developed into Source Code. 6.3.4e 

11 

Verification evidence exists that ensures the correctness and consistency of 
the Source Code, including stack usage, fixed point arithmetic overflow and 
resolution, resource contention, worst-case execution timing, exception 
handling, use of uninitialized variables of constants, unused variables or 
constraints, and data corruption due to task or interrupt conflicts. 

6.3.4f 

12 Software load control has been established. 7.2.8 

13 Software life cycle environment control has been established. 7.2.9 

14 
The Source Code implements the low-level requirements and conforms to 
the software architecture. 

5.3.2a 



Software Verification Plan 

 

 
 

<Doc Number> Page 156 of 188 Rev.   -    

 

ID Checklist Item Reference 

15 The Source Code conforms to the Software Code Standards. 5.3.2b 

16 The Source Code is traceable to the Design Description. 5.3.2c 

17 

Inadequate or incorrect inputs detected during the software coding process 
have been provided to the software requirements process, software design 
process or software planning process as feedback for clarification or 
correction. 

5.3.2d 

18 

The results of the traceability analyses and requirements-based and 
structural coverage analyses show that each software requirement is 
traceable to the code that implements it and to the review, analysis, or test 
case that verifies it. 

6.2b 

19 

Software load control, which includes procedures for part numbering and 
media identification that identify software configurations that are intended 
to be approved for loading into the airborne system or equipment, has 
been established. 

7.2.8a 

20 

Software load control, which includes whether the software is delivered as 
an end item or is delivered installed in the airborne system or equipment, 
records should be kept that confirm software compatibility with the 
airborne system or equipment hardware, has been established. 

7.2.8b 

21 
Configuration identification has been established for the Executable Object 
Code (or equivalent) of the tools used to develop, control, build, verify, and 
load the software. 

7.2.9a 

22 
The SCM process for controlling qualified tools, complies with the 
objectives associated with Control Category 1 or 2 data. 

7.2.9b 

23 

The SCM process for controlling the Executable Object Code (or equivalent) 
of tools used to build and load the software (for example, compliers, 
assemblers, linkage editors) complies with the objectives associated with 
Control Category 2 data, as a minimum. 

7.2.9c 

24 All Review checklist items have been addressed and marked? NA 

25 All action items have been entered into QCMS? NA 

26 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 157 of 188 Rev.   -    

 

APPENDIX F: INTEGRATION REVIEW CHECKLIST 

 

The complete Integration Review objectives and activities checklist is provided below.  The 
Integration Review Checklist is automatically leveled by the Qualtech Compliance 

Management System.  Each checklist includes the applicable objectives, activities and 

lifecycle data of a particular design assurance level.  The checklists also include the 

applicable control categories. 
 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
Verification evidence that the Executable Object Code has been successfully 
loaded into the target hardware for hardware / software integration has 
been produced. 

5.4.1a 

6 
The test cases have been accurately developed into test procedures and 
expected results. 

6.3.6b 

7 Output of software integration process is complete and correct. 6.3.5 

8 Executable Object Code is compatible with target computer. 6.4.3a 

9 
Verification evidence exists that the Executable Object Code can be 
generated from the Source Code and linking and loading data. 

5.4.2a 

10 
Verification evidence exists that the software has been successfully loaded 
into the target computer for hardware/software integration. 

5.4.2b 

11 

Inadequate or incorrect inputs detected during the integration process 
have been provided to the software requirements process, the software 
design process, the software coding process or the software planning 
process as feedback for clarification or correction. 

5.4.2c 

12 

Software integration testing has been performed to verify the 
interrelationships between software requirements and components and to 
verify the implementation of the software requirements and software 
components within the software architecture. 

6.4 

13 
Hardware/Software integration testing has been performed to verify 
correct operation of the software in the target computer environment. 

6.4 

14 
Low-level testing has been performed to verify the implementation of 
software low-level requirements. 

6.4 



Software Verification Plan 

 

 
 

<Doc Number> Page 158 of 188 Rev.   -    

 

ID Checklist Item Reference 

15 All Review checklist items have been addressed and marked? NA 

16 All action items have been entered into QCMS? NA 

17 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 159 of 188 Rev.   -    

 

APPENDIX G: SOFTWARE VERIFICATION REVIEW CHECKLIST 

The complete Software Verification Review objectives and activities checklist is provided 

below.  The Software Verification Review Checklist is automatically leveled by the Qualtech 
Compliance Management System.  Each checklist includes the applicable objectives, 

activities and lifecycle data of a particular design assurance level.  The checklists also 

include the applicable control categories. 

 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
The test results have been verified to be correct and discrepancies between 
actual and expected results are explained. 

6.3.6c 

6 Executable Object Code complies with low-level requirements. 6.4.2.1, 6.4.3 

7 Executable Object Code complies with high-level requirements. 6.4.2.1, 6.4.3 

8 Executable Object Code is robust with low-level requirements. 6.4.2.2, 6.4.3 

9 Executable Object Code is robust with high-level requirements. 6.4.2.2, 6.4.3 

10 Test coverage of high-level requirements has been achieved. 6.4.4.1 

11 Test coverage of low-level requirements has been achieved. 6.4.4.1 

12 
Test coverage of software structure (modified condition/decision coverage) 
has been achieved. 

6.4.4.2a, 
6.4.4.2b 

13 Test coverage of software structure (decision coverage) has been achieved. 
6.4.4.2a, 
6.4.4.2b 

14 
Test coverage of software structure (statement coverage) has been 
achieved. 

6.4.4.2a, 
6.4.4.2b 

15 
Test coverage of software structure (data coupling and control coupling) 
has been achieved. 

6.4.4.2c 

16 
Software development processes and integral processes comply with 
approved software plans and standards. 

8.1a 

17 
The transition criteria for the software life cycle processes have been 
satisfied. 

8.1b 

18 
Communication and understanding between the applicant and the 
certification authority has been established and maintained. 

9.0 

19 Compliance substantiation has been provided. 9.2 



Software Verification Plan 

 

 
 

<Doc Number> Page 160 of 188 Rev.   -    

 

ID Checklist Item Reference 

20 
If the code tested is not identical to the airborne software, those 
differences have been specified and justified. 

6.2c 

21 

When it was not possible to verify specific software requirements by 
exercising the software in a realistic test environment, other means were 
provided and their justification for satisfying the software verification 
process objectives are recorded in the Software Verification Results. 

6.2d 

22 
Deficiencies and errors discovered during the software verification process 
have been reported to the software development processes for clarification 
and correction. 

6.2e 

23 

Software integration testing has been performed to verify the 
interrelationships between software requirements and components and to 
verify the implementation of the software requirements and software 
components within the software architecture. 

6.4 

24 
Hardware/Software integration testing has been performed to verify 
correct operation of the software in the target computer environment. 

6.4 

25 
Low-level testing has been performed to verify the implementation of 
software low-level requirements. 

6.4 

26 

Objective evidence exists that normal range test cases were performed that 
demonstrate the ability of the software to respond to normal inputs and 
conditions which include real and integer input variables were exercised 
using valid equivalence classes and boundary values. 

6.4.2.1a 

27 

Objective evidence exists that normal range test cases were performed that 
demonstrate the ability of the software to respond to normal inputs and 
conditions which include for time-related functions, such as filters, 
integrators and delays, multiple iterations of the code were performed to 
check the characteristics of the function in context. 

6.4.2.1b 

28 

Objective evidence exists that normal range test cases were performed that 
demonstrate the ability of the software to respond to normal inputs and 
conditions which include for state transitions, test cases were developed to 
exercise the transitions possible during normal operation. 

6.4.2.1c 

29 

Objective evidence exists that normal range test cases were performed that 
demonstrate the ability of the software to respond to normal inputs and 
conditions which include for software requirements expressed by logic 
equations, the normal range test cases verified the variable usage and the 
Boolean operators. 

6.4.2.1d 



Software Verification Plan 

 

 
 

<Doc Number> Page 161 of 188 Rev.   -    

 

ID Checklist Item Reference 

30 

Objective evidence exists that robustness test cases were performed that 
demonstrate the ability of the software to respond to abnormal inputs and 
conditions which include c. The possible failure modes of the incoming data 
should be determined, especially complex, digital data strings from an 
external system. 

6.4.2.2a 

31 

Objective evidence exists that robustness test cases were performed that 
demonstrate the ability of the software to respond to abnormal inputs and 
conditions which included for loops where the loop count is a computed 
value, test cases were developed to attempt to compute out-of-range loop 
count values, and thus demonstrate the robustness of the loop-related 
code. 

6.4.2.2a 

32 

Objective evidence exists that robustness test cases were performed that 
demonstrate the ability of the software to respond to abnormal inputs and 
conditions: Real and integer variables were exercised using equivalence 
class selection of invalid values. 

6.4.2.2a 

33 
Objective evidence exists that robustness test cases were performed that 
demonstrate the ability of the software to respond to abnormal inputs and 
conditions:  System initialization was exercised during abnormal conditions. 

6.4.2.2a 

34 

Objective evidence exists that robustness test cases were performed that 
demonstrate the ability of the software to respond to abnormal inputs and 
conditions: A check was made to ensure that protection mechanisms for 
exceeded frame times respond correctly. 

6.4.2.2a 

35 

Objective evidence exists that robustness test cases were performed that 
demonstrate the ability of the software to respond to abnormal inputs and 
conditions: For time or time-related functions, such as filters, integrators 
and delays, test cases were developed for arithmetic overflow protection 
mechanisms. 

6.4.2.2a 

36 

Objective evidence exists that robustness test cases were performed that 
demonstrate the ability of the software to respond to abnormal inputs and 
conditions: For state transitions, test cases were developed to provoke 
transitions that are not allowed by the software requirements. 

6.4.2.2a 

37 

Objective evidence exists that for shortcomings in requirements-based test 
cases or procedures, the test cases were supplemented or tested 
procedures changed to provide the missing coverage. The method(s) used 
to perform the requirements-based coverage analysis may need to be 
reviewed.) 

6.4.4.3a 



Software Verification Plan 

 

 
 

<Doc Number> Page 162 of 188 Rev.   -    

 

ID Checklist Item Reference 

38 
Objective evidence exists that for shortcomings in software requirements, 
the software requirements were modified and additional test cases 
developed and test procedures executed. 

6.4.4.3b 

39 
Objective evidence exists that for dead code, the code was removed and an 
analysis performed to assess the effect and the need for re-verification. 

6.4.4.3c 

40 

Objective evidence exists that for deactivated code, there are a couple 
verifications:  For deactivated code which is not intended to be executed in 
any configuration used within an aircraft or engine, a combination of 
analysis and testing shows that the means by which such code could be 
inadvertently executed are prevented, isolated, or eliminated. For 
deactivated code which is only executed in certain configurations of the 
target computer environment, the operational configuration needed for 
normal execution of this code was established and additional test cases and 
test procedures developed to satisfy the required coverage objectives. 

6.4.4.3d 

41 

Objective evidence exists that the SQA process has take an active role in 
the activities of the software life cycle processes, and have those 
performing the SWA process enabled with the authority, responsibility and 
independence to ensure that the SQA process objectives are satisfied. 

8.2a 

42 
Objective evidence exists that the SQA process provides assurance that 
software plans and standards are developed and reviewed for consistency. 

8.2b 

43 
Objective evidence exists that the SQA process provided assurance that the 
software life cycle processes comply with the approved software plans and 
standards. 

8.2c 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 163 of 188 Rev.   -    

 

APPENDIX H: SOFTWARE CONFORMITY REVIEW CHECKLIST 

 

The complete Software Conformity Review objectives and activities checklist is provided 
below.  The Software Conformity Review Checklist is automatically leveled by the Qualtech 

Compliance Management System.  Each checklist includes the applicable objectives, 

activities and lifecycle data of a particular design assurance level.  The checklists also 

include the applicable control categories. 
 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 The Review Evaluator has been identified and added to this checklist? NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
A conformity review of the software product will be conducted following 
this review. 

8.1c, 8.3 

6 

If certification credit was sought for the use of previously developed 
software, objective evidence exists that the current software product 
baseline is traceable to the previous baseline and the approved changes to 
that baseline. 

8.3i 

7 
Planned life cycle process activities for certification credit, including the 
generation of software life cycle data, have been completed and records of 
their completion are retained. 

8.3a 

8 
Software life cycle data developed from specific system requirements, 
safety-related requirements, or software requirements are traceable to 
those requirements. 

8.3b 

9 
Software life cycle data complies with software plans and standards, and is 
controlled in accordance with the SCM Plan. 

8.3c 

10 
Problem reports comply with the SCM Plan, have been evaluated and have 
their status recorded. 

8.3d 

11 Software requirement deviations are recorded and approved. 8.3e 

12 
The Executable Object Code can be generated from the archived source 
code. 

8.3f 

13 
The approved software can be loaded successfully through the use of 
released instructions. 

8.3g 

14 
Problem reports deferred from a previous software conformity review are 
re-evaluated to determine their status. 

8.3h 



Software Verification Plan 

 

 
 

<Doc Number> Page 164 of 188 Rev.   -    

 

ID Checklist Item Reference 

15 
Planned software life cycle process activities for certification credit, 
including the generation of software life cycle data, have been completed 
and records of their completion are retained. 

8.3a 

16 
Software life cycle data developed from specific system requirements, 
safety-related requirements, or software requirements are traceable to 
those requirements. 

8.3b 

17 
Software life cycle data complies with software plans and standards, and is 
controlled in accordance with the SCM plan. 

8.3c 

18 
Problem reports comply with the SCM Plan, have been evaluated and have 
their status recorded. 

8.3d 

19 Software requirement deviations are recorded and approved. 8.3e 

20 
The Executable Object Code can be regenerated from the archived Source 
Code. 

8.3f 

21 
The approved software can be loaded successfully through the use of 
released instructions. 

8.3g 

22 
Problem reports deferred from a previous software conformity review are 
re-evaluated to determine their status. 

8.3h 

23 
If certification credit is sought for the use of previously developed software, 
the current software product baseline is traceable to the previous baseline 
and the approved changes to that baseline. 

8.3i 

24 All Review checklist items have been addressed and marked? NA 

25 All action items have been entered into QCMS? NA 

26 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 165 of 188 Rev.   -    

 

APPENDIX I: PEER REVIEW CHECKLIST - PLANNING 

 

The complete Planning Peer Review checklist is provided below.  This Checklist is 
automatically leveled by the Qualtech Compliance Management System.  Each checklist 

includes the applicable review and analysis criteria. 

 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 

The Review Evaluator has been identified and added to this checklist? 
 
The Review Evaluator is someone other than the person presenting the 
requirements, design or test data.  This documents the independence 
evidence. 

NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 

Has the Plan for Software Aspects of Certification (PSAC) been reviewed, 
with the review records recorded in DRMS, with all comments closed with 
approved modifications to the reviewed material to correct review 
deficiencies? 

NA 

6 
Has the Software Development Plan (SDP) been reviewed, with the review 
records recorded in DRMS, with all comments closed with approved 
modifications to the reviewed material to correct review deficiencies? 

NA 

7 
Has the Software Verification Plan (SVP) been reviewed, with the review 
records recorded in DRMS, with all comments closed with approved 
modifications to the reviewed material to correct review deficiencies? 

NA 

8 

Has the Software Configuration Management Plan (SCMP) been reviewed, 
with the review records recorded in DRMS, with all comments closed with 
approved modifications to the reviewed material to correct review 
deficiencies? 

NA 

9 
Has the Software Quality Assurance Plan (SQAP) been reviewed, with the 
review records recorded in DRMS, with all comments closed with approved 
modifications to the reviewed material to correct review deficiencies? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 166 of 188 Rev.   -    

 

ID Checklist Item Reference 

10 

Has the Software Requirements Standards document been reviewed, with 
the review records recorded in DRMS, with all comments closed with 
approved modifications to the reviewed material to correct review 
deficiencies? 

NA 

11 
Has the Software Design Standards document been reviewed, with the 
review records recorded in DRMS, with all comments closed with approved 
modifications to the reviewed material to correct review deficiencies? 

NA 

12 
Has the Software Coding Standards document been reviewed, with the 
review records recorded in DRMS, with all comments closed with approved 
modifications to the reviewed material to correct review deficiencies? 

NA 

13 

If there are any other plan documents for the project, have they been 
reviewed, with the review records recorded in DRMS, with all comments 
closed with approved modifications to the reviewed material to correct 
review deficiencies?  
(Identify the specific plan in the comment block) 

NA 

14 
Has the Plan for Software Aspects of Certification (PSAC) been signed and 
released into the project's Configuration Management system (CC1 or CC2 
as appropriate for the software level)? 

NA 

15 
Has the Software Development Plan (SDP) been signed and released into 
the project's Configuration Management system (CC1 or CC2 as appropriate 
for the software level)? 

NA 

16 
Has the Software Verification Plan (SVP) been signed and released into the 
project's Configuration Management system (CC1 or CC2 as appropriate for 
the software level)? 

NA 

17 
Has the Software Configuration Management Plan (SCMP) been signed and 
released into the project's Configuration Management system (CC1 or CC2 
as appropriate for the software level)? 

NA 

18 
Has the Software Quality Assurance Plan (SQAP) been signed and released 
into the project's Configuration Management system (CC1 or CC2 as 
appropriate for the software level)? 

NA 

19 
Has the Software Requirements Standards document been signed and 
released into the project's Configuration Management system (CC1 or CC2 
as appropriate for the software level)? 

NA 

20 
Has the Software Design Standards document been signed and released 
into the project's Configuration Management system (CC1 or CC2 as 
appropriate for the software level)? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 167 of 188 Rev.   -    

 

ID Checklist Item Reference 

21 
Has the Software Coding Standards document been signed and released 
into the project's Configuration Management system (CC1 or CC2 as 
appropriate for the software level)? 

NA 

22 

If there are any other plan documents for the project, have they been 
signed and released into the project's Configuration Management system 
(CC1 or CC2 as appropriate for the software level)?  
(Identify the specific plan in the comment block) 

NA 

23 
Does the Plan for Software Aspects of Certification (PSAC) content comply 
with DO-178C Section 11.1? 

NA 

24 
Does the Software Development Plan (SDP) content comply with DO-178C 
Section 11.2? 

NA 

25 
Does the Software Verification Plan (SVP) content comply with DO-178C 
Section 11.3? 

NA 

26 
Does the Software Configuration Management Plan (SCMP) content comply 
with DO-178C Section 11.4? 

NA 

27 
Does the Software Quality Assurance Plan (SQAP) content comply with DO-
178C Section 11.5? 

NA 

28 
Does the Software Requirements Standards document content comply with 
DO-178C Section 11.6? 

NA 

29 
Does the Software Design Standards document content comply with DO-
178C Section 11.7? 

NA 

30 
Does the Software Coding Standards document content comply with DO-
178C Section 11.8? 

NA 

31 Is each plan/standard internally consistent? NA 

32 
Is the system/software description between the various plans documents 
consistent?  That is, does the text in each plan document appear to be 
describing the same system? 

NA 

33 
Are the software development and verification life cycle activities defined 
consistently and in sufficient detail in the planning documents? 

NA 

34 

Are the inputs, activities, transition criteria (entrance and exit), and outputs 
specified for each process (as appropriate to the software level)? 
(This includes evaluating the consistency of the specifications between 
various plans, such as between the PSAC and SDP.) 

NA 

35 
Are all certification basis inputs cited in the plans? 
(For example, any project that has an FAA Issue Paper that affects software 
invoked on it should include that Issue Paper, along with DO-178C) 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 168 of 188 Rev.   -    

 

ID Checklist Item Reference 

36 
If the plans and standards are followed as written, would this ensure that 
all applicable objectives are met (including any additional objectives 
imposed by the certification authority)? 

NA 

37 
Are the plans and standards written with sufficient clarity to allow project 
personnel to follow them without further definition? 

NA 

38 
Are the interfaces and communications channels between the software and 
system development processes addressed in the plans, and are they clearly 
defined? 

NA 

39 
Are the interfaces and communications channels between the software 
development and system safety assessment process addressed in the plans, 
and are they clearly defined? 

NA 

40 Is all COTS software identified and addressed in the plans? NA 

41 Is user-modifiable software identified and addressed in the plans? NA 

42 Is field-loadable software identified and addressed in the plans? NA 

43 Is option-selectable software identified and addressed in the plans? NA 

44 
Is multiple-version dissimilar software identified and addressed in the 
plans? 

NA 

45 
Are any product service history clRAMS for certification credit identified 
and addressed in the plans? 

NA 

46 
Are any proposed alternative methods of compliance identified and 
addressed in the plans? 

NA 

47 
Are any other applicable additional considerations identified and addressed 
in the plans? 

NA 

48 
Is the appropriate level of structural coverage identified in the plans, and is 
the coverage analysis and resolution process clearly identified? 

NA 

49 
Do the plans clearly identify the development and/or verification tools to 
be used on the project? 

NA 

50 

Do the plans provide rationale for why the identified tools do or do not 
require qualification? 
(If any of these 3 questions are answered "no", the given tool does not 
require qualification: 
1. Can the tool insert and error into the airborne software or fail to detect 
an existing error within the scope of its intended usage? 
2. will the tool's output not be verified or confirmed by other verification 
activities, as specified in Section 6 of RTCA/DO-178C? 
3. Are processes of DO-178C eliminated, reduced, or automated by the use 
of the tool?) 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 169 of 188 Rev.   -    

 

ID Checklist Item Reference 

51 

Is service history claimed for the use of any tool? 
If yes, has the tool changed, or is the use of the tool different from the cited 
historical usage? 
Does the documented tool service history support the intended use of the 
tool? 

NA 

52 
Are any tools to be qualified supported with a tool qualification plan that 
conforms to the requirements in DO-178C Section 12.2 (either in the PSAC, 
or as a separate document)? 

NA 

53 

Are there any unique additional considerations associated with the project 
(such as unique alternative means or methods of compliance, unique 
approaches to development/verification/SCM/SQA, etc.) that do not 
comply with certification authority published policy or issues? 

NA 

54 
Is the use of a Real-Time Operating System (RTOS) planned? 
If yes, do the plans describe where the RTOS requirements are to be 
defined, and how they will be traced? 

NA 

55 
Is the use of a Board Support Package (BSP) planned? 
If yes, do the plans describe where the BSP requirements are to be defined, 
and how they will be traced? 

NA 

56 
Is an Application Programming Interface (API) planned to be used? 
If yes, do the plans describe where the API requirements are to be defined, 
and how they will be traced? 

NA 

57 
Is a device driver planned to be used? 
If yes, do the plans describe where the device driver requirements are to be 
defined, and how they will be traced? 

NA 

58 
Is Object-Oriented (OO) design/programming planned to be used? 
If yes, then are the additional considerations attendant with OO and the 
specific OO language to be used addressed in the plans? 

NA 

59 
Do the plans describe how and where software performance requirements 
are defined and how they will be traced? 
(This includes software timing, size restrictions, throughput, etc.) 

NA 

60 
Do the plans describe how and where fail-safe and fail-operational 
requirements are defined how they will be traced? 

NA 

61 
Do the plans describe the partitioning scheme, with emphasis on its ability 
to support the high-level requirements and the software level(s) 
established by the system safety assessment process? 

NA 

62 Do the plans describe where system response times are addressed? NA 

63 
Do the plans identify the mechanism to be used to determine if the Input / 
Output (I/O) of the system is adequate? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 170 of 188 Rev.   -    

 

ID Checklist Item Reference 

64 
Do the plans identify how and where requirements for time-critical tasks 
are specified? 
(Time-critical task requirements need to be specified in quantifiable terms.) 

NA 

65 
Do the plans describe where software requirements will address timing 
constraints, strategy for dealing with timing limits, required timing margins, 
and methods to be used in measuring timing margins? 

NA 

66 
Do the plans describe where error prevention, fault tolerance, and error 
detection are to be specified in the requirements, design, and code? 

NA 

67 
Is use of one or more compiler-provided libraries planned? 
If no, the remaining library questions do not need to be answered. 

NA 

68 
Do the plans identify where the requirements are to be specified, and how 
they will be traced? 

NA 

69 
Do the plans identify if the source code is available for run-time library 
functions to be used on the project? 

NA 

70 
Do the plans identify if structural coverage appropriate to the software 
level will be applied to the libraries? 

NA 

71 
Do the plans describe how library code not used by the application will be 
dealt with? 

NA 

72 
Do the plans identify if there is dead or deactivated code known to be in 
the libraries? 

NA 

73 
Do the plans describe how problems found in the library routines will be 
dealt with by the library developer and the project team? 

NA 

74 All Review checklist items have been addressed and marked? NA 

75 All action items have been entered into QCMS? NA 

76 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 171 of 188 Rev.   -    

 

APPENDIX J: PEER REVIEW CHECKLIST - REQUIREMENTS 

 

The complete Requirements Review checklist is provided below.  This Checklist is 
automatically leveled by the Qualtech Compliance Management System.  Each checklist 

includes the applicable review and analysis criteria. 

 

ID Checklist Item Reference 

1 

The following definitions have been discussed and are understood? 
 
System Requirements: 
System requirements are inspection requirements (i.e., weight, 
measurement, power, etc.) and categories or place holders for groups of 
high-level requirements (i.e., the system shall process ARINC 429 
messages).  System requirements are not verifiable through Test or 
Analysis. 
 
Note: System requirement validation is not part of the software life cycle 
process.  The validity of the system requirements should be assured by the 
system life cycle process. System requirements are included in the software 
lifecycle to the extent that it identifies those system requirements that will 
be implemented in software. 
 
High-Level Requirements: 
High-level software requirements are those requirements that are 
developed from analysis of the system requirements, safety-related 
requirements, and system architecture.  High-level requirements are 
written as individually verifiable requirements.  High-level requirements are 
verifiable through test or analysis.  They are used by Test Engineering to 
develop requirements-based and robustness test cases.  High-level 
requirements are tested at the “black-box” level.  
 
Low-Level Requirements: 
Low-level software requirements are detailed implementation instructions 
directed at the Engineer responsible for writing the source code.  They are 
verified through low-level test and analysis. Low-level requirements are 
typically documented in terms of function descriptions and pseudo code.   
 
Derived Requirements: 
Derived software requirements are additional requirements resulting from 
the software development processes, which may not be directly traceable 
to higher level requirements. 

NA 

2 An attendee list has been generated and circulated for signature? NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 172 of 188 Rev.   -    

 

ID Checklist Item Reference 

3 

The Review Evaluator has been identified and added to this checklist? 
 
The Review Evaluator is someone other than the person presenting the 
requirements, design or test data.  This documents the independence 
evidence. 

NA 

4 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

5 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

6 
Is each high-level requirement uniquely identified (does each entry in the 
tool contain only one requirement)? 

NA 

7 
Are the high-level requirements unambiguous? (Does each requirement 
mean the same thing to all stake holders, including the specifier, the 
systems engineer, the software engineer, the verification engineer, etc?) 

NA 

8 

Is the terminology used in the high-level requirements fully defined? 
(For example, a requirement that states "The controller shall assert control 
of the engine within 150 msec of a warm-start" should define what "assert 
control" means) 

NA 

9 
Are the high-level requirements consistently written (e.g.: terminology 
attributes, data definitions)? 

NA 

10 
Are the high-level requirements complete, that is, are all system 
requirements allocated to software reflected in the high-level 
requirements? 

NA 

11 

Is each high-level requirement verifiable through testing? (This includes 
clear definition of test parameters, such as defining the time measurement 
start and stop criteria for the requirements "The controller shall assert 
control of the engine within 150 msec of a warm-start.") 

NA 

12 Does each requirement conform to the Software Requirements Standards? NA 

13 
Have requirements been reviewed to determine that algorithms are 
accurate? 

NA 

14 
Are performance requirements (such as response time requirements) 
stated? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 173 of 188 Rev.   -    

 

ID Checklist Item Reference 

15 
If the requirements involve complex decision chains, are they expressed in 
a form that facilitates comprehension? 

NA 

16 Has the precision and accuracy of calculations been specified? NA 

17 Have Assumptions and Dependencies been clearly stated? NA 

18 
Are the high-level requirements consistent with each other?  That is, do the 
requirements NOT conflict or contradict each other? 

NA 

19 Are the high-level requirements accurate? NA 

20 
Is each high-level requirement either traced to one or more specific system 
requirement(s) or identified as a derived requirement? 

NA 

21 
For high-level requirements traced to one or more specific system 
requirement(s), does the high-level requirement logically relate to the 
system requirement(s)? 

NA 

22 
For each system-level requirement allocated to software, are there high-
level software requirements that (collectively) cover all aspects of the 
system requirement? 

NA 

23 
If a Real-Time Operating System (RTOS) is used, are the requirements and 
interfaces identified and traced? 

NA 

24 
If a Board Support Package (BSP) is used, are the requirements and 
interfaces identified and traced? 

NA 

25 
If an Application Programmable Interface (API) is used, are the 
requirements and interfaces identified and traced? 

NA 

26 
If a device driver is used, are the requirements and interfaces identified and 
traced? 

NA 

27 Are derived requirements clearly identified? NA 

28 
Should any identified derived requirements logically be traced to a higher-
level requirement? 

NA 

29 All Review checklist items have been addressed and marked? NA 

30 All action items have been entered into QCMS? NA 

31 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 174 of 188 Rev.   -    

 



Software Verification Plan 

 

 
 

<Doc Number> Page 175 of 188 Rev.   -    

 

APPENDIX J: PEER REVIEW CHECKLIST - DESIGN 

 

The complete Design Review checklist is provided below.  This Checklist is automatically 
leveled by the Qualtech Compliance Management System.  Each checklist includes the 

applicable review and analysis criteria. 

 

ID Checklist Item Reference 

1 

The following definitions have been discussed and are understood? 
 
System Requirements: 
System requirements are inspection requirements (i.e., weight, measurement, 
power, etc.) and categories or place holders for groups of high-level requirements 
(i.e., the system shall process ARINC 429 messages).  System requirements are not 
verifiable through Test or Analysis. 
 
Note: System requirement validation is not part of the software life cycle process.  
The validity of the system requirements should be assured by the system life cycle 
process. System requirements are included in the software lifecycle to the extent that 
it identifies those system requirements that will be implemented in software. 
 
High-Level Requirements: 
High-level software requirements are those requirements that are developed from 
analysis of the system requirements, safety-related requirements, and system 
architecture.  High-level requirements are written as individually verifiable 
requirements.  High-level requirements are verifiable through test or analysis.  They 
are used by Test Engineering to develop requirements-based and robustness test 
cases.  High-level requirements are tested at the “black-box” level.  
 
Low-Level Requirements: 
Low-level software requirements are detailed implementation instructions directed 
at the Engineer responsible for writing the source code.  They are verified through 
low-level test and analysis. Low-level requirements are typically documented in terms 
of function descriptions and pseudo code.   
 
Derived Requirements: 
Derived software requirements are additional requirements resulting from the 
software development processes, which may not be directly traceable to higher level 
requirements. 

NA 

2 
Is each low-level requirement uniquely identified (does each entry in the tool contain 
only one requirement)? 

NA 

3 

Are the low-level requirements unambiguous? (Does each requirement mean the 
same thing to all stake holders, including the specifier, the systems engineer, the 
software engineer, the verification engineer, etc.) 

NA 

4 Is the terminology used in the low-level requirements fully defined? NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 176 of 188 Rev.   -    

 

ID Checklist Item Reference 

5 
Are the low-level requirements consistently written (e.g.: terminology attributes, data 
definitions)? NA 

6 
Are the low-level requirements complete, that is, are all high-level requirements 
reflected in the low-level requirements?   NA 

7 Is each low-level requirement verifiable through inspection, analysis, or testing? NA 

8 Does each low-level requirement conform to the Software Design Standards? NA 

9 
Have the low-level requirements been reviewed to determine that algorithms are 
accurate? NA 

10 Are performance requirements (such as timing, size, and throughput) stated? NA 

11 
If the requirements involve complex decision chains, are they expressed in a form 
that facilitates comprehension? NA 

12 Have any real-time constraints been specified in sufficient detail? NA 

13 Has the precision and accuracy of calculations been specified? NA 

14 Are units specified consistently? NA 

15 
Are the low-level requirements consistent with each other?  That is, do the 
requirements NOT conflict with or contradict each other? NA 

16 Are the low-level requirements accurate? NA 

17 

Has review of the design identified problems with the requirements, such as: 
* missing requirements? 
* ambiguous requirements? 
* extraneous requirements? 
* untestable requirements? 
* implied requirements? 

NA 

18 Is the design consistent with the high-level requirements?  NA 

19 Are deviations from the requirements documented and approved? NA 

20 Are all assumptions documented? NA 

21 Have major design decisions been documented? NA 

22 Is the design consistent with the documented major design decisions? NA 

23 Are run-time libraries used in the design?  If so, address the following questions. NA 

24 Are the libraries specified? NA 

25 Do the requirements, design, and code exist for the used library functions? NA 

26 
Will structural coverage be applied on the libraries or just on features used by the 
application program? NA 

27 How is code not used by the application dealt with? NA 

28 Is there dead code in the libraries? NA 

29 Have the libraries been verified?  NA 

30 Are requirements and design for time-critical tasks specified in quantifiable terms? NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 177 of 188 Rev.   -    

 

ID Checklist Item Reference 

31 
Do software requirements and design address timing constraints, strategy for dealing 
with timing limits, required timing margins, method of measuring timing margins? 

NA 

32 
If used, is error prevention, fault tolerance, or error detection specified in the 
requirements, design, and code? 

NA 

33 
If interrupt service routines (ISRs) are used, are they documented in the 
requirements/design?  Do they work properly? 

NA 

34 Does the ISR - Block any continuing execution? NA 

35 Does the ISR - Call reentrant functions? NA 

36 Does the ISR - Pass stress testing? NA 

37 Does the ISR - Allow calls to functions before completing? NA 

38 Have the common concurrency problems such as Deadlock been addressed? NA 

39 Have the common concurrency problems such as Livelock been addressed? NA 

40 Have the common concurrency problems such as Race conditions been addressed? NA 

41 Have the common concurrency problems such as Re-entrancy been addressed? NA 

42 Have the common concurrency problems such as Priority inversion been addressed? NA 

43 
Have the common concurrency problems such as Mutual exclusion violation been 
addressed? 

NA 

44 
Have the common concurrency problems such as Non-deterministic execution order 
been addressed? 

NA 

45 Is partitioning/protection used?  If so, is it documented in requirements and design? NA 

46 
How is synchronization and communication addressed in the system (e.g., 
synchronous or asynchronous)?  Are the synchronization and communication 
mechanisms documented in the requirements and design data? 

NA 

47 
If buffers are shared, has the reader-writer (producer-consumer) problem been 
addressed?  

NA 

48 Have the common communication problems such as Lost data been addressed? NA 

49 Have the common communication problems such as Stale data been addressed? NA 

50 
Have the common communication problems such as System hanging been 
addressed? 

NA 

51 
Have the common communication problems such as Bounded buffer been 
addressed? 

NA 

52 Have the common communication problems such as Corrupted data been addressed? NA 

53 
Are critical sections protected?  How are they protected?  Is the protection adequate 
and accurately implemented? 

NA 

54 
What kind of scheduling algorithm has been selected for the real-time system? Is the 
algorithm documented in the requirements and design? Is the scheduling algorithm 
deterministic and verifiable? 

NA 

55 If the scheduler uses priorities, does the design detail how priorities are determined? NA 

56 
If the scheduler uses priorities, does the design detail what happens when two tasks 
have the same priority? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 178 of 188 Rev.   -    

 

ID Checklist Item Reference 

57 
If the scheduler uses priorities, does the design detail how has priority inversion been 
addressed? 

NA 

58 If the scheduler uses priorities, does the design detail how are interrupts handled? NA 

59 
If concurrent tasks are run, are the handled correctly?  (I.e., Is multitasking used?)  
What algorithms are used to implement concurrency?  Are threads used?  If threads 
are used, how do they affect timing? 

NA 

60 
Is there a mechanism to detect when real-time tasks that do not meet their 
deadlines?  If detected, what is the response and is it consistent with the safety 
requirements? 

NA 

61 Are fail-safe, fail-operational requirements specified? NA 

62 
Is each low-level requirement either traced to one or more specific high-level 
requirement(s) or identified as a derived requirement? 

NA 

63 
For low-level requirements traced to one or more specific high-level requirement(s), 
does the low-level requirement logically relate to the high-level requirement(s)? 

NA 

64 

For each high-level requirement, are there low-level software requirements that 
(collectively) cover all aspects of the high-level requirement?  (That is, would 
implementation of the low-level requirements mean that the high-level requirement 
is properly  

NA 

65 
Is the low-level to high-level traceability able to be followed but forward (high-to-low) 
and backward (low-to-high)? 

NA 

66 
Are there any inconsistencies between the data reviewed and the software 
development plans? 

NA 

67 
Do any conversations with developers indicate that the plans were not followed? 
(Determine through interview/discussion with developers.) 

NA 

68 
Do verification records exist to demonstrate verification of all applicable design 
objectives?  Were the verification activities thorough and well documented? 

NA 

69 Is the architecture sufficient to provide service to time-critical tasks? NA 

70 Does the architecture conform to design standards? NA 

71 Is the software architecture compatible with target computer? NA 

72 Does the design adequately address real-time requirements? NA 

73 Does the design adequately address performance issues (memory and timing)? NA 

74 Does the design adequately address spare capacity (CPU and memory)? NA 

75 Does the design adequately address maintainability? NA 

76 Does the design adequately address understandability? NA 

77 Does the design adequately address data requirements? NA 

78 Does the design adequately address loading and initialization? NA 

79 Does the design adequately error handling and recovery? NA 

80 Are memory and timing budgets reasonable and achievable? NA 

81 
Is the partitioning schema sufficient to support the high-level requirements and the 
software level established by the system safety assessment? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 179 of 188 Rev.   -    

 

ID Checklist Item Reference 

82 
Has partition integrity (i.e., protection) been achieved (in terms of time, space, and 
throughput)? 

NA 

83 
Does the interrupt/control structure support the known system priorities and high-
level requirements? 

NA 

84 Does the architecture support the timing and sizing requirements? NA 

85 
Are the synchronous vs. asynchronous aspects of the design supported by the 
architecture? 

NA 

86 Is exception handling properly addressed? NA 

87 Are data flows consistent? NA 

88 Are interfaces consistent? NA 

89 
Does the communication mechanism specified in the low-level requirements for each 
interface support the high-level requirements? 

NA 

90 Are derived requirements clearly identified? NA 

91 
Should any identified derived requirements logically be traced to a higher-level 
requirement? 

NA 

92 All Review checklist items have been addressed and marked? NA 

93 All action items have been entered into QCMS? NA 

94 

The attendee list (with signatures) have been scanned to PDF, properly named and 
uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 
 



Software Verification Plan 

 

 
 

<Doc Number> Page 180 of 188 Rev.   -    

 

APPENDIX K: PEER REVIEW CHECKLIST - CODE 

 

The complete Code Peer Review checklist is provided below.  This Checklist is automatically 
leveled by the Qualtech Compliance Management System.  Each checklist includes the 

applicable review and analysis criteria. 

 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 

The Review Evaluator has been identified and added to this checklist? 
 
The Review Evaluator is someone other than the person presenting the 
requirements, design or test data.  This documents the independence 
evidence. 

NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 Are naming conventions following the standards? NA 

6 
Have all code modules been technically reviewed and are under 
appropriate configuration management control per the software level? 

NA 

7 
Do all code modules compile without error, and without unacceptable 
warnings? 

NA 

8 Does the calling sequence correspond with the software architecture? NA 

9 Does the source code have to be altered to test it? NA 

10 Are the data definitions correct?  Consider the following criteria: NA 

11 Data typing is correct and consistent. NA 

12 Units are consistent between modules (e.g., radians, degrees). NA 

13 All variables used are defined prior to use. NA 

14 Data are properly initialized. NA 

15 Global data integrity is assured. NA 

16 Variables are not used for more than one purpose. NA 

17 
Does the source code conform to standards?  Consider the following areas 
typically found in standards: 

NA 

18 Is indentation schema being followed? NA 

19 Are prologue headers per the standards? NA 

20 Is the size of the modules per the standards? NA 

21 Does the code do what the comments say it does? NA 

22 Is there only one entry and exit point? NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 181 of 188 Rev.   -    

 

ID Checklist Item Reference 

23 
Are only the standard coding constructs as defined in the coding standards 
used? 

NA 

24 Are nesting considerations being addressed? NA 

25 
Has computational correctness been achieved?  Consider the following 
criteria: 

NA 

26 Sign conventions are consistent and correct. NA 

27 Precision is maintained in mixed mode arithmetic. NA 

28 Desired accuracy is maintained during rounding or truncation. NA 

29 Divide by zero is prohibited/ trapped. NA 

30 
Are the logic constructs and data handling correct?  Consider the following 
criteria: 

NA 

31 Loops are correctly implemented. NA 

32 Subscripts are used properly. NA 

33 Is each loop executed the correct number of times? NA 

34 Will each loop terminate? NA 

35 Will the program terminate? NA 

36 Are all possible loop fall-throughs correct? NA 

37 Are all CASE statements evaluated as expected? NA 

38 Is there any unreachable code? NA 

39 Are there any off-by-one iteration errors? NA 

40 Are there any dangling ELSE clauses? NA 

41 Is pointer addressing used correctly? NA 

42 
Are priority rules and brackets in arithmetic expression evaluation used as 
required to achieve desired results? 

NA 

43 
Are boundary conditions considered? (e.g., null or negative values, adding 
to an empty list, etc.) 

NA 

44 Are pointer parameters used as values and vice-versa? NA 

45 Is the number of input parameters equal to the number of arguments? NA 

46 Do parameter and argument attribute match? NA 

47 Do the units of parameters and arguments match? NA 

48 Are any input-only arguments altered? NA 

49 Are global variable definitions consistent across modules? NA 

50 Are any constants passed as arguments? NA 

51 Are any functions called and never returned from? NA 

52 Are all interfaces correctly used as defined in the Software Design NA 

53 Are returned VOID values used? NA 

54 Are data mode definitions correctly used? NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 182 of 188 Rev.   -    

 

ID Checklist Item Reference 

55 
Are data and storage areas initialized before use, correct fields accessed 
and/or updated? 

NA 

56 Is data scope correctly established and used? NA 

57 
If identifiers with identical names exist at different procedure call levels, 
are they used correctly according to their local and global scope? 

NA 

58 Is there unnecessary packing or mapping of data? NA 

59 Are all pointers based on correct storage attributes? NA 

60 Is the correct level of indirection used? NA 

61 Are any string limits exceeded? NA 

62 Are all variables EXPLICITLY declared? NA 

63 Are all arrays, strings, and pointers initialized correctly? NA 

64 Are all subscripts within bounds? NA 

65 Are there any non-integer subscripts? NA 

66 
Is the code understandable (i.e., choice of variable names, use of 
comments, etc.) 

NA 

67 
Is there sufficient and accurate commentary to allow the reader to 
understand the code? 

NA 

68 If the program uses deactivated code, answer the following questions: NA 

69 Does the code use a common code deactivation mechanism throughout? NA 

70 Does the deactivation mechanism agree with the software plans? NA 

71 
Is the deactivation mechanism clear and understandable to a code 
reviewer? 

NA 

72 
Does traceability exist between the code and the software low-level 
requirement? 

NA 

73 Is the design implemented completely and correctly? NA 

74 Are there missing or extraneous functions? NA 

75 All Review checklist items have been addressed and marked? NA 

76 All action items have been entered into QCMS? NA 

77 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 183 of 188 Rev.   -    

 

APPENDIX L: PEER REVIEW CHECKLIST - INTEGRATION 

The complete Integration Peer Review checklist is provided below.  This Checklist is 

automatically leveled by the Qualtech Compliance Management System.  Each checklist 
includes the applicable review and analysis criteria. 

 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 

The Review Evaluator has been identified and added to this checklist? 
 
The Review Evaluator is someone other than the person presenting the 
requirements, design or test data.  This documents the independence 
evidence. 

NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
Are the compiler options set according to the project standard for each 
code file? 

NA 

6 
Does each code file compile without error, and without disallowed 
warnings? 

NA 

7 Does the program link without error? NA 

8 
Does the linker screen out any compiled code that is not used in the 
Executable Object Code? 

NA 

9 Does the link map have any overlapping sections? NA 

10 Are differently scoped memory blocks properly contained in the link map? NA 

11 
Are dynamic memory blocks (e.g.: STACK or HEAP) separate from static 
memory blocks (such as code or variable memory)? 

NA 

12 Are the hardware addresses in the link map correct? NA 

13 
Are there any missing components from the software, according to the link 
map? 

NA 

14 All Review checklist items have been addressed and marked? NA 

15 All action items have been entered into QCMS? NA 

16 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 184 of 188 Rev.   -    

 

APPENDIX M: PEER REVIEW CHECKLIST – TEST PROCEDURES 

 

The complete Test Procedure Peer Review checklist is provided below.  This Checklist is 
automatically leveled by the Qualtech Compliance Management System.  Each checklist 

includes the applicable review and analysis criteria. 

 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 

The Review Evaluator has been identified and added to this checklist? 
 
The Review Evaluator is someone other than the person presenting the 
requirements, design or test data.  This documents the independence 
evidence. 

NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 Is the test environment defined? NA 

6 
Does each test have a header that identifies the author, revision date, test 
objectives, required configuration, and initial setup? 

NA 

7 Is each test traceable to a specific requirement or requirements? NA 

8 
Does the test procedure define the exact sequence of steps required to 
execute the test? 

NA 

9 For each test procedure, are the expected results clearly defined? NA 

10 Are the expected results consistent with the requirements? NA 

11 Do the collective test procedures achieve the objectives for the case? NA 

12 
Have normal range test cases been developed for all requirements? 
Example: Verify if A then B. 

NA 

13 
Have negative test cases been developed for all requirements? 
Example: Verify is NOT A, then NOT B. 

NA 

14 
Do the test cases show positive proof for the occurrence of events 
whenever possible (e.g.: a variable changes value to show a specific action 
is taken)? 

NA 

15 
Do test cases against range-based requirements include test to verify the 
bottom, midpoint and top of the range? 

NA 

16 
Do test cases against range-based requirements where zero is included in 
the allowed range include test cases near and at the zero value, as 
appropriate? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 185 of 188 Rev.   -    

 

ID Checklist Item Reference 

17 Have a complete set of robustness test cases have been developed? NA 

18 
If test cases are run on a simulator or emulator, have any of the test steps 
been eliminated by the simulator or emulator? 

NA 

19 Have test cases and procedures been reviewed for correctness? NA 

20 
Do the test cases and procedures adhere to the relevant plans and 
standards?  For example, have coding standards, especially those relevant 
to limitations of structural coverage tools, been followed? 

NA 

21 
Are the test cases and procedures appropriately commented to allow 
future updates? 

NA 

22 
Have the test cases and procedures been subjected to appropriate change 
and configuration control? 

NA 

23 Is the rationale for each test case clearly explained? NA 

24 
Do the test cases and procedures specify required input data, expected 
output data, and input/output data (e.g., temporary stores)? 

NA 

25 
Were the inputs for each test case derived from the requirements (as 
opposed to being derived from the source code)? 

NA 

26 Have the appropriate memory locations and variables been preset? NA 

27 
Are the test cases and procedures sufficient to meet coverage 
requirements? 

NA 

28 Are sufficient tests to provide coverage identified for each logic construct? NA 

29 
Are requirements where analysis is required in addition to (or in lieu of) 
requirements-based testing clearly documented (e.g., requirements for 
hardware polling)? 

NA 

30 
Will the test results reveal whether the results of the test cases that are 
counted for credit are observable? 

NA 

31 Will the test results reveal test cases that violate project standards? NA 

32 
Will the test results reveal test cases that are not expected to achieve 100% 
structural coverage (e.g., hardware polling)? 

NA 

33 
Will the test results specify where further evaluation of specified tolerances 
is required? 

NA 

34 
Is the separation between test cases clear?  For example, are test start and 
stop identified?  This assists tracing the source of unexpected drops in 
coverage. 

NA 

35 Does each test case contain inputs, conditions, and expected results? NA 

36 
Does each test case have procedures for test set-up (to include 
environment), test execution, and pass-fail criteria? 

NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 186 of 188 Rev.   -    

 

ID Checklist Item Reference 

37 
Are test cases that depend on results from previous test cases clearly 
identified (e.g.: A test case that assumes that variable X is set to a specific 
value as a result of the previous test case)? 

NA 

38 If the program uses deactivated code, answer the following question: NA 

39 Do test cases exist to verify the deactivation mechanism? NA 

40 
Are the test cases and procedures sufficient to cover all the relevant 
requirements? That is, do the traceability matrices provide clear association 
between test cases and requirements? 

NA 

41 Is the design implemented completely and correctly? NA 

42 Are there missing or extraneous functions? NA 

43 All Review checklist items have been addressed and marked? NA 

44 All action items have been entered into QCMS? NA 

45 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 



Software Verification Plan 

 

 
 

<Doc Number> Page 187 of 188 Rev.   -    

 

APPENDIX N: PEER REVIEW CHECKLIST – TEST RESULTS 

 

The complete Test Results Peer Review checklist is provided below.  This Checklist is 
automatically leveled by the Qualtech Compliance Management System.  Each checklist 

includes the applicable review and analysis criteria. 

 

ID Checklist Item Reference 

1 An attendee list has been generated and circulated for signature? NA 

2 

The Review Evaluator has been identified and added to this checklist? 
 
The Review Evaluator is someone other than the person presenting the 
requirements, design or test data.  This documents the independence 
evidence. 

NA 

3 
A person has been assigned to document action items in QCMS?   
 
It is best practice to add action items directly into QCMS as they occur. 

NA 

4 
All of the data to be reviewed (i.e., Presentations, Excel matrix containing 
all of the requirements to be reviewed, architectural diagrams, etc.) has 
been documented and uploaded to the /Review Results Folder? 

NA 

5 
Are the test result files clearly linked to the test procedures and code? (i.e., 
does configuration control and traceability exist?) 

NA 

6 Is each test result clearly linked to a test case? NA 

7 Are failed test cases obvious from the test results? NA 

8 
Do the test results indicate whether each procedure passed or failed and 
the final pass/fail results? 

NA 

9 
Do the test results adhere to the relevant plans, standards, and 
procedures? 

NA 

10 
Have the test results been subjected to appropriate configuration control, 
per the software level? 

NA 

11 
Is there an acceptable rationale for deviations from expected results, 
standards, or plans? 

NA 

12 Are explanations for the failed test cases intelligible? NA 

13 
Do explanations for failed test cases contain accurate references to 
relevant problem reports? 

NA 

14 Are explanations for code or test rework suitable to address the failure? NA 

15 
Have test cases been re-executed in compliance with plans for regression 
testing? 

NA 

16 Have the test results from regression testing been documented? NA 



Software Verification Plan 

 

 
 

<Doc Number> Page 188 of 188 Rev.   -    

 

ID Checklist Item Reference 

17 
If the rationale for a failed test case or other deviation from expected 
results includes a "test stand tolerance" issue, is the test stand generally 
adequate for running that particular test case? 

NA 

18 Did any safety-related test case fail? NA 

19 
Is 100% structural coverage (as appropriate to the software level) achieved 
through requirements-based testing? 

NA 

20 
If 100% structural coverage (as appropriate to the software level) is not 
achieved through requirements-based testing, is there an explanation 
detailing which parts of the code were not executed and why? 

NA 

21 Are explanations for drops in coverage sufficiently detailed and acceptable? NA 

22 Are there problem reports associated with dead code? NA 

23 Has dead code been removed? NA 

24 Is deactivated code indicated as NOT exercised? NA 

25 All Review checklist items have been addressed and marked? NA 

26 All action items have been entered into QCMS? NA 

27 

The attendee list (with signatures) have been scanned to PDF, properly 
named and uploaded to the /Signatures directory? 
 
Naming Example:  
SS1060.pdf 

NA 

 

 

 
 


