Software Verification Plan

for the
<Program Name>

Document No: <Doc Number>

Revision: -
<Name>, Program Manager Date
<Name>, Technical Project Lead Date
<Name>, Engineer Date
<Name>, Quality Engineer Date
Notice

This document and the information contained herein are the property of <Company
Name>. Any reproduction, disclosure or use thereof is prohibited except as
authorized in writing by <Company Name>. Recipient accepts the responsibility for
maintaining the confidentiality of the contents of this document.

Software Verification Plan

REVISIONS
Requested/
Rev. Reason/Description Changed By Date
<Doc Number> Page 2 of 188 Rev. -

Software Verification Plan

Table of Contents

Section Page
1.0 INTRODUCTION ..uiuciuiimrasumsasumsasuasassasssasassasasssssssasassssanssssnsassnsassnsassnsnssnsnsnnnnnss 8
1.1 o 00 T < S 8
1.2 1S oo 01 8
1.3 Acronyms and Abbreviations ... 9
1.4 APPlicable DOCUMENES .ivii i e e 10
1.4.1 =T o= D o ol N g g T=T g L =P 10
1.4.2 Internal DOCUMENTES ... e eeane 10
2.0 ORGANIZATION ...cicciciumieranseransaransasansassssasassassssassnsassnsassssassasassasansasansnsansnnnnss 11
2.1 Team Member Responsibilities....ccoveiiiiiii i e e 11
3.0 INDEPENDENCEccouimtarimmasimsasuasasuasassasassasassasassasassasassnsansasansasansnsnnsasnnnnnnnss 15
3.1 P EEI REVIBWS . 1ttt 16
3.2 Independence of DO-178C ObJECLIVES ...oiiuiiiiiiiiii i e 17
4.0 VERIFICATION METHODScc.ciciumieiimimiunsesnsesnse s sassasansnsansnsansnsansnsansnsnnnnss 20
4.1 V-Model Verification Approachccoiiiiiiiii i 20
4.2 Analysis of Outputs Methods ..o e 22
4.2.1 Traceability of Reviews and Analysis ReSUILSc.ccoviiiiiiiiiiiiiiiiiiiiiniininnn, 23
4.2.2 Transition ReVIEW PIANNINGccuuueiiiiii i eaaaaaasassnssasnsasnnsnnsansnss 24
4.2.3 Peer REVIEW PIANININGoniiiiiiiiie e ae e 24
4.2.4 Software Planning Process Verification Methodsc.cccvviieiiiiiiiiiiiniinn, 25
4.2.5 Planning Process Verification ACIVItIEScoeiueeiiiiiii i 25
4.2.6 Software Planning Process INPULScouueeiii i 25
4.2.7 Software Planning Process Reviews and ANalysSisc.cvouuviiiiiiiiiiiiiiiinniannns 25
4.2.7.1 Software Verification Plan ReVIEWc.cocoiiiiiiiiiiiiii e 25
4.2.7.2 Software Planning REVIEWc.iiiiiiii i as 26

4.3 Software Requirements Process Verification Methodsccoviiiiiiiiiiiiciiieiens 28
4.3.1 Software Requirements Process Verification Objectives............cccuvvveinvinininns. 28
4.3.2 Software Requirements ProCeSs INPUES.........oveiiieiiiiiii it eieaaeieaaeens 28
4.3.3 Transition Criteria for Entering The Verification of Requirements Process 28
4.3.4 Software Requirements Process Reviews and AnalysSiS.......cvovvevveiieiiniinninnns. 29
4.3.4.1 Software Requirements Document REVIEWvvvvirviriiriieiere e rieinenennes 30
4.3.4.2 Software RequiremMents REVIEWc.iiiiiiiiiiiiiiii i as 31
4.3.4.3 Analysis of High-Level Software Requirementsccccoiiiiiiiiiiiiiiicniennns 32
4.3.4.4 System and Software Requirements Trace AnalysiS.......ccoeeviiiiiiiiininnnnnns 32

4.4 Software Design Process Verification Methodsccoviiiiiiiiiiiiiiiic e 33
4.4.1 Software Design Process Verification ObJEeCtiVEScocevvvieiiiiiiiiiiieinaens, 33
4.4.2 Software Design ProCeSS INPUES. ... 33
4.4.3 Transition Criteria for Entering The Verification of Design Process 33
4.4.4 Software Design Process Reviews and ANalysSiS.......c.oouvvmeiiiiiiiiiiiiiiainann, 34
4.4.4.1 Software Design Description REVIEW....ocvviiiiiiiiii i 34
4.4.4.2 Software Preliminary Design REVIEWccciiiiiiiiiiiiiiii i 35
4.4.4.3 Software Critical Design REeVIEW......ciiiiiiiiiiiiiiicci e as 36
4.4.5 Reviews and Analysis of Software ArchiteCturecccveviviiiiiiiiiiiiinniannns 37

<Doc Number> Page 3 of 188 Rev. -

Software Verification Plan

4.4.6 Reviews and Analysis of Low-Level Software Requirements.................ccuvuuun. 37
4.5 Software Coding Process Verification Methods ... 38
4.5.1 Software Coding Process Verification OBJeCtiVEScovvviiiiiiiiiiiiiiiiiiiniinnns, 38
4.5.2 Software Verification ProCeSS INPUES........ccuiiuiiiiiiiiiiiaasiasiesiasinsinsinsiesaesnns 38
4.5.3 Transition Criteria for Entering The Verification of Software Coding Process.... 38
4.5.4 Software Coding Process Reviews and ANalysSiS.........oovveeeiiiieiiiiiiiiiiiinanann, 38
4.5.4.1 Source Code Fil@ REVIEW ..cuiiriiiiiiii i i i s s s s e sese s e aneaens 39
4.5.4.2 S0oUIrCE COAE REVIEW. . ittt i i r e e aeaeans 39
4.5.5 Reviews and Analysis of SOUICE COUE.........c.couuuusrissisisasnsssssssississienissinnnes 39
4.6 Integration Process Verification Methods........coooiiiiiiii i 41
4.6.1 Integration Process Verification ODJECLIVES........ccuvviiiiiiiiiiiiiiiiisiiiiiinsiinniann, 41
4.6.2 INtegration ProCeSS INPUESoceeisieis it s et asasr s asnasastnasasanasnsanasnns 41
4.6.3 Transition Criteria for Entering The Verification of Integration Process........... 41
4.6.4 Integration Process Reviews and ANalysSiScouueeiiiiimieiiiiiiiiiiiiaiainnnnnns 42
4.6.4.1 Executable Object Code REVIEW ...ciuiiiiiiiiiiiii i eeas 42
4.6.4.2 System Integration ReVIEWciiiiiiiiiiii e as 42
4.6.4.3 Reviews and Analysis of Executable Object Codeccviiiiiiiiiiiinnnennn. 42
4.7 Software Testing Process Verification Methods........c.cooiiiiiiiiiiiicii 44
4.7.1 Software Testing Process Verification ODJeCtiVES.......ccouvuviviiiiiiiiiiiiiiiiinnannns 44
4.7.2 Software Testing ProCeSS INPULSvvureiiii it it as st st st aaseaaeaanaaans 44
4.7.3 Transition Criteria for Entering The Testing of Integration Process Outputs44
4.7.4 Transition Criteria for Entering The Verification of Verification Outputs 45
4.7.5 Software Testing Process Reviews and Analysisccoveeeiiiieiiiiiiiiiiiininann, 45
4.7.5.1 Software Verification Cases and Procedures Document Review 45
4.7.5.2 System Verification ReVIEWccoiiiiiiiiiii e 46
4.7.5.3 Reviews and Analysis of Test Cases, Test Procedures, and Results........... 46
4.7.5.3.1 Review checklists for test cases, procedures, and results................... 47
4.7.6 SOftWare TeSt EXECULION ..v.vuriiiiese st ea e s asasasnsnsnssnssnsnnsnnsansansaes 49
4.7.6.1 Test ENVIrONMENt ..o e 50
4.7.6.2 Requirements-Based Test CasesSccivviiiiiiiiiiiiiiiiini e e e e 50
4.7.6.3 Normal Range TeSt Cases .uiiuiiiiiiiii i r e re e e e aaneaaneans 50
4.7.6.4 RODUSINESS TeSE CaSES ..viiriiriiiiiiiii i s s s e e e e aens 51
4.7.6.4.1 Robustness Test Case Selection Strategycocoeeiiiiiiiiiiiins 51
4.7.6.5 Requirements-Based System Verification Testing Methods 52
4.7.6.5.1 Requirements-Based Software Verification Testing...........cocevvvvivinnnne. 55
4.7.6.5.2 Requirements-Based Low-Level Testing.....c.coviiiiiiiiiiiiiiiiie i 56
4.7.7 Effectiveness Of TESE ProGramuueeue it easeasteastsasteasteasaasseaaaains 56
4.7.7.1 Assess results of requirements-based testS.......cccciiiiiiiiiiiii 56
4.7.7.2 Assess failure explanations and rework........ccooviiiiiiiiiiiiiiic e 57
4.7.7.3 Assess coverage achievementcociiiiiiiiiiii i e 57
4.8 Coverage Analysis Methods e 58
4.8.1 Requirements Coverage ANalysSiS ... 59
4.8.2 Structural Coverage ANalYSiS. ... et 59
4.8.2.1 AcChieving COVeIrage ..oviiriiiiriiiie it ass s s e e re e e e annannans 60
4.8.2.2 Coverage Analysis Methodsccciiiiiiiiiiiiii s 62
4.8.2.3 Y= 1=] g aL=T o L 0} =T =T 1< P 64
4.8.2.4 Modified Condition DeciSion COVEragecivriiiriiiriiiiiieiiesaieeiieeaneenneans 64
4.8.3 Data Coupling and Control Coupling AnalysSiS.........couuvuiiiiiiiiiiiiiiiiiiiiniinninns, 79
4.8.3. Data Coupling ANalySis ..une i e e aas 79
4.8.3. Control Coupling ANAlYSIS .uviiriiiii i e s 82
4.9 Process-Specific ACHIVITIES ... v e 84
4.9.1 Test Case DeVEIOPMENT ... ettt ettt as s asaanansnsnssnsnnsananns 84

<Doc Number> Page 4 of 188 Rev. -

Software Verification Plan

4.9.2 FECK O =RV =T g 1 o= 14 Lo o B S 85
4.9.3 Test Procedure DEVEIOPMENTue ittt et sttt et at et aaaaeaanes 85
4.9.4 Test Procedure VerifiCation.............us ittt st st e s at e st aaaaaeaanes 86
4.9.5 Coverage Analysis VErifiCationc.uuuiiiiiiiiiiisisiasiesssiesiesiesiesiesaeeaneaes 86
4.9.6 TeSting ENVIFONMENT ...ttt s s s e sanes 87
4.9.7 LR A = =T ol [(o) o F P 87
4.9.8 All traceability data is reviewed and under CM control with no outstanding (non-
deferrable) PRs Software Testing Process Reviews and AnalysiScccovvvveiiniiniinnnnn, 88
4.9.8.1 Software Verification Cases and Procedures Document Review 88
4.9.8.2 System Verification REVIEW ...uiiiiiiiiii i e 89
4,9.8.3 Reviews and Analysis of Test Cases, Test Procedures, and Results............ 89
4.9.8.3.1 Review checklists for test cases, procedures, and results................... 90
4.9.9 SOftWare TESt EXECULIONvereieie sttt ettt a ettt ettt ettt aaaaaeaaes 92
4.9.9.1 Test EnVIrONmMeENt ..o e 93
4.9.9.2 Requirements-Based Test CaseS ..uuiiiiiiiiiiiii i i i it neeaeaas 93
4.9.9.3 Normal Range TSt Cases ..uuuiiiiiiiiiiiiiii i eaeaas 93
4.9.9.4 RODUSINESS TeSt CaSES ..viiriiriiriiiiiii i i i s s s se e e anannans 94
4.9.9.4.1 Robustness Test Case Selection Strategycccviviiviiiiiiiiieinnenen 94
4.9.9.5 Requirements-Based System Verification Testing Methodsc.i 95
4.9.9.5.1 Requirements-Based Software Verification Testing............ccccceviinennne. 98
4.9.9.5.2 Requirements-Based Low-Level Testing.......ccoviviiiiiiiiiiiiiie i 99
4.9.10 Effectiveness Of TESE PrOGIrame.euueeiese et eteat et e et einaaeananeens 99
4.9.10.1 Assess results of requirements-based tests........ccoovviiiiiiiiiiiii 99
4.9.10.2 Assess failure explanations and rework........ccoooviiiiiiiiiii i 100
4.9.10.3 Assess coverage achievementccoviiiiiiiiiii i e 100
4.10 Coverage Analysis MethOdSciuiiiieii e e 101
4.10.1 Requirements Coverage ANalYSIS ..ottt ittt sate it aaeaans 102
4.10.2 Structural Coverage ANalySiS.ttt sttt ettt 102
4.10.2.1 AcChieViNg COVEIagE .uiiiuiiiiiiiiiii it i aa e aaeaaneaanes 103
4.10.2.2 Statement COVEIrage .ouuiiiiiiii i e e e e enes 105
4.10.2.3 DeCiSION COVEIAGE 1.uuutintitineinerneit it rerataaasaasatsassaseasasssrsrnrsaesaesnes 105
4.10.2.4 Modified Condition DecCision COVEIrageociuiieiniieinieieieiieaeeaeaaaaeaeanens 105
4.10.2.5 Coverage AnalysisS TOOISoueiuii i e e eeaeas 120
4.10.3 Source Code to Object Code Traceability..........ouuvuiiiiiiiiiiiiiiiisiiieiisiisiinnnnn, 122
4.10.4 Data Coupling and Control Coupling ANalySiS.........cvuuieiiesieisessesissiesisninninn, 122
4.10.4.1 Structural Coverage Analysis of Data and Control Coupling 122
4.10.4.2 Data Coupling ANalySiS c.uuiiiiiiiiii i i e e 123
4.10.4.3 Control Coupling ANalYSiS .uuiiiiiiii i i i 124
4.10.4.4 Outputs of Data and Control Coupling ACtiVity ...ccoovvviiiiiiiiicnce s 126
ProCess-SpPeCifiC ACHIVITIES ..viuiiiei it e 127
4.10.5 Test Case DEVEIOPDMENEcuueieiie it s sttt ea et a et a s aneaaeaaeas 127
4.10.6 TeSt Case VerifiCationuuuieiieii ittt sttt a st ate st aaaaaeaeas 128
4.10.7 Test Procedure DeVelOpmMENt.........uuiieiiiiisisassassesssssssssssssssissnssinnness 128
4.10.8 Test Procedure VerifiCation........uiuuiesiessessesisassassassnssnssnssnssssnssnssnsnnnines 129
4.10.9 Coverage Analysis VEerifiCationc.uiuuiiiiiiiiiiii it ittt it aiiaaieaans 129
4.10.10 TeSting ENVIFrONIMENT ...t et ettt s et r s e s tsaenasasanasasanasnss 130
2 O I =3 ol =Tl U [0 S 130
4.10.12 Test ReSUIts VErifiCationc.uuiieiie ittt ettt ettt ie i aaaaeas 131
5.0 VERIFICATION ENVIRONMENTccvcuvemvammammanmanmansanssnssnssassassansansansansansansansas 132
5.1 Test ENvironment DesCriplioN ...uei i r e s nne e aaaes 132
5.1.1 Block Diagram of Test ENVIrONMENLt..........cviuuisiiiiiiiiiiieiiesiesisssesiesiesinnnn, 132

<Doc Number> Page 5 of 188 Rev. -

Software Verification Plan

5.2 List of Test Equipment Used To Verify Softwareccoviiiiiiiiiiiiiiiiiciiici s 132
5.3 Testing and ANalysis TOOIS ..t e as 132
5.3.1 Guidelines for Applying the Tools and Hardware Test Environment.............. 132
5.4 Test Procedure SErUCTUNE ..o e e eeaas 133
6.0 TRANSITION CRITERIA....ccicttetiamrammanmansansansansanssnssnssnssnssnssansansansansansansnnsnnsas 135
7.0 PARTITIONING CONSIDERATIONS ..cicciumrummanmanssnssnssassassassansansansansansansansansas 136
7.1 Guidelines for Evaluating Protectioncoooiiiiiiiii e 136
7.1.1 2 L= 137
7.1.2) = Lo = N 138
7.2 Project Specific Partitioning.......ccouiiieii e 138
8.0 COMPILER ASSUMPTIONS....ccictiiiiemremremranrasrassassasssssssssnsssssassassassansansansansnnss 139
9.0 REVERIFICATION GUIDELINES.......ccovttemmmmmamsamsansanssnssnssnssassansansansansansansanss 140
9.1 Inspect, Review, or Analyze Changescccviiiiiiiiiiiiiicicc e 140
9.2 Perform Regression TeStiNg......ocie i e e e e 140
9.3 Perform Other Verificationccooiiiiiiii e e e 141
10.0 PREVIOUSLY DEVELOPED SOFTWAREccccctumrummamrsnmsssn s sssssassassassansansnnsans 142
11.0 MULTIPLE VERSION DISSIMILIAR SOFTWARE........coictitimmierrerrsrsmansansannans 143
Appendix A: Software Planning Review Checklist.........ccccvcrimimimirimi s nesasnaass 144
Appendix B: Software Requirements Review Checklist........ccccvimiimvimvnnnannann, 149
Appendix C: Software Preliminary Design Review Checklist...........cocvimverimnernnnens 151
Appendix D: Software Critical Design Review Checklist........cciiciiiimieninnannnannnes 153
Appendix E: Software Code Review Checklist.......cciiciimmimimsmssssasssasssanssannnas 155
Appendix F: Integration Review Checklist........ccuiciiimnmnmrsssasssasssasssanssanssansnas 157
Appendix G: Software Verification Review Checklistccovciicmimncsnsesssaseannnas 159
Appendix H: Software Conformity Review Checklist.........ccviciiiciiicinicsnncsnrsnnannnes 163
Appendix I: Peer Review Checklist - Planning ...cccccvvciicmnsmnsns s sssasssasssasssannnas 165
Appendix J: Peer Review Checklist - Requirements......ccocccviciicinicsnncsnnsnrassennnns 171
Appendix J: Peer Review Checklist - DeSign.....cciccvimrmnmnsmssssasssasssasssasssansnas 175
Appendix K: Peer Review Checklist - Codeccicmimmimrimierrrrmrramsassassassassassansanss 180
Appendix L: Peer Review Checklist - Integration........cccccvciiiirrsre v s s s nnanas 183
Appendix M: Peer Review Checklist — Test Procedures.......cccvcuvmvmrmrmramnansannanns 184

<Doc Number> Page 6 of 188 Rev. -

Software Verification Plan

Appendix N: Peer Review Checklist — Test Results

<Doc Number> Page 7 of 188

Rev.

Software Verification Plan

1.0 INTRODUCTION

1.1 Purpose

This plan describes the Software Verification Process to be implemented on the Program.
This plan has been prepared in accordance with the requirements of RTCA/DO-178C. The
purpose of the verification process is to detect and report errors that have been introduced
in the development processes. The verification process does not produce software; its
responsibility is to ensure that the produced software implements its intended function
completely and correctly, while avoiding unintended functions. Because each development
process may introduce errors, verification is an integral process, which is coupled with every
development process. The verification process ensures that the software product is built as
designed, with no unexpected functionality. The verification process is also intended to
ensure that the software will perform under any foreseeable operating conditions.

1.2 Scope

This plan will be used by the certification authority to determine if the Software Life Cycle
Process is commensurate with the rigor required for the level of software being developed.
Once approved, it is implemented during the development and product life cycle of the
deliverable airborne software. This Software Verification Plan complies with the
documentation requirements of RTCA/DO-178C, Section 11.3.

The following diagram illustrates the lifecycle process and shows the Verification Process as
an integral process associated with all other planning and development processes.

[System Aspects of Software Development]

Software Life Cycle

Software Planning Process

l/ Software Development Processes \\1

Softwarea Software Software
Requiremeants Dasign Coding
Process Process Process

Integration
Process

Integral Processes

(Software Werification Procass) (Software Configuration Management Process)
C Software Quality Assurance Process) C Certification Liaison Process)

Software Lifecycle Data Additional Considerations)

<Doc Number> Page 8 of 188 Rev. -

Software Verification Plan

1.3 Acronyms and Abbreviations

<PROJ> <Add Project Acronyms in Alphabetical Order>
RAMS Reviews and Analysis Management System
CAMS Coverage Analysis Management System
CC1 DO-178C Control Category 1

CC2 D0O-178C Control Category 2

CI Configuration Item

CM Configuration Management

COTS Commercial off the Shelf

CPU Central Processing Unit

CsC Computer Software Component

CscI Computer Software Configuration Item
csu Computer Software Unit

DER Designated Engineering Representative
DRMS Document Review Management System
FAA Federal Aviation Administration

FHA Functional Hazard Assessment

IvT Independent Verification Testing

MC/DC Modified Condition/Decision Coverage
MISRA Motor Industries Software Reliability Association
MLCP Master Load Control Procedure

PEMS Project Event Management System

PRMS Problem Reporting Management System
PSAC Plan for Software Aspects of Certification
PSSA Preliminary System Safety Assessment
PVCS Serena PVCS Version Control Software

QA Quality Assurance

RTCA Radio Technical Commission for Aeronautics
RTMS Requirements Traceability Management System
SAS Status Accounting System

SCI Software Configuration Index

SCM Software Configuration Management

SCMP Software Configuration Management Plan
SCS Software Coding Standard

SDD Software Design Description

SDS Software Design Standard

SDP Software Development Plan

SECI Software Environment Configuration Index
SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

SQE Software Quality Engineer

SRS Software Requirements Standard

SSA System Safety Assessment

SVC&P Software Verification Cases and Procedures
SVCP Software Verification Cases and Procedures
SVP Software Verification Plan

SWRD Software Requirements Document

VR Verification Results

VSS Visual Source Safe

<Doc Number> Page 9 of 188 Rev.

Software Verification Plan

1.4 Applicable Documents

The following documents are listed for reference only. Each document is applicable to this
plan only to the extent specified herein.

1.4.1 External Documents

RTCA/DO-178C

FAA Order 8110.4C
FAA Order 8110.49

AC 20-115C

CAST-19

<Spec Number>
<Spec Number>

Software Considerations in Airborne Systems and Equipment
Certification

Type Certification
FAA, Software Approval Guidelines

Advisory Circular, RTCA Inc., Document DO-178C, Software
Considerations in Airborne Systems and Equipment Certification

Certification Authorities Software Team (CAST) Position Paper
CAST-19: Clarification of Structural Coverage Analyses of Data
Coupling and Control Coupling (Rev 2).

<Customer Specification>
<Regulatory Specification>

1.4.2 Internal Documents

<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>
<Ref Doc>

Plan for Software Aspects of Certification (Ref. DO-178C, 11.1)
Software Development Plan (Ref. DO-178C, 11.2)

Software Verification Plan (Ref. DO-178C, 11.3)

Software Configuration Management Plan (Ref. DO-178C, 11.4)
Software Quality Assurance Plan (Ref. DO-178C, 11.5)

Software Design Standards (Ref. DO-178C, 11.7)

Software Code Standards (Ref. DO-178C, 11.8)

Software Requirements Document (Ref. DO-178C, 11.9)
Software Design Description (Ref. DO-178C, 11.10)

Build Procedure for Source Code (Ref. DO-178C, 11.11)

Load Control for Executable Object Code (Ref. DO-178C, 11.12)
Software Verification Cases and Procedures (Ref. DO-178C, 11.13)
Software Verification Results (Ref. DO-178C, 11.14)

Software Environment Configuration Index (Ref. DO-178C, 11.15)
Software Configuration Index (Ref. DO-178C, 11.16)

Software Accomplishment Summary (Ref. DO-178C, 11.20)

<Doc Number>

Page 10 of 188 Rev. -

Software Verification Plan

2.0 ORGANIZATION

Software verification activities will be performed by an individual or individuals other than

the developer. The following matrix summarizes the allocation:

Verification Activity

Team

Out
Source

Other

Verification of Outputs of Software Requirements Process

Verification of Outputs of Software Design Process

Verification of Outputs of Coding & Integration Process

Testing of Outputs of Integration Process

Verification of Verification Process Results

2.1 Team Member Responsibilities

Systems Engineering & Software Engineering

Plan for Software Aspects of Certification

Software Verification Plan

Software Requirements Standards

Analysis of System Requirements (Complete Requirements Peer Review Checklists)

Software Requirements Document

Software Accomplishment Summary

Complete System Requirements Document Checklist

Complete Software Requirements Document Checklist

Complete Software Verification Cases and Procedures

Complete Software Verification Results

Structural Coverage Analysis Results

Software Configuration Management

Software Configuration Management Plan

Software Lifecycle Environment Configuration Index

Software Configuration Index

Release Plan for Software Aspects of Certification

Release Software Development Plan

Release Software Verification Plan

Release Software Configuration Management Plan

Release Software Quality Assurance Plan

Release Software Requirements Standards

Release Software Design Standards

<Doc Number> Page 11 of 188

Rev.

Software Verification Plan

Software Configuration Management

Release Software Code Standards

Release System Requirements Document

Release Software Requirements Document

Release Software Design Description

Establish Software Library

Release Low Level Software Verification Cases and Procedures

Release Low Level Verification Results

Release Source Code

Release Software Verification Cases and Procedures

Release Software Verification Results

Release Structural Coverage Analysis Results

Release Software Lifecycle Environment Configuration Index

Release Software Configuration Index

Release Software Accomplishment Summary

Software Engineering & Independent Verification Engineers

Software Development Plan

Software Design Standards

Software Code Standards

Software Design Description

Source Code

Analysis of Requirements (Complete Requirements Peer Review Checklists)

Analysis of Design (Complete Design Peer Review Checklists)

Analysis of Code (Complete Code Peer Review Checklists)

Analysis of Integration (Complete Integration Peer Review Checklists)

Analysis of Test Cases, Procedures and Results (Complete Test Peer Review Checklists)

Low Level Verification Cases and Procedures

Low Level Verification Results

Executable Object Code

Complete Software Design Description Checklist

Complete Low Level Software Verification Cases and Procedures Checklist

Complete Low Level Software Verification Results Checklist

<Doc Number> Page 12 of 188

Rev.

Software Verification Plan

Transition Review Team

Software Planning Review

Software Requirements Review

Software Preliminary Design Review

Software Critical Design Review

Software Code Review

System Integration Review

System Verification Review

Safety Engineering

Review & Approval of Derived Requirements

Functional Hazard Assessment

Preliminary System Safety Assessment

System Safety Assessment

Software Quality Assurance

Software Quality Assurance Plan

Complete Plan for Software Aspects of Certification Checklist

Complete Software Development Plan Checklist

Complete Software Verification Plan Checklist

Complete Software Configuration Management Plan Checklist

Complete Software Quality Assurance Plan Checklist

Complete Software Requirements Standards Checklist

Complete Software Design Standards Checklist

Complete Software Code Standards Checklist

Complete Software Requirements Document Review Checklist

Complete Software Design Document Review Checklist

Complete Software Verification Cases and Procedures Document Review Checklist

Complete Software Verification Results Review Checklist

Complete Software Lifecycle Environment Configuration Index Checklist

Complete Software Configuration Index Checklist

Complete Software Accomplishment Summary Checklist

Transition Criteria Verification (Planning Review Checklists)

Transition Criteria Verification (Requirements Review Checklists)

Transition Criteria Verification (Preliminary Design Review Checklists)

Transition Criteria Verification (Critical Design Review Checklists)

Transition Criteria Verification (Code Review Checklists)

Transition Criteria Verification (Integration Review Checklists)

Transition Criteria Verification (Verification Review Checklists)

Software Conformity Review

Perform Surveillance and Pre-SOI Audits

<Doc Number> Page 13 of 188

Rev.

Software Verification Plan

FAA Software DER

Plan for Software Aspects of Certification Approval

Stages of Involvement Audit #1 Audit (Planning Review)

Stages of Involvement Audit #2 Audit (Design Review)

Stages of Involvement Audit #3 Audit (Verification Review)

Stages of Involvement Audit #4 Audit (Final Review)

Software Configuration Index Approval

Software Accomplishment Summary Approval

Complete FAA Form 8110-3

<Doc Number> Page 14 of 188 Rev.

Software Verification Plan

3.0 INDEPENDENCE

Independence is achieved through the “No Sole Perspective” method. This perspective
proposes that that there is value in having someone other than the developer of the data
review the data, and that it satisfies the criteria for having an “objective evaluation” without
requiring organizational independence. In fact, this perspective recommends that there is
additional benefit in having multiple other persons involved in each review from different
disciplines (such as systems engineers, safety specialists, test engineers, human factors
specialists, technical writers, etc.). Also, by having other disciplines involved in the review,
one could potentially be getting the greatest possible “objective evaluation” of the data.
Independent reviews help prevent a biased perspective since it may be difficult to
impartially review one’s own work.

Additionally, the value of having an independent reviewer involved in the software
engineering discipline is supported by extensive research and application. It is also intuitive
and reasonable that having someone other than the author or developer of an artifact,
review (inspect) that artifact from their different perspectives, disciplines, and experiences
will provide for higher quality, safer, easier to maintain, and less expensive (in the long run)
products.

This project expands on the “No Sole Perspective,” and proposes the following guidelines:

a. General Position: To achieve verification independence, the person performing or
responsible for the verification activity will not be the same person who developed
the data being verified.

b. Tool Qualification: If a tool is used to eliminate, reduce or automate the activities
associated with a DO-178C objective needing verification independence and that
tool’s output will not be completely verified with independence, then that tool will be
qualified.

c. Test Case and Procedure Development: The test cases and procedures will not be
developed by the same person who developed the low-level requirements or source
code to be verified by those test cases and procedures.

d. Test Case and Procedure Review: The person responsible for performing the test
cases and procedures review will not be the same person who developed the test
cases and procedures to be verified.

e. Test Execution: The person responsible for executing the tests will not be the same
person who developed the requirements or code being verified by the tests, nor the
developer of the test cases and procedures being executed. If the test execution is
fully automated (e.g., scripted “batch” run with no need for human intervention or
observation), then this guideline would not apply. However, that test “tool” may
need to be qualified and the developer of the testing tool (that person setting up the
automated test execution and environment) will not be the same person who
developed the test cases and procedures.

f. Test Results Review and Coverage Analysis: The person responsible for performing
the test results review or test coverage analysis will not be the same person who
developed the test cases and procedures, or the same person who executed the
tests.

<Doc Number> Page 15 of 188 Rev. -

Software Verification Plan

3.1 Peer Reviews

Peer reviews will be used as the primary means to obtain verification independence. Within
the scope of this project, peer review is defined as the evaluation of the conceptual and
technical soundness of a design by individuals qualified by their education, training and
experience in the same discipline, or a closely related field of science, to judge the
worthiness of a design or to assess a design for its likelihood of achieving the intended
objectives and the anticipated outcomes. A peer review may be conducted on any or all
components of a design, conceptual approaches or recommendations, application or
interpretation of code requirements or supporting analysis and calculations.

The scope of the peer review may be a complete review of the entire documentation,
including compliance with applicable requirements, design, coding and verification standards
and the appropriateness of the assumptions, engineering methods and input data used to
support the design. Alternatively, the scope of the peer review might be limited to specific
aspects of the design documentation, such as specific models or methods and their
associated input data and conclusions drawn from the output data. Agreement on the scope
of the peer review is achieved between the contracting stakeholder and the peer reviewer
and documented in the Reviews and Analysis Management System (see screen shot below).
The scope of the review explicitly identified in this tool at the time of execution of the
agreement to undertake the peer review. Any changes to the scope must be agreed to by
both the contracting stakeholder and the peer reviewer. The peer review is limited to only
the technical aspects of the design documentation.

Sample Screen Short: Action Item Management System

D Actan Hom Managemant Systeem - Microsolt Imternet Lxplorer

Dl Ot e Pgyortes ook e r
Oex - w 2] F e Faaetes £ iy o - g3
() et (i, o trouart:s, Coary DOV Fra e /8 xargiafy coect JOOO ALV 0% . a0 * D= a— y

glooa gloomiwe ghaoe glom) Cussverirk oo onc @] PAATR By] 50200 - Acaty] 3008 - Lagre 4 Fre-Nahe Poaes)] ckdty Fostios 4] Are Sedeg Chat

-

Selact Raconds That Contyn (%« 1) | Ity Poarerw 10 v l Search
LM sunent - 178 | Add Fewe M Action Bers Open Action Rese My Astion Reprs DO-TP38 Jobdld Project Lt

)

Lint of Revtews chmckints, sction tums snd sign in theets i

Poview Tile Review Toph Waviaw Datw | Signon Strewt £ Outbosk Mueting lomient | Checkint | Acvion Maws | Closad | Edt |Onletn |
Sattwars Panning Peview Trwekion Conplance Rm Craate Kottty Frimt Uphoad PIE Wisew WNaaey A Vew r -
Saltwire Pequrenerts Paview TrarsRien Conplsnte VIFARs | Craste Wollly Fréit Upksed POF | View Wadty | Ad00wew v /7 |
Loftwarn Prefrmmary Dezges Aovdew Trasck Cenplance 172055 Craste Mottty Print Uploed PDF Wiew Nodéy fdd e v V4 =
Sattwars Critteat Omiign Lavios Tracatien Conplance [reste Notify Srint Uplesd PIF | View Madty | fddivew s | &
Softwars Cade Radew Tewsklon Conplance 11452095 Craske Kottty Srint Upkad POF | View WMadty | £40N%ew 7 | @

“CaNwee btegrathn Fevies Trweahien Cenplance VNS | Craste Wollly Frén Uplesd PIF | View Wedfy | Addiview 7 | &
Saftwwe Verficetion fedew Trasatizo Conplance ARR T 1 Craste Notify Srnt Upleed PIF Wew Nzdéy MdiVew s | =
Loftwws Contarmky Redew Trasskion Conplance s mate Notihy Frint Uplesd PL¥ { Ve Modey [RE T 7 | &

" 501 - Panring S04 ([EF: Oversight 111209 Craste Motlfy Frint Upkad PIE | View Modty | 2ddiview 7 | &
| 501 - Develogmert ZA 1 [ER Overright V0% Crasie Notlly Print Upked DIF | View Medfy | Addiview 7 | =
01 - Varfcation S0A ¢ DER Ovwrzght 120 Craste Nottly Srimt Uplead VIF Wiew Madéy MdVew & u
101 - Piead YA ¢ (KR Overright 1 4ramm reste Notity Srint Upbad - PIF | View Madty | sddrvew s | &

- - - - - '
Pear Pevire | Pastew C2 Reauirmrarns | reate Notlfy Frint Upled DIF | View Medéy [adundew | s | &
Puear Raviwe - Regursmarts l Look st test st=ng 1 121572008 Cruste Moty Srot Uplesd PIF | View Madéy 1 Atd o l /s | &

-
£] 8 O ruinie

<Doc Number> Page 16 of 188 Rev. -

Software Verification Plan

3.2 Independence of DO-178C Objectives

The following matrix shows the DO-178C objectives that will be satisfied with independence.

complies with
low-level
requirements.

Analyses of
the Source
Code

Table Objective Verification | Item Being Interpretation
Activity Verified

A-3(1) Software high- | Reviews and | High-level The reviews and analyses of
level Analyses of requirements the high-level requirements
requirements | the High- will be performed by a
comply with Level person(s) other than the
system Requirement developer of the high-level
requirements. | s requirements.

A-3(2) High-level
requirements
are accurate
and
consistent.

A-3(7) Algorithms are
accurate.

A-4(1) Low-level Reviews and | Low-level The reviews and analyses of
requirements | Analyses of requirements the low-level requirements
comply with the Low- will be performed by a
high-level Level person(s) other than the
requirements. | Requirement developer of the low-level

A-4(2) Low-level S requirements.
requirements
are accurate
and
consistent.

A-4(7) Algorithms are
accurate.

A-4(8) Software Reviews and | Software The reviews and analyses of
architecture is | Analyses of architecture the software architecture will
compatible the Software be performed by a person(s)
with high-level | Architecture other than the developer of
requirements. the software architecture.

A-4(9) Software
architecture is
consistent.

A-4(13) | Software
partitioning
integrity is
confirmed.

A-5(1) Source Code Reviews and | Source Code The reviews and analyses of

the Source Code will be
performed by a person(s)
other than the developer of

<Doc Number>

Page 17 of 188

Rev. -

Software Verification Plan

Table Objective Verification | Item Being Interpretation
Activity Verified

A-5(2) Source Code the Source Code.
complies with
software
architecture.

A-5(6) Source Code
is accurate
and
consistent.

A-6(3) Executable Requirement | Executable The person(s) who created a
Object Code s-Based Object Code set of low-level requirements-
complies with | Testing based test cases should not
low-level be the same person(s) who
requirements. developed the associated

A-6(4) Executable Source Code from those low-
Object Code is level requirements. It follows
robust with that:
low-level
requirements. 1. The same person(s) could

develop the low-level
requirements and the Source
Code, provided another
person(s) develops the test
cases from those low-level
requirements, or

2. The same person(s) could
develop the low-level
requirements and their
associated test cases,
provided another person(s)
develops the Source Code.

A-7(1) Test Reviews and | Test procedures | The reviews and analyses of
procedures Analyses of the test procedures will be
and expected | the Test performed by a person(s)
results are Procedures other than the developer of
correct. the test procedures.

A-7(2) Test results Reviews and | Test results The reviews and analyses of
are correct Analyses of the test results will be
and the Test performed by a person(s)
discrepancies Results other than the person(s) who
explained. performed the tests.

A-7(3) Test coverage | Requirement | Test cases The requirements-based test
of high-level s-Based Test coverage analysis will be
requirements | Coverage performed by a person(s)
is achieved. Analysis other than the developer of

A-7(4) Test coverage the test cases.
of low-level
requirements
is achieved.

<Doc Number>

Page 18 of 188

Rev. -

Software Verification Plan

Table Objective Verification | Item Being Interpretation
Activity Verified
A-7(5) Test coverage | Structural Test cases, test | The exact independence
of software Coverage procedures, required depends on how the
structure Analysis and/or test structural coverage analysis
(modified results is carried out. For example, if
condition/deci the structural coverage
sion) is analysis is performed on the
achieved. test cases, then the structural
A-7(6) Test coverage coverage analysis will be
of software performed by a person(s)
structure other than the developer of
(decision the test cases. Similarly, if
coverage) is the structural coverage
achieved. analysis is performed on the
A-7(7) Test coverage test procedures and test
of software results, then the structural
structure coverage analysis will be
(statement performed by a person(s)
coverage) is other than the developer of
achieved. the test procedures and test
results.
A-7(8) Test coverage
of software
structure
(data coupling
and control
coupling) is
achieved.
A-7(9) Verification of
additional
code, that
cannot be
traced to
Source Code,
is achieved.

<Doc Number>

Page 19 of 188

Rev. -

Software Verification Plan

4.0 VERIFICATION METHODS

The Software Verification Process utilizes three methods to verify that the objectives of each
process have been satisfied. These methods include review, analysis and test. Reviews and
analysis are applied to the results of the software development and software testing
processes. Reviews provide a quantitative assessment of correctness and consist of
inspection of outputs of the processes guided by checklists. Analysis provides repeatable
evidence of correctness and examines in detail the functionality, performance, traceability
and safety implications of a software component and its relationship to other components.
Testing will be used to exercise the software to verify that it satisfies specific requirements
and to detect errors in the software.

4.1 V-Model Verification Approach

A V-Model approach, as detailed in the Software Development Plan, will be used during
development and verification. This model is summarized below.

Development Activity Validation & Verification Activity

Requirements Validate Requirements & Trace Data

Preliminary Design Verify Conceptual Design & Trace Data

Detail Design Verify Detail Design & Trace Data

Integration Verify Integration & Trace Data

Requirements-Based Test Case Creation Verify Test Cases & Trace Data

Test Procedure Case Creation Verify Test Procedures & Trace Data
Implementation

Requirements-Based Test Execution Verify Test Results & Trace Data

Structural Coverage Execution Verify Structural Coverage

Structural Coverage Analysis Perform Coverage Analysis Resolution

4-1 V-Model Relationship Table

<Doc Number> Page 20 of 188 Rev. -

Software Verification Plan

Early in the review process, the Software Verification Plan is reviewed to ensure that
activities planned for achieving test coverage, if followed, will satisfy the DO-178C objective.
Other plans including the Plan for Software Aspects of Certification, Software Configuration
Management Plan, Software Quality Assurance Plan, and tool plans (if applicable) may
contain additional information related to test coverage.

The following questions are considered when reviewing the plans:

» Are the plans sufficiently clear and detailed to allow the development and quality
engineers to follow them consistently?

» Do the plans specify who is allowed to perform verification tasks?

» Do the plans specify how each requirement will be tested (e.g., module test,
software integration, etc.)?

» Do the plans address all aspects of test coverage analysis? For example, are the
following addressed:

* tools and tool qualification, if tools are used for test coverage

»= the relationship between requirements-based testing and measuring test coverage

= a process for determining when additional requirements-based tests should be

added, if coverage is not achieved as expected

a procedure for regression analysis and testing, if necessary

the transition criteria to start and end test coverage

Do the plans address the software change process for the airborne software?

Y VvV

Do the plans address regression analysis and testing with respect to the unique
requirements for test coverage?

Y

Do the plans address possible reuse of verification tools? For example, is credit being
claimed from previous tool qualifications or will the tool qualification data be used in
a future program?

» Is there evidence that the plans are being followed (such as, progress against
timeframes, staffing, verification records, and SQE records)?

Testing is a method as well as a process, similar to the development processes. The
Software Testing Process invokes the integral processes of Verification, Configuration
Management, Quality Assurance and Certification Liaison. As such, it will be identified in
this Software Verification Plan as both a method and a process, detailing the reviews and
analysis that occur during the Software Testing Process.

<Doc Number> Page 21 of 188 Rev. -

Software Verification Plan

4.2 Analysis of Outputs Methods

The analysis of outputs methods are specific to each analysis being performed. The
following diagram, and subsequent paragraphs, details the methods which will be used for
each analysis performed as part of the software verification process.

Safety Safety Requirements
R i ts ® Are Identified As Such
FHA, PASA & 8/ (By:c:t:;emer;w) In The RTMS Tool

y v

- System Verification Through
System Requirements Requirements @ Inspection And
Document (By Sys Engineer) Demonstration
(Traceability Matrix) —

L l

I |

HW/SW Requirements High-Level
Document Requirements

A L

Normal Range &
Robustness
Test Cases

HW/SW Requirements
Document
(Traceability Matrix)

1 - =
PCB/AEH/SW Design & Lovt_l-LevelB
Description equiremen
(Traceability Matrix) (By Design Engineer }

High-Level Derived
Requirements?

Derived Requirements
® Are Identified As Such
In The RTMS Tool

Low-Level Design &
Pin-Level Test Cases

I

PCB/AEHSW Design
Description
(Traceability Matrix)

Low-Level Derived
Requirements?

Yes

Derived Requirements
® Are Identified As Such
In The RTMS Tool

HDL / Code
(By Design Engineer)

Complete March 10, 2011
Requirements Tr bility Manag t System

<Doc Number> Page 22 of 188 Rev. -

HDL / Code
{ Traceability Matrix)

Software Verification Plan

4.2.1 Traceability of Reviews and Analysis Results

Traceability between review artifacts and review and analysis results will be facilitated by
applying a unique ID (including the Project ID and Review ID) to each review activity via the
Reviews and Analysis Management System. The review item, review sign-in sheet, review
checklist and related action items will be will be traceable to each other based in this ID. In
addition, a review folder which contains the review artifacts is maintained using the same
ID, ensuring complete traceability and archiving. A final review of all verification evidence
and related traceability will be conducted as part of the Software Conformity Reviews.

Unique ID Item

Review Artifacts . .
<Project> - <Review>

Review Item (What was reviewed) RI: 01-025 -01, 02, 03, etc.
Review Sign-In Sheet (Who reviewed it) SS: 01-025
Review Checklist (Review criteria) RC: 01-025
Action Items (Review effectiveness) Al: 01-025 -01, 02, 03, etc.

Reviews and Analysis Management System

£ Meviews B Anstyshs Manageoont Sestoon - Windows lnternet Logplores

G» . £ [p—— v BB s a g P
e BN Yew Fyoles [k e
o Yocrta woe s B @ owe £ actes S CiRsue Q0w £ CHB £ NS £ Chnde B TN0S £ TN £ FAA £ -3Deelts @ Vorgege 1O et 2 50008 L Foon "
S = BRI (e £3s govfaealt, . B e & Arwpis M X -9 - v P ey Tk @-
-
Seled | Records That Cantain (% » A w Rovew D -
Eragres: 11 1A 1ML | 01T AME Modow Mastee Lt Marage inputs Signatises AR AN Open Afy Ms My Archives Project Ust
Lint of rowimws, checkiinty, artion e and vigndn theets
Tearaltion Review Title Revieow Topk Revelewe Diate SPrn est Chachlist Pess. Ay Oge Dosad Folder Edit Dedete
S tmare Parrvng Reviow Trarthan Camplasce 2011/0824 Creaty \iew Vew Moty v » 00 o 4 7/ a
ol tware Pacueremernt; Pates Trermttian Camglance 10848/ prigt Crewts Vew Guw Nodfy B 000 = 1 7 o
Loftware Pystyvnary Detgn Feten Tramittian Camglacce 0%/ 0800 Croate View Yiew Nodfy B [oo = | rs =
Loftware Critie s Datige Review Tranition Complance LA RSN) Create View View Mottty | 1=} o0 [Leg = 7’ u
Software Cade Sevirw Trwviithsn Comalasce RS04 Create View View Moty 1) o0 000 =4 / u
Software ntegraticn Boview Tramitian Cesglasce TV Creats \Vew View Modiy | (=3 000 (L] -~ 1 ' =
Loftware Verdcation Revtew Tramitian Complance Joa%/ ot Cronts Wew View Nodfy - 00 0o g 7 o
Lot twars Canborwity Revdew Traniitian Canglance oM/ 0001 Creste View View Naodity 1= 00 000 3 7’ o
SO0 - Planring Review | 534 / DER Dversight 08850 Crewte View e Nty = o0 000 = | 7/ wu @
& vt o Mo

<Doc Number> Page 23 of 188 Rev. -

Software Verification Plan

4.2.2 Transition Review Planning

Transition reviews will be held for entry into each of the Software Requirements, Software
Design, Software Coding and Integration Processes as well as the Software Verification,
Software Configuration Management, Software Quality Assurance and Certification Liaison
Integral Processes. The number of transition reviews will be based on the number of
iterations through the lifecycle and the number of times a process has been re-entered.

The following model illustrates three spirals and a final integration spiral. In all cases,
planning is done first and integration is done together. In addition, the final transition
criteria where final credit is provided occurs during the final integration spiral. Partial (P)
transition criteria are provided for each spiral. Partial transition criteria includes the
following as a minimum:

1. The Configuration Item being transitioned is under CC1 control
2. The Configuration Item has been peer reviewed (see Peer Review Planning below)
3. Peer review verification results are under CC2 control
4. SQA has verified that the planned partial transition criteria has been satisfied
Process PLN | REQ | DES | COD | INT | VER | SCM | SQA | SQA
Spiral 1 v P P > v
Spiral 2
Spiral 3
Integration Spiral v o o o + + +

4.2.3 Peer Review Planning

Peer reviews will be held for each of the main functional components identified during the
initial analysis of system requirements allocated to software. At least one peer review will
be held for each main function for High-Level Requirements (HLR), Architecture (ARCH),
Code (CODE), Integration (INT), Test Cases (TC), Test Procedures (TP), Test Results,
including Structural Coverage Analysis Results and Results Resolution (TR).

Review Title HLR | ARCH LLR CODE INT TC TP TR
Main Function 1 W W W W W J J J
Main Function 2 V V' ' ' ' + + +
Main Function 3 “ “ ' ' ' + + +
Functional Interface W W W ' ' + o o

<Doc Number> Page 24 of 188 Rev. -

Software Verification Plan

4.3 Software Planning Process Verification Methods

4.3.1 Planning Process Verification Activities

DO-178C Table DO-178C Paragraph

DO-178C Activities Reference Reference

Methods are chosen that enable the
objectives of DO-178C to be satisfied.
Software life cycle processes can be
applied consistently.

Each process produces evidence that its
outputs can be traced to their activity
and inputs, showing the degree of
independence of the activity, the
environment, and the methods to be
used.

The outputs of the software planning
process are consistent and comply with NA 4.6d
section 11 of DO-178C.

NA 4.6a

NA 4.6b

NA 4.6c

4.3.2 Software Planning Process Inputs

Software Planning Process inputs to the Software Verification Process include the Software
Verification Plan.

4.3.3 Software Planning Process Reviews and Analysis

4.3.3.1 Software Verification Plan Review

Review of the Software Verification Plan occurs when the document is mature enough to be
reviewed. Once prepared, the Software Verification Plan is submitted to Software
Configuration Management and entered into the document control system.

The Software Quality Assurance Engineer coordinates the document review process using
the Document Review Management System. Each reviewer adds his or her comments in the
Document Review Management System. A cycle of comment incorporation and re-review
occurs through Configuration Management until all comments are closed. The Project Lead
is responsible for closing all document comments prior to formal release.

Once all comments have been closed, the Software Verification Plan is reviewed by the
Software Quality Assurance Engineer against the Document Review Checklist and a cross
references from each section of the Software Verification Plan to the DO-178C Section 11
Objective to ensure that full compliance is achieved (See sample screenshot below). Once
complete, the Software Quality Assurance Engineer signs and dates the checklists, which is
maintained by Software Configuration Management as CC2 compliance evidence. The
Software Verification Plan is then signed and released.

<Doc Number> Page 25 of 188 Rev. -

Software Verification Plan

Sample Screen Shot: Action Item Detail

R Action Item Management - Microsoft Internet Explorer

plle Edit View PFavorites Tools Help o
O back ~ (=] (&) . S Search Favorites €5 - A w| - | 0,
Google | v | 2y Search * «» > & - Sign In ~ s el o | 4] Rttps: /v, Fasconsultants, cor | ﬂ Go

Document Review Checklist

Software Veriflcation Plan

ItemNumber: B00-SVP-01
Program: FM5-3299 Flight Management System
Evaluation Date: |12/31/2099
Evaluator / Title: Team Membar, Principal Software QA Enginaar

Checklist Items

Cron: [~] ok NOK

The Organization sec tion includmes
organizational responsibilities within the
software verification process and Interfaces
with the other software life cycle processes,

Objective: 11.3a Doc Ref; (2.1

] Done S W Internet

4.3.3.2 Software Planning Review

The Software Planning Process concludes with a Software Planning Review conducted by the
Project Engineer. Transition Criteria from the Software Planning Process to the Software
Development Process are discussed at this review.

When the Software Planning Review is held, action items are recorded in the Reviews and
Analysis Management System database file associated with that review. The review
includes a discussion of the status of the development and integral activities, a review and
status of the Planning Documents, and a discussion of any special considerations. The
Software Quality Assurance representative steps through the Software Planning Review
Checklist. If deficiencies are revealed during the review, action items are generated, and
corrective actions to resolve the deficiencies are fed back into the appropriate process.

Lifecycle data to be considered at the Software Planning Review include the following:
» Review and approval of the Plan for Software Aspects of Certification

Review and approval of the Software Development Plan

Review and approval of the Software Verification Plan

Review and approval of the Software Configuration Management Plan

Review and approval of the Software Quality Assurance Plan

Review and approval of the Software Requirements Standards

Review and approval of the Software Design Standards

YV V V V V VYV V

Review and approval of the Software Code Standards

<Doc Number> Page 26 of 188 Rev. -

Software Verification Plan

A review checklist is used to identify the Review Inputs, Objectives and Activities that must
be satisfied in order to transition to the next process (See Checklist Below).

Sample Screen Shot: Transition Review Checklist

A Action Item Management - Microsoft Internet Explorer

File Edit View Favorites Tools Help "0',"
Qsack ~ & - ¥ @ | P search YrFavoites & | (3~ & Wl -~ [J &
Go -Sle [v ‘ -" Search v 2 Q > ()signIn ~ Address {@j https: ffwww.faaconsultants.cor Vi Go
RI 09: Software Quality Assurance Plan {CC2) %

Reference: 11.5

Rl 10: Software Requirements Standards (CC2) _
Reference: 11.6

Rl 11: Software Design Standards (CC2)
Reference: 11.7

Rl 12: Software Code Standards (CC2)
Reference: 11.8

Rl 13: Software Configuration Management Records (CC2)
Reference: 11.18

Rl 14: Software Quality Assurance Records {CC2)
Reference: 11.19

Checklist ltems

Cloi: [Jok NOK

The activities of the software development
processes and integral processes of the software
life cycle that will address the system
requirements and software level(s] are defined.

Reference: A-1.1 {4.13,4.3)

NA }

@] Done S @ mtermet

<Doc Number> Page 27 of 188 Rev. -

Software Verification Plan

4.4 Software Requirements Process Verification Methods

4.4.1 Software Requirements Process Verification Objectives

DO-178C Objectives DO-178C Table DO-178C Paragraph
Reference Reference

ngtware h|gh-Ie\{eI requirements comply A-3.1 6.3.13

with system requirements.

ngh_-level requirements are accurate and A-3.2 6.3.1b

consistent.

Hl_gh-level requirements are compatible A-3.3 6.3.1c

with target computer.

High-level requirements are verifiable. A-3.4 6.3.1d

High-level requirements conform to A-3.5 6.3.1e

standards.

High-level re_quwements are traceable to A-3.6 6.3.1f

system requirements.

Algorithms are accurate. A-3.7 6.3.1g

4.4.2 Software Requirements Process Inputs

Software Requirements Process inputs to the Software Verification Process include the
system requirements, high-level software requirements and traceability data.

4.4.3 Transition Criteria for Entering The Verification of Requirements Process

This section includes the conditions necessary to consider the verification closed and
successful for the Planning Process which establishes the transition criteria required for
entering the Verification of Requirements Process.

» Planning documents are correct, released and under the applicable CC control
Planning document checklists are complete and are under CC2 control

Standards checklists are complete and are under CC2 control

Document comments have been implemented, verified and are under CC2 control
Peer review checklists are complete and under CC2 control

Transition review checklist is complete and under CC2 control

Action items have been recorded, implemented, closed and under CC2 control
Signature sheets have been produced and are under CC2 control

Verification Independence has been shown where required and under CC2 control
SQA review results have been produced and are under CC2 control

V VV V V VYV V V V V

Other artifacts (i.e., customer comments) are recorded and are under CC2 control

<Doc Number> Page 28 of 188 Rev. -

Software Verification Plan

4.4.4 Software Requirements Process Reviews and Analysis

Prior to development of the Software Requirements Document and formal release of the
software high-level requirements, peer reviews are held to review and analyze the high-
level software requirements to determine if they are compliant with the criteria detailed in
the Software Requirements Standards and correctly implement the system requirements.
Peer review entry and exit criteria, along with signature sheets and action items are
recorded in the Reviews and Analysis Management System.

Sample Screen Shot: QCMS Peer Review

A Action Item Management - Microsoft Internet Explorer |’._||E|E|
. File Edit Wew Favorites Tools Help |',’
Qbak - & - [[@ @0 S search 7 Favorites £ -~ [- el
. Go gle | ~|| ¥ search ~+3> & ~ ()signIn ~ | Address |£] https:/fwww. faaconsultants. cor V| Go
~
Review Criteria Checklist
Level C Criticality
Peer Review - C2 Requirements
Checklist ID: 0
Program: FM5-32%% Flight Management System
Review Topic: Review C2
Evaluation Date: Friday, September 26, 2008
Life Cycle Phase: Planning
Evaluator / Title: Team Member, Quality Engineer
Review Inputs
Rl 00: Mo Review Items Defined {(CC-)
Reference: MNA =
Checklist ltems
Meeting Notes
Hotes / Extended Checklist ltems:
Exit Criteria: ~
Compliance with system reguirements: Ensure = L¥
I@ Cone S & mternet

<Doc Number> Page 29 of 188 Rev. -

Software Verification Plan

During the Software Requirements Process, the high-level software requirements and
related traceability data are reviewed and analyzed by the project team based on the
objectives identified in the Software Requirements Document Checklist and Software
Requirements Review Checklist. The project team participants involved in this peer review
must include the signature authority; that is it must include those individuals who are
responsible for the release approval of the finalized document. The review checklists are
contained in the Software Verification Plan.

The verification review comments for the Software Requirements Document are placed in
the Document Review Management System and managed by the Project Engineer through
closure. Upon acceptance, each team member signs the document, acknowledging
acceptance. The document is then released and controlled through the SCM Process. The
released document is provided upon request to the Certification Authority for review.
Comments provided by the Certification Authority are added to the Document Review
Management System and managed to closure. Re-verification of the Planning Documents
occurs until final acceptance by the Certification Authority is reached. On-going change
control and change authorization is provided through the SCM Process.

Upon final acceptance of the Software Requirements Documents by the development team
and Certification Authority, a formal Software Requirements Review is conducted. The
Requirements Review is used to demonstrate that all outstanding issues have been
addressed to closure and that the established transition compliance criteria have been
satisfied. Final transition criteria assurance and acceptance is obtained by Software Quality
Assurance, in conjunction with the Certification Authority.

4.4.4.1 Software Requirements Document Review

Review of the Software Requirements Document occurs when the document is mature
enough to be reviewed. Once prepared, the Software Requirements Document is submitted
to Software Configuration Management and entered into the document control system.

The software requirements document review is part of the process for developing and
verifying the written form of the software requirements for release and further use in the
project.

The Software Quality Assurance Engineer coordinates the document review process using
the Document Review Management System. Each reviewer adds his or her comments in the
Document Review Management System. A cycle of comment incorporation and re-review
occurs through Configuration Management until all comments are closed. The Project Lead
is responsible for closing all document comments prior to formal release.

Once all comments have been closed, the Software Requirements Document is reviewed by
the Software Quality Assurance Engineer against the Document Review Checklist and a
cross references from each section of the Software Requirements Document to the DO-178C
Section 11 Objective to ensure that full compliance is achieved (See screenshot below).
Once complete, the Software Quality Assurance Engineer signs and dates the checklists,
which is maintained by Software Configuration Management as CC2 compliance evidence.
The Software Requirements Document is then signed and released.

<Doc Number> Page 30 of 188 Rev. -

Software Verification Plan

4.4.4.2 Software Requirements Review

The Software Requirements Review follows the Software Requirements Definition Process.
The Project Engineer conducts the Software Requirements Review using the Software
Review Checklist as an aid. When the Software Requirements Review is held, the Project
Engineer records the minutes or assigns someone to do so. The minutes include a
discussion of the results, agreements and disagreements reached during the review,
updates to the project schedule, resource estimates, and action item assignments with
estimated completion dates.

The software requirements review is used to show completion of the software requirements
definition process.

The review is conducted to demonstrate compliance with the objectives of the Software
Requirements Process. Members of the project team, which includes the Project Engineer,
Software Engineer assigned to the project, Hardware Engineer, Software Quality Assurance
Engineer, and the Configuration Management representative, will be present at the review.
Other concerned individuals, such as Manufacturing Test Engineering, Business
Development or Sales, may be invited. The review will include a presentation of the naming
conventions used for the software requirements and a review and discussion of each
software requirement.

The objective of the Software Requirements Review is to detect and report errors that may
have been introduced during the Software Requirements Definition Process.

» The review ensures that the system functions to be performed by the software are
completely defined, that the performance and safety requirements have been
correctly reflected in the software requirements, and that justification is provided for
any derived requirements.

» The review ensures that each requirement is accurate, unambiguous, and sufficiently
detailed, and that the requirements do not conflict with each other.

» The review confirms that no conflicts exist between the high-level requirements and
the hardware features of the target system. Special attention is given to the use of
system resources, system response times, and input/output hardware.

» The review ensures that each requirement can be verified.

The Software Quality Engineer steps through the Software Review Checklist. If deficiencies
are revealed during the review, action items are generated, and corrective actions to
resolve the deficiencies are fed back into the appropriate process.

Items to be considered at the Software Requirements Review include, but are not limited to,
the following:

» Review and approval of the Software Requirements Document

> Review and acceptance of all functional requirements, performance requirements,
interface requirements and design constraints.

» High-level and Derived requirements are recorded in the Software Requirements
Document.

» The top-level software design is documented in the preliminary release of the
Software Design Description.

» The Software Requirements Process includes a Software Preliminary Design Review.

<Doc Number> Page 31 of 188 Rev. -

Software Verification Plan

Following the review, the program proceeds to the Software Design process.

4.4.4.3 Analysis of High-Level Software Requirements

The software requirements review is used to show completion of the software requirements
definition process.

Peer reviews are conducted to analyze the high-level requirements. The following
characteristics are evaluated and form the exit criteria for the peer review:

>

Compliance with system requirements: The objective is to ensure that the system
functions to be performed by the software are defined, that the functional,
performance, and safety-related requirements of the system are satisfied by the
software high-level requirements, and that derived requirements of the system are
satisfied by the software high-level requirements, and that derived requirements and
the reason for their existence are correctly defined.

Accuracy and consistency: The objective is to ensure that each high-level
requirement is accurate, unambiguous, and sufficiently detailed, and that the
requirements do not conflict with each other.

Compatibility with the target computer: The objective is to ensure that no conflicts
exist between the high-level requirements and the system features of the target
computer, especially, system response times and input/output hardware.

Verifiability: The objective is to ensure that each high-level requirement can be
verified.

Conformance to standards: The objective is to ensure the Software Requirements
Standards were followed during the software requirements process and that
deviations from the standards are justified.

Traceability: The objective is to ensure that the functional, performance, and safety-
related requirements of the system that are allocated to software were developed
into the software high-level requirements.

Algorithm aspects: The objective is to ensure the accuracy and behavior of the
proposed algorithms, especially in the area of discontinuities.

4.4.4.4 System and Software Requirements Trace Analysis

The results of this analysis are contained in the system requirements trace matrix. This
requirements trace matrix is constructed as follows:

>

>

The requirement identifier for each system requirement allocated to software will be
entered into one field of the matrix.

The requirement identifier for each software requirement that satisfies the system
requirement will be entered into the other field of the matrix.

When multiple software requirements satisfy one system requirement, an entry with
the duplicate system requirement identifier field will be entered.

When multiple system requirements are satisfied by one software requirement, an
entry with the duplicate software requirement identifier field will be entered.

All software requirements derived due to implementation will be designated as
“Derived” in the system requirement identifier field.

<Doc Number> Page 32 of 188 Rev. -

Software Verification Plan

4.5 Software Design Process Verification Methods

4.5.1 Software Design Process Verification Objectives

DO-178C Objectives DO-178C Table DO-178C Paragraph
Reference Reference

ng-level requ[rements comply with A-4.1 6.3.2a

high-level requirements.

Low-level requirements are accurate and A-4.2 6.3.2b

consistent.

Lc_>w-|eve| requirements are compatible A-4.3 6.3.2C

with target computer.

Low-level requirements are verifiable. A-4.4 6.3.2d

Low-level requirements conform to A-4.5 6.3.26

standards.

Low-level requirements are traceable to A-4.6 6.3.2f

high-level requirements.

Algorithms are accurate. A-4.7 6.3.29g

Software architecture is compatible with A-4.8 6.3.33
high-level requirements.

Software architecture is consistent. A-4.9 6.3.3b

Software architecture is compatible with

A-4.10 6.3.3c
target computer.
Software architecture is verifiable. A-4.11 6.3.3d
Software architecture conforms to A-4.12 6.3.3¢
standards.
Soft_/vare partitioning integrity is A-4.13 6.3.3f
confirmed.

4.5.2 Software Design Process Inputs

Software Design Process inputs to the Software Verification Process include the software
architecture, low-level software requirements and traceability data.

4.5.3 Transition Criteria for Entering The Verification of Design Process

This section includes the conditions necessary to consider the verification closed and
successful for the Requirements Process which establishes the transition criteria required for
entering the Verification of Design Process.

» Requirements document is correct, released and under the applicable CC control
» Requirements document checklists are complete and are under CC2 control

» Document comments have been implemented, verified and are under CC2 control
» Peer review checklists are complete and under CC2 control

<Doc Number> Page 33 of 188 Rev. -

Software Verification Plan

Transition review checklist is complete and under CC2 control

Action items have been recorded, implemented, closed and under CC2 control
Signature sheets have been produced and are under CC2 control

Verification Independence has been shown where required and under CC2 control
SQA review results have been produced and are under CC2 control

YV V V VYV Y VY

Other artifacts (i.e., customer comments) are recorded and are under CC2 control

4.5.4 Software Design Process Reviews and Analysis

Prior to development of the Software Design Description and formal release of the software
architecture and software low-level requirements, peer reviews are held to review and
analyze the proposed architecture and software low-level requirements to determine if they
are compliant with the criteria detailed in the Software Requirements Standards and
Software Design Standards and correctly implement the high-level software requirements.
Peer review entry and exit criteria, along with signature sheets and action items are
recorded in the Reviews and Analysis Management System.

During the Software Design Process, the software architecture, software low-level
requirements and related traceability data are reviewed and analyzed by the project team
based on the objectives identified in the Software Design Description Checklist and Software
Preliminary Design Review and Software Critical Design Review Checklists. The project
team participants involved in this peer review must include the signature authority; that is it
must include those individuals who are responsible for the release approval of the finalized
document. The review checklists are contained in the Software Verification Plan.

The Verification review comments for the Software Design Description are placed in the
Document Review Management System and managed by the Project Engineer through
closure. Upon acceptance, each team member signs the document, acknowledging
acceptance. The document is then released and controlled through the SCM Process. The
released document is provided to the Certification Authority for acceptance. Comments
provided by the Certification Authority are added to the Document Review Management
System and managed to closure. Re-verification of the Planning Documents occurs until
final acceptance by the Certification Authority is reached. On-going change control and
change authorization is provided through the SCM Process.

Upon final acceptance of the Software Design Descriptions by the development team and
Certification Authority, formal Software Preliminary Design and Software Critical Design
Reviews are conducted. These reviews are used to demonstrate that all outstanding issues
have been addressed to closure and that the established transition compliance criteria have
been satisfied. Final transition criteria assurance and acceptance is obtained by Software
Quality Assurance, in conjunction with the Certification Authority.

4.5.4.1 Software Design Description Review

Review of the Software Design Description occurs when the document is mature enough to
be reviewed. Once prepared, the Software Design Description is submitted to Software
Configuration Management and entered into the document control system.

The Software Quality Assurance Engineer coordinates the document review process using
the Document Review Management System. Each reviewer adds his or her comments in the

<Doc Number> Page 34 of 188 Rev. -

Software Verification Plan

Document Review Management System. A cycle of comment incorporation and re-review
occurs through Configuration Management until all comments are closed. The Project Lead
is responsible for closing all document comments prior to formal release.

Once all comments have been closed, the Software Design Description is reviewed by the
Software Quality Assurance Engineer against the Document Review Checklist and a cross
reference from each section of the Software Design Description to the DO-178C Section 11
Objective to ensure that full compliance is achieved (See screenshot below). Once
complete, the Software Quality Assurance Engineer signs and dates the checklists, which is
maintained by Software Configuration Management as CC2 compliance evidence. The
Software Design Description is then signed and released.

4.5.4.2 Software Preliminary Design Review

The Software Preliminary Design Review (PDR) follows the Software Requirements Review.
The Software PDR Checklist is used during the review.

Representatives from Electrical, Mechanical, Software, Quality Assurance, Manufacturing
Engineering, and Manufacturing Test Engineering are invited to the Software PDR.

The Project Engineer conducts the Software PDR. The review includes a presentation of the
overall software design structure, module design structure, relationships of the design
elements and modules, and rationale for the software design.

The interfaces between the software modules and interfaces between the software and
hardware devices are presented and discussed.

If deficiencies are revealed during the review, action items are generated, and corrective
actions to resolve the deficiencies are fed back into the appropriate process.

Where applicable, the following items considered at the PDR include:
» Software Architecture

Rationale for the Software Design

Review and approval of the Context Level Data Flow Diagram

Review and approval of the Software Block Diagrams

Review and approval of Control Flows and Data Flows

YV V. V VYV V

Review and approval of State Transition Diagrams

<Doc Number> Page 35 of 188 Rev. -

Software Verification Plan

4.5.4.3 Software Critical Design Review

The Software Critical Design Review (CDR) is integrated into the Software Design process.
The Software CDR Checklist will be used during the review.

The Project Engineer conducts the Software CDR. Representatives from Electrical, Software,
Mechanical, Business Development, Quality Assurance, Manufacturing, and Test
Departments are invited to the Software CDR.

The review includes a presentation by the software engineer of the overall detailed design
structure, module design structure, relationships of the design elements and modules, and
rationale for the software design.

The interfaces between the software modules and interfaces between the software and
hardware devices will be presented and discussed.

The Software CDR ensures that the components of the software architecture are accurate
and consistent. The review will confirm that no conflicts exist between the software
architecture and the hardware features of the target system.

If deficiencies are revealed during the review, corrective actions to resolve the deficiencies
are fed back into the appropriate engineering process or document. This may include the
Business Development Requirements, Software Design Description, the Electrical Design,
Mechanical Design, or the Software Design.

One or more of the following items will be considered at the Software CDR:
Software requirements are complete

The Software Detailed Design conforms to the requirements
Review and approval of the Context Level Data Flow Diagram
Review and approval of the Software Block Diagram

YV V. V V V

Review and approval of Control Flow and Data Flow

When the Software CDR is held, the Project Engineer records the Action Items or assigns
someone to do so. The Action Items include action item assignments.

<Doc Number> Page 36 of 188 Rev. -

Software Verification Plan

4.5.5

Peer

Reviews and Analysis of Software Architecture

reviews are conducted to analyze the software architecture. The following

characteristics are evaluated and form the exit criteria for the peer review:

>

4.5.6

The compatibility with the high-level requirements: The objective is to ensure that
the software architecture does not conflict with the high-level requirements,
especially functions that ensure system integrity, for example, partitioning schemes.

Consistency: The objective is to ensure that a correct relationship exists via data
flow and control flow.

Compatibility with the target computer: The objective is to ensure that no conflicts
exist, especially initialization, asynchronous operation, synchronization and
interrupts, between the software architecture and the system features of the target
computer.

Verifiability: The objective is to ensure that the software architecture can be verified;
there are no unbounded recursive algorithms, for example.

Conformance to standards: The objective is to ensure that the Software Design
Standards were followed during the software design process and that deviations to
the standards are justified, especially complexity restrictions and design constructs
that would not comply with the system safety objectives.

Partitioning integrity: The objective is to ensure that partitioning breaches are
prevented.

Reviews and Analysis of Low-Level Software Requirements

Peer reviews are conducted to analyze the low-level software requirements. The following
characteristics are evaluated and form the exit criteria for the peer review:

>

Compliance with high-level requirements: The objective is to ensure that the
software low-level requirements satisfy the software high-level requirements and
that derived requirements and the design basis for their existence are correctly
defined.

Accuracy and consistency: The objective is to ensure that each low-level requirement
is accurate and unambiguous and that the low-level requirements do not conflict with
each other.

Compatibility with the target computer: The objective is to ensure that no conflicts
exist between the software requirements and the system features of the target
computer, especially, the use of resources (such as bus loading), system response
times, and input/output hardware.

Verifiability: The objective is to ensure that each low-level requirement can be
verified.

Conformance to standards: The objective is to ensure that the Software Design
Standards were followed during the software design process, and that deviations
from the standards are justified.

Traceability: The objective is to ensure that the high-level requirements and derived
requirements were developed into the low-level requirements.

Algorithm aspects: The objective is to ensure the accuracy and behavior of the
proposed algorithms, especially in the area of discontinuities.

<Doc Number> Page 37 of 188 Rev. -

Software Verification Plan

4.6 Software Coding Process Verification Methods

4.6.1 Software Coding Process Verification Objectives

DO-178C Objectives DO-178C Table DO-178C Paragraph

Reference Reference

Source Code complies with low-level A-5.1 6.3.43
requirements.

Source Code complies with software A-5.2 6.3.4b
architecture.

Source Code is verifiable. A-5.3 6.3.4c
Source Code conforms to standards. A-5.4 6.3.4d
Source Code is traceable to low-level A-5.5 6.3.4e
requirements.

Source Code is accurate and consistent. A-5.6 6.3.4f

4.6.2

Software Verification Process Inputs

Software Coding Process inputs to the Software Verification Process include the software
source code and traceability data.

4.6.3

Transition Criteria for Entering The Verification of Software Coding Process

This section includes the conditions necessary to consider the verification closed and
successful for the Design Process which establishes the transition criteria required for
entering the Verification of Software Coding Process.

>

YV V.V V V VYV V VYV V

4.6.4

Design document is correct, released and under the applicable CC control

Design document checklists are complete and are under CC2 control

Document comments have been implemented, verified and are under CC2 control
Peer review checklists are complete and under CC2 control

Transition review checklist is complete and under CC2 control

Action items have been recorded, implemented, closed and under CC2 control
Signature sheets have been produced and are under CC2 control

Verification Independence has been shown where required and under CC2 control
SQA review results have been produced and are under CC2 control

Other artifacts (i.e., customer comments) are recorded and are under CC2 control

Software Coding Process Reviews and Analysis

Throughout the coding process, peer reviews are held to review and analyze the source

<Doc Number> Page 38 of 188 Rev. -

Software Verification Plan

code to determine that it is in compliance with the Software Design Standards and Software
Coding Standards and correctly implements the low-level software requirements. Peer
review entry and exit criteria, along with signature sheets and action items are recorded in
the Reviews and Analysis Management System.

4.6.4.1 Source Code File Review

Review of the Source Code Files occurs when the code is mature enough to be reviewed.
Once developed, the code is added to the Software Library and turned over to Software
Configuration Management for control.

4.6.4.2 Source Code Review

Following the peer reviews, where each of the source files has been reviewed and analyzed,
a Software Code Review is conducted. The Software Code Review Checklist and the
Software Verification Plan are used during the review to verify code completion and
adherence to standards.

The Software Engineer and Independent Verification Engineer conduct the Software Code
Review or assigns someone with the same authority to do so. Action items are recorded in
the Reviews and Analysis Management System database file associated with that review.
The Action Items include the action item assignments and space for the completion date.

Representatives from Software, Electrical and Mechanical Engineering, Quality Assurance,
Manufacturing, and Test Departments are invited to the Software Code Review.

If deficiencies are revealed during the review, corrective actions to resolve the deficiencies
are documented in the Reviews and Analysis Management System and fed back into the
appropriate software development process.

The following items will be reviewed at the Software Code Review:
» Compliance with low level requirements

Compliance with software architecture

Verifiability

Conformance to standards

Traceability

YV V V VYV V

Accuracy and consistency

4.6.5 Reviews and Analysis of Source Code

Peer reviews are conducted to analyze the source code. The following characteristics are
evaluated and form the exit criteria for the peer review:

» Compliance with the low-level requirements: The objective is to ensure that the
Source Code is accurate and complete with respect to the software low-level
requirements, and that no Source Code implements an undocumented function.

» Compliance with the software architecture: The objective is to ensure that the
Source Code matches the data flow defined in the software architecture.

> Verifiability: The objective is to ensure the Source Code does not contain statements
and structures that cannot be verified and that the source code does not have to be
altered to test it.

<Doc Number> Page 39 of 188 Rev. -

Software Verification Plan

Peer reviews are also conducted to verify conformance to standards. The intent is to ensure
that the Software Code Standards were followed during the development of the code,
especially complexity restrictions and code constraints that would be consistent with the
system safety objectives. The following characteristics are evaluated and form the exit
criteria for the peer review:

» Traceability: The objective is to ensure that the software low-level requirements
were developed into Source Code.

» Accuracy and consistency: The objective is to determine the correctness and
consistency of the Source Code, including stack usage, fixed point arithmetic
overflow and resolution, resource contention, worst-case execution timing, exception
handling, use of uninitialized variables or constants, and data corruption due to task
or interrupt conflicts.

o NOTE: Worst-case execution timing is evaluated during code review by the
examination of looping constructs for execution length, and by examining the
code for timing related construction, including excessive call stack depth and
successive or stacked interrupts.

<Doc Number> Page 40 of 188 Rev. -

Software Verification Plan

4.7 Integration Process Verification Methods

4.7.1 Integration Process Verification Objectives

DO-178C Objectives DO-178C Table DO-178C Paragraph
Reference Reference

Output of software integration process is A-5.7 6.3.5

complete and correct.

Parameter Data Item File is correct and A-5.8 6.6a

complete

Verification of Parameter Data Item File A-5.9 6.6b

is achieved.

E_xecutable Objgct Code complies with A-6.1 6.4a

high-level requirements.

Executable Object Code is robust with A-6.2 6.4b

high-level requirements.

Executable Object Code complies with A-6.3 6.4c

low-level requirements.

Executable Object Code is robust with A-6.4 6.4d

low-level requirements.

E>_<ecutable Object Code is compatible A-6.5 6.4

with target computer.

4.7.2 Integration Process Inputs

Software Integration Process inputs to the Software Verification Process include the
Executable Object Code and traceability data.

4.7.3 Transition Criteria for Entering The Verification of Integration Process

This section includes the conditions necessary to consider the verification closed and
successful for the Software Coding Process which establishes the transition criteria required
for entering the Verification of Integration Process.

» Source Code is correct, released and under the applicable CC control

Code review checklists are complete and are under CC2 control

Comments have been implemented, verified and are under CC2 control

Peer review checklists are complete and under CC2 control

Transition review checklist is complete and under CC2 control

Action items have been recorded, implemented, closed and under CC2 control
Signature sheets have been produced and are under CC2 control

Verification Independence has been shown where required and under CC2 control

YV V.V V V VYV V VY

SQA review results have been produced and are under CC2 control

<Doc Number> Page 41 of 188 Rev. -

Software Verification Plan

» Other artifacts (i.e., customer comments) are recorded and are under CC2 control

4.7.4 Integration Process Reviews and Analysis

During the Integration Process, a peer review is held to review and analyze the Executable
Object Code to determine that it is compatible with the target computer. Issues addressed
at the peer reviews include, but may not be limited to, incorrect hardware addresses;
memory overlays and missing software components. If deactivated code is integrated into
the Executable Object Code, these peer reviews produce the evidence that the deactivated
code will remain deactivated during normal operation. Objective evidence is also produced
which addresses analysis o the verification activities that need to occur when unintended
activation occurs due to abnormal conditions. Peer review entry and exit criteria, along with
signature sheets and action items are recorded in the Reviews and Analysis Management
System.

4.7.4.1 Executable Object Code Handling

When the source code and object code are mature enough to be built and installed on the
target computer, the Executable Object Code is entered into configuration management.
Once built and target compatibility is assured, the Executable Object Code is added to the
Software Library and turned over to Software Configuration Management for control. This is
a prerequisite for formal review of the integration data.

4.7.4.2 System Integration Review

The System Integration Review is conducted at the conclusion of the System Integration
process. The System Integration Review Checklist will be used during the review.

The Project Engineer conducts the System Integration Review. When the System
Integration Review is held, the Project Engineer records the minutes or assigns someone to
do so. The minutes will include a discussion of the results, agreements and disagreements
reached during the review, updates to the project schedule and resource estimates, and
action item assignments with estimated completion dates.

Representatives from Quality Assurance, Test Engineering, Manufacturing Engineering,
Mechanical Engineering, and Software Engineering are invited to the System Integration
Review.

The review ensures the results of the integration process are complete and correct. If
deficiencies are revealed during the review, corrective actions to resolve the deficiencies are
fed back into the appropriate process.

The system integration review is used to show the satisfaction of transition criteria from the
integration process to the follow-on verification processes.

4.7.4.3 Reviews and Analysis of Executable Object Code

Peer reviews are conducted to analyze the Executable Object Code. The following
characteristics are evaluated and form the exit criteria for the peer review:

» Proper resource usage.
» Incorrect hardware addresses.
» Memory overlaps and Missing software components.
This summary review is used to determine that the software integration process

<Doc Number> Page 42 of 188 Rev. -

Software Verification Plan

completeness criteria have been evaluated and found to be satisfied during the Executable
Object Code reviews and System Integration Review.

<Doc Number> Page 43 of 188 Rev. -

Software Verification Plan

4.8 Software Testing Process Verification Methods

4.8.1 Software Testing Process Verification Objectives

DO-178C Objectives DO-178C Table DO-178C Paragraph
Reference Reference

Test procedures are correct. A-7.1 6.4.5b

Test results are correct and discrepancies A-7.2 6.4.5¢

explained.

Test coverage of high-level requirements A-7.3 6.4.43

is achieved.

Test coverage of low-level requirements A-7.4 6.4.4b

is achieved.

Test coverage of software structure)

(modified condition/decision) is achieved. SIS oEdiEhe

Test coverage of software structure A-7.6 6.4.4¢

(decision coverage) is achieved.

Test coverage of software structure A-7.7 6.4.4C

(statement coverage) is achieved.

Test coverage of software structure (data

coupling and control coupling) is A-7.8 6.4.4d

achieved.

Verification of additional code, that

cannot be traced to Source Code, is A-7.9 6.4.4c

achieved.

4.8.2 Software Testing Process Inputs

Software Testing Process inputs to the Software Verification Process include the test cases,
test procedures, test results and traceability data.

4.8.3 Transition Criteria for Entering The Testing of Integration Process Outputs

This section includes the conditions necessary to consider the verification closed and
successful for the Integration Process which establishes the transition criteria required for
entering the Testing of Integration Process Outputs.

» EOC is correct, released and under the applicable CC control

Integration review checklists are complete and are under CC2 control
Comments have been implemented, verified and are under CC2 control

Peer review checklists are complete and under CC2 control

Transition review checklist is complete and under CC2 control

Action items have been recorded, implemented, closed and under CC2 control
Signature sheets have been produced and are under CC2 control

YV V V V V V V

Verification Independence has been shown where required and under CC2 control

<Doc Number> Page 44 of 188 Rev. -

Software Verification Plan

> SQA review results have been produced and are under CC2 control
» Other artifacts (i.e., customer comments) are recorded and are under CC2 control

4.8.4 Transition Criteria for Entering The Verification of Verification Outputs

This section includes the conditions necessary to consider the verification closed and
successful for the Verification Process.

> All verification evidence is correct, released and under the applicable CC control
Verification review checklists are complete and are under CC2 control
Comments have been implemented, verified and are under CC2 control

Peer review checklists are complete and under CC2 control

Transition review checklist is complete and under CC2 control

Action items have been recorded, implemented, closed and under CC2 control
Signature sheets have been produced and are under CC2 control

V V V V V V V

Verification Independence has been shown where required, with records under CC2
control

A\

SQA review results have been produced and are under CC2 control

Y

Other artifacts (i.e., customer comments) are recorded and are under CC2 control

4.8.5 Software Testing Process Reviews and Analysis

Throughout the Software Testing Process, peer reviews are held to review and analyze the
Test Cases and Test Procedures to determine that they are complete and fully verify the
high-level and low-level requirements. In addition, peer reviews are used to brainstorm
methods for robustness testing. Peer review entry and exit criteria, along with signature
sheets and action items are recorded in the Reviews and Analysis Management System.
The resulting Robustness test cases are reviewed for their ability to reveal vulnerabilities in
the software.

Throughout the Software Testing Process, peer reviews are held to review and analyze the
Test Cases and Test Procedures to determine that they are complete comply with the
Software Verification Plan and cover the software high-level and low-level requirements.

Peer reviews are held to analyze the coverage achieved as a result of requirements-based
testing. Where code structures are not covered, an analysis is performed to determine the
cause. If the cause is determined to be untraceable code as a result of dead code, the code
is removed. If the cause is inadequate requirements or test cases and procedures, the peer
review results include action items to resolve this. If the result is unreachable “required”
code that is traceable, an analysis of each line of uncovered code is documented in the
Structural Coverage Analysis Results document.

4.8.5.1 Software Verification Cases and Procedures Document Review

Review of the Software Verification Cases and Procedures occurs when the document is
mature enough to be reviewed. Once prepared, the Software Verification Cases and
Procedures is submitted to Software Configuration Management and entered into the
document control system.

The Software Quality Assurance Engineer coordinates the document review process using

<Doc Number> Page 45 of 188 Rev. -

Software Verification Plan

the Document Review Management System. Each reviewer adds his or her comments in the
Document Review Management System. A cycle of comment incorporation and re-review
occurs through Configuration Management until all comments are closed. The Project Lead
is responsible for closing all document comments prior to formal release.

Once all comments have been closed, the Software Verification Cases and Procedures is
reviewed by the Software Quality Assurance Engineer against the Document Review
Checklist and a cross reference from each section of the Software Verification Cases and
Procedures to the DO-178C Section 11 Objective to ensure that full compliance is achieved.
Once complete, the Software Quality Assurance Engineer signs and dates the checklists,
which is maintained by Software Configuration Management as CC2 compliance evidence.
The Software Verification Cases and Procedures is then signed and released.

4.8.5.2 System Verification Review

The System Verification Review is conducted at the conclusion of the Software Testing
Process. The System Verification Review Checklist will be used during the review.

The Project Engineer conducts the System Verification Review. When the System
Verification Review is held, the Project Engineer records the minutes or assigns someone to
do so. The minutes will include a discussion of the results, agreements and disagreements
reached during the review, updates to the project schedule and resource estimates, and
action item assignments with estimated completion dates.

Representatives from Quality Assurance, Test Engineering, Manufacturing Engineering,
Mechanical Engineering, and Software Engineering are invited to the System Integration
Review.

The review ensures the results of the integration process are complete and correct. If
deficiencies are revealed during the review, corrective actions to resolve the deficiencies are
fed back into the appropriate process.

4.8.5.3 Reviews and Analysis of Test Cases, Test Procedures, and Results

Peer reviews are conducted to analyze Test Cases, Test Procedures, and Results. The
following characteristics are evaluated and form the exit criteria for the peer review:

» Test cases: Independent verification of test cases is presented later in this
document.

» Test procedures: The objective is to verify that the test cases were accurately
developed into test procedures and expected results.

» Test results: The objective is to ensure that the test results are correct and that
discrepancies between actual and expected results are explained.

<Doc Number> Page 46 of 188 Rev. -

Software Verification Plan

During the verification process, the Independent Verification Engineer (along with select
members of the development team) reviews the requirements-based test cases to assure
that all requirements are adequately covered. If the requirements-based tests are not
adequate to achieve test coverage, then additional requirements-based tests or analysis
may be needed.

The following questions are considered when evaluating test cases and procedures:

>
>

Y

Y

YV V V V

Do the test cases and procedures adhere to the relevant plans and standards?

If plans or standards have not been followed, is there documented rationale for
deviations from stated plans and standards?

Is the rationale for each test case clearly explained?
Are the test cases and procedures appropriately commented to allow future updates?

Have the test cases and procedures been subjected to appropriate change and
configuration control?

Is the separation between test cases clear? For example, are test starts and stops
identified?

Do the test cases and procedures specify required input data and expected output
data?

Were the inputs for each test case derived from the requirements?

Are the test cases and procedures sufficient to cover all the relevant requirements?
That is, do the traceability matrices provide clear association between test cases and
requirements?

Are the test cases and procedures sufficient to achieve test coverage?

Are sufficient tests identified to provide test coverage for each logic construct?
Are there sufficient robustness test cases and procedures?

Are test cases and procedures correct?

4.8.5.3.1 Review checklists for test cases, procedures, and results

<Doc Number> Page 47 of 188 Rev. -

Software Verification Plan

A checklist is used during review of test procedures and results (See Document Review
Management System in the Software Quality Assurance Plan). During this review, the
checklists themselves are assessed, considering the following questions for test coverage:

>

>
>

YV VvV

Are the checklists sufficient to determine that the requirements-based test cases,
procedures, and results meet the test coverage objective?

Have the checklists been prepared and/or reviewed by quality?

Do the checklists specify:

who performed the review?

what data was reviewed (with revision)?

when it was reviewed?

what was found?

what corrective actions were taken, if necessary?

Do the checklists require evaluation of tolerances specified in the requirements?

Do the checklists ensure that results of the test cases can be visually verified? (e.g.,
can the SQE, or other reviewer, visually determine when requirements-based tests
have passed or failed?)

Will the checklists reveal whether the results of the test cases that are counted for
credit towards test coverage are observable?

Will the checklists address limitations of the structural coverage analysis tool as
documented in the tool qualification?

Will the checklists reveal test cases that violate project standards?

<Doc Number> Page 48 of 188 Rev. -

Software Verification Plan

4.8.6 Software Test Execution

Verification testing of software has two objectives. One objective is to demonstrate that the
software satisfies its requirements. The second objective is to demonstrate with a high
degree of confidence that errors that could lead to unacceptable failure conditions, as
determined by the system safety assessment process, have been removed. The following
three types of testing are used:

» Hardware Software Integration Testing: To verify correct operation of the software
in the target computer environment.

» Software Integration Testing: To verify the interrelationships between software
requirements and components and to verify the implementation of the software
requirements and software components within the software architecture.

» Low-level Testing: To verify the implementation of software and low-level
requirements.

Top Level Verification Testing Process For New Designs and Design Changes

| New Designs '>
V
Davsiopmant Oevelopmaent Imegration Erwv Lab Manufactuing IVAV Test Canfig Mgmt IVAY Tast
Viar&cation ATP
Unit 4:!:60!0 Hardware and Evdroomient Poﬂt;n.numcn A K ‘ Part
Sciie Developed | =, Test Test & Producior
p:w”" m"“‘ -nd' > 'c' M""‘”‘ 1 Procodure repared and | FTocosun | Procecura Ready — |—&1 poamssion
Executed Prepared and Exscited Prepared Prapared Release Test
Exacutod Parformed
=) = ————(..""'"'.......';) (" e =
() I _______ ’(oAy e
(As Appdicadie) P
S
——————————————— &
| Design Changes '>
¥
Davelopmeant Osvalopment Integration Manutactunng VAV Test Config Mgmt IVAY Tast
I |
Verification | s | R | £CO ATP
u«m;:«ﬁm Hardwars and Test ' Test | 'eu | Prepar Fark
80 Efvironment Procedurs Procedul
00 sl g W ol A ST | upsates | Updatsd "1 Production |1 Regmession
o Qo Change(s) Ready Test
Executad Verifiad :(Vmeil("Rooumy: R Part
Lo — ads -

~= July 11,2007 Rev A

<Doc Number> Page 49 of 188 Rev. -

Software Verification Plan

Peer reviews are conducted to ensure that software testing objectives have been satisfied.
The following characteristics are evaluated and form the exit criteria for the peer review:

» Test cases are developed based primarily on the software requirements.

» Test cases are developed to verify correct functionality and to establish conditions
that reveal potential errors.

» Software requirements coverage and traceability analysis are used to determine
what software requirements were not tested.

» Structural coverage analysis techniques are used to determine what software
structures were not exercised (for Levels A, B, and C software).

4.8.6.1 Test Environment

More than one test environment may be needed to satisfy the objectives for software
testing. The test environment includes the (independently built) software loaded into the
target computer and tested in the target computer environment.

Note: This section must be tailored to specify the actual test environments in use.

4.8.6.2 Requirements-Based Test Cases

Requirements-based testing is emphasized because this strategy has been found to be the
most effective at revealing errors. Requirements-based test case selection includes the
following:

> Implementation of both normal range and robustness (abnormal range) test cases.
The specific test cases should be developed from the software requirements and the
error sources inherent in the software development process.

4.8.6.3 Normal Range Test Cases

Normal Range test cases are developed to demonstrate the ability of the software to
respond to normal inputs and conditions. Normal range test cases include:

» Real and integer input variables are exercised using valid equivalence classes and
boundary values.

> For time-related functions, such as filters, integrators and delays, multiple iterations
of the code are performed to check the characteristics of the function in context.

> For state transitions, test cases are developed to exercise the transitions possible
during normal operation.

» For software requirements expressed by logical equations, the normal range test
cases verify the variable usage and the Boolean operators.

<Doc Number> Page 50 of 188 Rev. -

Software Verification Plan

4.8.6.4 Robustness Test Cases

Robustness test cases are developed to demonstrate the ability of the software to respond
to abnormal inputs and conditions. Robustness test cases include:

>

>
>

Real and integer variables are exercised using equivalence class selection of invalid
values.

System initialization is exercised during abnormal conditions.

The possible failure modes of the incoming data are determined, especially complex,
digital data strings from an external system.

For loops where the loop count is a computed value, test cases may be developed to
attempt to compute out-of-range loop count values, and thus demonstrate the
robustness of the loop-related code.

For time-related functions, such as filters, integrators, and delays, test cases may be
developed for arithmetic overflow protection mechanisms.

For state transitions, test cases may be developed to provoke transitions that are not
allowed by the software requirements.

4.8.6.4.1 Robustness Test Case Selection Strategy

The following criteria will be used, at a minimum, to select robustness test cases:

Starting with the Functional Hazard Assessment (FHA), produce each hazard
conditions and verify expected result.

2. Test multiple combinations of hazard conditions. Combine hazards.

w

N o u ok

Identify all range / boundary requirements. Test outside the boundaries of each
range requirement.

Identify all conditions where a fault is asserted. Test all of those conditions.
Combine fault conditions (without reset) and verify expected results.
Perform negative testing. If A AND B THEN X, test If NOT A and B THEN NOT X.

If not required by DO-160 Testing, test critical functionality and other key
functionality over temperature.

Perform testing over non-standard electrical conditions (i.e., power glitching, power
up, power down, brown out)

<Doc Number> Page 51 of 188 Rev. -

Software Verification Plan

4.8.6.5 Requirements-Based System Verification Testing Methods

Requirements-based system verification testing methods concentrate on error sources
associated with the software operating within the target computer environment, and on the
high-level functionality. The objective of requirements-based testing is to ensure that the
software in the target computer will satisfy the high-level requirements.

Typical errors revealed by this level of testing include:

>
>
>

vV V V V V

Y

Incorrect input handling.
Failure to satisfy execution requirements.

Incorrect software response to hardware transients or hardware failures, for
example, start-up sequencing, transient input loadds and input power transients.

Data bus and other resource contention problems, for example, memory mapping.
Inability of built-in test to detect failures.

Errors in system interfaces.

Incorrect behavior of feedback loops.

Incorrect control of memory management hardware or other hardware devices under
software control.

Stack overflow.

Incorrect operation of mechanism(s) used to confirm the correctness and
compatibility of field-loadable software.

Violations of software partitioning.

<Doc Number> Page 52 of 188 Rev. -

Software Verification Plan

Peer reviews are conducted to ensure that common software errors were not introduced into
the design. The review includes the focus on the following most common error conditions:

» Implementation Error Source (Data Bugs)

1) Logic bugs 2 (x = 0; x <= 10; x++) = Expect a result of 10

2) Parameter Passing - Incorrect arguments passed

3) Return Codes - Unexpected return codes passed

4) Math Overflow / Underflow - Exceeding integer value

5) Logic Processing Error > Too many nested conditions or calculations

6) Reentrance Problem - If a section of code can be interrupted before it completes its
execution, and can be called again before the first execution has completed, the code
must be designed to be reentrant. This typically requires that all variables
referenced by the reentrant routine exist on the stack and not in static memory.

7) Incorrect Control Flow > The intended sequence of operations can be corrupted by
incorrectly designed conditional loops. This may cause problems such as missing
execution paths, unreachable code, and incorrect control logic.

8) Pointer Errors > Pointing to a NULL pointer in a linked list, improperly incrementing
pointer used to step through look-up tables or lists, bad function pointers.

9) Indexing Problems > Improper use of Index Registers in assembly language have
similar problems to those identified with pointers. Provides the same type of
indirection useful for table look-up, walking through lists, trees, and other data
structures.

10)Variable Scope Errors - Using the same name and applying it to different data items
that exist in different scopes.

11)Improper Data Usage - Using an uninitialized variable or using the same variable for
more than one purpose.

12)Incorrect Flag Usage - Flags are usually global in scope and are almost always static
(stored in a fixed memory location). Flag may inadvertently be used for more than
one purpose or used to indicate more than one condition. Every flag should be SET,
CLEARED and tested at some point in the program.

13)Incorrect Address - Usually the result of an incorrect pointer. It's possible to code a
bad address into the code. This generally happens when the memory subsystem
changes (i.e., Reduce memory size).

14)Data / Range Overflow / Underflow - May result in passing a parameter that is out
of bounds or storing a data type not large enough to hold the data.

15)Signed / Unsigned data errors > Mixed sign arithmetic can easily lead to calculations
that overflow the data types. Assembly languages have different branch instructions
used after comparing signed and unsigned data. Using the wrong branch instruction
may cause a critical error.

16)Incorrect Conversion / Type-Casting / Scaling - Converting a data value from one
representation to another is common and may cause bugs. Conversion from signed
to unsigned or string to numeric type is common. Typecasts are useful to get data
into whatever representation is needed, but circumvent compiler type-checking,
increasing the risk of making a mistake.

<Doc Number> Page 53 of 188 Rev. -

Software Verification Plan

17)Data Synchronization Errors - Embedded systems share data among separate

1)

2)

1)

2)

3)

4)

threads of execution. An operation that uses a number of different data inputs must
be synchronized in order to perform its processing. If the data values are updated
asynchronously, the processing may be using some "new" data items with some
"old" data items, and compute the wrong result.

Implementation Error Source (Real-Time Bugs)

Interrupt Handling > It is critical to handle all interrupts that the system will ever
receive. Receiving an unexpected interrupt without being able to handle it will likely
cause failures.

Task Synchronization > Tasks must be synchronized correctly. One task may
acquire raw data; another may process this data as a set; still another may make
control decisions on the processed data values. Proper synchronization usually is
implemented by relying on flags or semaphores to control task regular intervals.

Implementation Error Source (System Bugs)

Stack Overflow / Underflow = Pushing more data into the stack than it can hold is
referred to as a stack overflow. Pulling more data from the stack than was put on
the stack is referred to as a stack underflow. Both result in using bad data and can
cause an unintended jump to an arbitrary address, resulting in a failure.

Race Conditions - A race condition occurs when two or more independent threads
each access the same resource at the same time. The effects of a race condition vary
widely; they're dependent on the specifics of the situation.

Deadlock > When race conditions are avoided by "locking" a resource, preventing
any other thread from accessing it, the design must be evaluated to ensure that
deadlock will never occur. Testing for deadlock is generally ineffective, since only a
particular order of resource locking may produce it, and that ordering may not result
from the most common tests.

Deadlock is only a problem in multi-threading environments that lock resources. The
following four conditions must be present in order for a deadlock to occur. Breaking
any one of these conditions eliminates deadlock:

Mutual exclusion—only one thread can use a locked resource at a time
b. Nonpreemption—threads cannot force another thread to release a resource

c. Hold-and-wait—threads hold resources that they have locked while waiting for
any additional needed resources

d. Circular wait—a circular chain of threads exist, such that each thread holds a
resource needed by the next thread in the chain

Resource Sharing Problems - In the case where a peripherial such as an analog
multiplexer may be used to direct one of a number of different inputs to a single A/D
converter; If one task alters the mux setting to measure a given signal and another
preempts it and sets the mux to pass a different signal, when control returns to the
first task, it will be measuring the wrong signal, likely causing a failure condition.

<Doc Number> Page 54 of 188 Rev. -

Software Verification Plan

1)

2)

3)

4)

5)

Implementation Error Source (Other Bugs)

Syntax / Typing > Compilers do a good job of syntax checking; however, special
attention needs to be placed on coding standards.

Interface > Complex interfaces are a common source of failures. Interface problem
may include incorrect EEPROM erase / write sequence, improper use of LCD
controller chip commands, wrong sequence in reading / writing serial communication
interface registers, etc.

Memory Allocation / Deallocation - Using memory management routines can greatly
simplify the efficient use of available memory. It can also be an added source of
errors. For example, not checking for successful allocation before using the memory,
not freeing memory when it is no longer needed (memory leak).

Peripheral Register Initialization - Peripherals typically have different modes of
operation, increasing the number of applications for which they're useful. This can
complicate the initialization and use of these devices producing another source for
errors.

Watchdog Servicing > Watchdog timers help ensure that if something in the system
goes exceptionally wrong, it will fail in a safe, or at least a predictable, manner.
Servicing the watchdog timer must be done properly and at the right time. The
watchdog must be enabled, and set to timeout at the correct interval.

4.8.6.5.1 Requirements-Based Software Verification Testing

This testing method is used and concentrates on the inter-relationships between the
software requirements, and on the implementation of requirements by the software
architecture. The objective of the requirements-based Software Verification Testing is to
ensure that the software components interact correctly with each other and satisfy the
software requirements through successive integration of code components with a
corresponding expansion of the scope of the test cases.

Typical errors revealed by this testing method include:

>

YV V VYV V

Incorrect initialization of variables and constants.
Parameter passing errors.

Data corruption, especially global data.
Inadequate end-to-end numerical resolution.
Incorrect sequencing of events and operations.

<Doc Number> Page 55 of 188 Rev. -

Software Verification Plan

4.8.6.5.2 Requirements-Based Low-Level Testing

This testing method is used and concentrates on demonstrating that each software
component complies with its low-level requirements. The objective of requirements-based
low-level testing is to ensure that the software components satisfy their low-level
requirements:

Typical errors revealed by this testing method include:
» Failure of an algorithm to satisfy a software requirement.
Incorrect loop operations.
Incorrect logic decisions.
Failure to process correctly legitimate combinations of input conditions.
Incorrect responses to missing or corrupted input data.

YV V V VYV V

Incorrect handling of exceptions, such as arithmetic faults or violations of array
limits.

Y

Incorrect computation sequence.

» Inadequate algorithm precision, accuracy, or performance.

4.8.7 Effectiveness of Test Program

The following tasks are performed to determine the effectiveness of the test program.

4.8.7.1 Assess results of requirements-based tests

The first step after test execution is to determine whether all requirements-based tests
pass. In addition to checking the final pass/fail results, the test cases and results for some
randomly selected requirements should be examined to ensure that the results reflect the
given inputs for those cases. Test results are also checked carefully with respect to any
specified tolerances.

The following questions are considered to assess the requirements-based test results:
> Are the test result files clearly linked to the test procedures and codes?
» Are failed test cases obvious from the test results?

» Do the test results indicate whether each procedure passed or failed and the final
pass/fail results?

» Do the test results adhere to the relevant plans, standards, and procedures?
» Have the test results been subjected to appropriate configuration control?

<Doc Number> Page 56 of 188 Rev. -

Software Verification Plan

4.8.7.2 Assess failure explanations and rework

Each failed test case is documented with an explanation for why it failed, including
references to applicable Action Request. In some cases, rework of some life cycle data will
be required; in other cases, only an explanation for the failed test cases is needed. If
rework is required, the impact of changes should be carefully evaluated and the changed
items should be subjected to the appropriate change and configuration control.

Once all rework is complete, test cases should be rerun in compliance with plans for
regression testing. Note: there may be cases where failed requirements-based tests are
acceptable; however, it is typical for them to be fixed and rerun.

The following questions are considered to assess failures and rework:

> Is there an acceptable rationale for deviations from expected results, standards, or
plans?

» Are explanations for the failed test cases technically sound and accurate?

» Do explanations for failed test cases contain accurate references to relevant problem
reports?

» Are explanations for code or test rework suitable to address the failure?
» Have test cases been re-executed in compliance with plans for regression testing?
> Have the test results from regression testing been documented appropriately?

4.8.7.3 Assess coverage achievement

The Verification Engineer produces test cases that are expected to achieve 100% test
coverage (i.e., the purpose of test documentation is to show compliance with all of the
requirements). If all the requirements have been covered by tests without achieving full
test coverage, dead code, unintended functionality, or incorrectly documented de-activated
code may be indicated. It is the policy to remove all dead code.

The following questions are considered when assessing coverage achievement:
» Has the test coverage criteria been correctly applied?
» Is 100% structural coverage achieved through requirements-based testing?

> If 100% structural coverage is not achieved through requirements-based testing, is
there an explanation detailing which parts of the code were not executed, and why?
Have additional test cases been added?

» Are explanations for drops in coverage sufficiently detailed and acceptable?
» Are there problem reports associated with dead code?
» Has dead code been analyzed and/or removed?

<Doc Number> Page 57 of 188 Rev. -

Software Verification Plan

4.9 Coverage Analysis Methods

The subsequent paragraphs detail the methods that will be used for coverage analysis as
part of the software verification process.

Coverage refers to the extent to which a given verification activity has satisfied its
objectives. Coverage analysis measures will be applied to both requirements definitions and
testing activities. Appropriate coverage measures will be used by SQA to audit verification
activities. This will aid in determining the adequacy of the verification accomplished.

Coverage is viewed as a measure, not a method or a test. As such, results will be
expressed as the percentage of an activity that is accomplished. Two specific measures of
test coverage are identified in the following figure: requirements coverage and software
structure coverage.

Requirements coverage analysis will be used to determine how well the requirements-based
testing verifies the implementation of the software requirements and establishes traceability
between the software requirements and the test cases. Structural coverage analysis will be
used to determine how much of the code structure will be executed by the requirements-
based tests and establishes traceability between the code structure and the test cases.

Software < - T T T T
Requirements-Based I
Test Generation - ——— _l I
Hardware/
Low-Level IStoftwat_re Software I I
Tests n :T_g;‘:slon Integration I I
Tests I I
Software Requirements|__ ___ J I
Coverage Analysis I
Ve Software Structure e e— ____J
S Coverage Analysis
F 4

R

End of Testing

Additional

Verification —p- Direct Path

— = Conditional Path

<Doc Number> Page 58 of 188 Rev. -

Software Verification Plan

4.9.1 Requirements Coverage Analysis

Each software requirement contains a finite list of behaviors and features, and each
requirement is written to be verifiable. Testing based on requirements will be performed
from the perspective of the user (providing a demonstration of intended function), and will
provide a means for the development of test cases concurrently with development of the
requirements.

Peer reviews will go beyond requirements coverage in evaluating the project. Reasons
include:

» The software requirements and the design description (used as the basis for the test
set) may not contain a complete and accurate specification of all the behavior
represented in the executable code.

> The software requirements may not be written with sufficient granularity to assure
that all the functional behaviors implemented in the source code are tested.

» Requirements-based testing alone cannot confirm that the code does not include
unintended functionality.

In addition, software structure may be created that cannot be determined from top-level
software specifications. Derived requirements, as described in DO-178C, will be used for
this reason. Derived requirements will be tested as part of requirements-based testing.

4.9.2 Structural Coverage Analysis

The purpose of structural coverage analysis with the associated structural coverage analysis
resolution is to complement requirements-based testing as follows:

» Provide evidence that the code structure was verified to the degree required for the
applicable software level.

» Provide a means to support demonstration of absence of unintended functions.
> Establish the thoroughness of requirements-based testing.

With respect to intended function, evidence that testing was rigorous and completed is
provided by the combination of requirements-based testing (both normal range testing and
robustness testing) and requirements-based test coverage analysis.

Requirements-based testing cannot completely provide this kind of evidence with respect to
unintended functions. Code that is implemented without being linked to requirements may
not be exercised by requirements-based tests. Such code could result in unintended
functions. In this case, it will be designated this "Dead Code" or require that a requirement
be written for the code. Should a new requirement be added, the applicable lifecycle
artifacts (i.e., the Software Requirements Document) will be updated and the required
processes will be repeated.

<Doc Number> Page 59 of 188 Rev. -

Software Verification Plan

If requirements-based testing proves that all intended functions are properly implemented,
and if structural coverage analysis demonstrates that all existing code is reachable and
adequately tested, these two together provide a greater level of confidence that there are
no unintended functions. Structural coverage analysis will:

» Indicate to what extent the requirements-based test procedures exercise the code
structure.

» Reveal code structure that was not exercised during testing.

Run-time libraries are subject to the same coverage requirements as the rest of the
application code.

It should be noted that the structural coverage tools employed on the project must support
resolution of overloaded operators and/or functions to the extent overloading is used on the
project.

4.9.2.1 Achieving Coverage

To achieve test coverage, a structural coverage analysis tool or a code instrumentation
method will be used to monitor statements, entry and exit points, decision and branching
statements, and Boolean conditions. Some tools do not support all of the coverage points
required for test coverage. For example, not all structural coverage tools support coverage
of entry and exit points. Such a tool can support part of the structural coverage analysis if
other means are used to cover entry and exit points.

The structural coverage analysis tool will monitor a statement for multiple coverage points,
as illustrated below:

Return (A and B) or C;
This statement will be monitored for the following coverage points:
» Statement-must be invoked at least once
» Exit Point—-must be invoked at least once
» Decision-must take all possible outcomes (false, true) at least once

KiT,f}.

<Doc Number> Page 60 of 188 Rev. -

Software Verification Plan

Test Case Number 1 2 3 4 5
Input A T F F T T
Input B T T T T F
Input C F F T T F
OQutput D T F T T F
<Doc Number> Page 61 of 188 Rev.

Software Verification Plan

4.9.2.2 Coverage Analysis Methods

A structural coverage analysis tool will be used to provide visibility into testing by either
instrumenting code or providing other intervention techniques to gain visibility. The tool will
be capable of instrumenting the code, provide flags, or other monitoring mechanisms to the
original source code or object code. This enables the analysis tool to determine exactly what
parts of the code are exercised. Once the code is instrumented, test cases are executed and
the coverage analysis tool tracks which parts of the code are exercised by the test cases
and, where complex analysis is required, how they are exercised. Pass/fail criteria for
structural coverage are specified and tool analyzes the code against these criteria. If the
pass/fail criteria are not specified, the tool will report the level of structural coverage the
test cases achieve.

The Coverage Analysis Management System will be used to obtain both Statement and
Decision Coverage.

Coverage Analysis Management System Screen Shot

" Coverage Analysts Management System - Microsoft internet Explarer provided by Hoadrunner | f—ﬁﬁx
O- i~ €| 2051 vew, Faacormud tan s com Progecen Exampleroyect 00/CAVS Axt.aep Progranis » |00AGesson T ype shiew b ke IS8 Mo
Fle B Yev Fportes Josk delb Google G w Gs PR, B e
s ran Glouts £ 106 g irscfc B Sede B 0K g dmex £ fek g2 wou QChese g OT @ K05 2 CNlogre #5303 - Actity @ MS
. -
WG 8 Goveraps Anshves Menpgament Sysiem ’-) ¢
-~
Salect Softwars Release 7o Dipley: | S3lect A Ralasss w [Search l Current Software Relessn Doplayed
Program: Fight Managensat Syaten Manige Sogrce F¥es InstrumentSource Cede Barform Coverage Anphysts Qlearfbotabree Moms Page
Coveroge Analysls Detad
Frlmase Flie Yersion | Line No | Fusction Name Code Element Marker G e
1.000 ie a2 i] veld DisplanFunctian (vaid) Sivgle Statement CMARK|) v
1000 | Xele 4 044 | veld TestFunction Ivold) Sirele Statement CMARKI) v
1.000 Xrlc 4.2 1ne word A0C_Getdeg [byte Chan) If Statement (1) CMARKIY) v
1000 | Xrlc “ 120 | word ADC_Getivg (byte Chan) Sple Statament AR 1) v
1000 | Xrie 42 151 static void ADC_SanThres froid) Gvple Statemant CMARK 4 v
1000 | X lc 42 159 | static void ADC_BunThresh feoéd) I Statement (1) CMARKIS) v
1000 | X2« 4w 175 | static void ADC_RunThresh proid) Coanvw Statement (1) CMARK(G) v
1000 | 07e 43 175 | static void ADC RanThrnd bosd) W Statement (2} CMARKIT) v
1.000 | X¥Z.e 42 1% | static void ADC_ RanThresh foid) Case Statement (2) CMARK{E v
1000 | X¥Ze 42 200 | static void ADC_BunThresh hoid) It Statement (3) CMARK(S) v
1.000 XYl 42 m static void ADC_RunThresh feoid) Ele If Statemenrt (1) CMARK(1D) v
1000 | Xric 4 22 | static vold ADC_RunTheesh prold) Caze Statement (1) CmarKi1n) v
1000 | xele 42 226 | static void A0C_RunThresh fwoid) If Stazement (4) CMARK(1Z) v
1000 | XZe 4 43 | static void ADC_RenThresh feotd) Cazm Statemeat (4) CMARK(13) v
1.000 Xrlc 42 i static void ADC_RunThresh feoid) Caomplex Path NOTED) Analpvn v
Dore Q Traerret 200% .~
<Doc Number> Page 62 of 188 Rev. -

Software Verification Plan

The Coverage Analysis Management System process is as follows. Specifics of this process
and this tool are described in the CAMS Tool Qualification Accomplishment Summary.

SQA Verifies That
Software Under CM Control Instrument Source ® T“Ee"ehlg A Cmark ';°'
: ac tatement
And Requirements-Based | Code With Cmarks Decision Point
Test Procedure Complete (By Design Engineer)

. y v

CAMS Database
Loaded With Cmark
Pointers To The
Source Code

Run Cmark Source
Generation Utility
(By Design Engineer)

Instrumented Source
File Generated

S l

L Build New Instrumented Source
Instrumentefl Instrumented Files Placed Under
Executable Object Source Files CM Control And

Code Produced (By CM Engineer) Labeled (Baselined)

_/—\

[A
Produce And Release No.
Load Control
Procedure

L

Load Control
Procedures In Place?

Yes
\ 4

Load and Verify
Image In Target

The Load Control
Process Is Performed
b By CM And

Witnessed By SQA

Load Control Process
Defined In Verification

Cases And Procedures (By CM Engineer)
Perform
Requirements- Cmark Status Read
Based Testing Into CAMS Tool And
(By IV&V) Coverage Flags Set

If 100% Converge Is
Not Achieved, An
Analysis Is Performed
To Determine The
100% Coverage Cause And Corrective
Achieved? Action. Updates To
Requirements, Better
Test Cases Or Removal

Resolve Coverage

Analysis Issues N
(By IV&V / Engineer)

Of Dead Code Are
Typical Resolutions

Yes

4

Complete August 21, 2007
Coverage Analysis Management System

<Doc Number> Page 63 of 188 Rev. -

Software Verification Plan

4.9.2.3 Statement Coverage

To achieve statement coverage, every executable statement in the program is invoked at
least once during software testing. Achieving statement coverage shows that all code
statements are reachable (in the context of DO-178C, reachable based on test cases
developed from the requirements). Note that statement coverage is considered a weak
criterion because it is insensitive to some control structures. Consider the following code
segment:

If(x>1)and(y=0)thenz:=2z/x; end if;

By choosing x = 2, y = 0, and z = 4 as input to this code segment, every statement is
executed at least once. However, if an “or” is coded by mistake (see code segment below)
in the first statement instead of an “and”, the test case will not detect a problem. This
makes sense because analysis of logic expressions is not part of the statement coverage
criterion.

If(z=2)or(y>1)thenz:=2z+ 1; end if;

4.9.2.4 Modified Condition Decision Coverage

Decision coverage requires two test cases: one for a true outcome and another for a false
outcome. For simple decisions (i.e., decisions with a single condition), decision coverage
ensures complete testing of control constructs. But, not all decisions are simple. For the
decision (A or B), test cases (TF) and (FF) will toggle the decision outcome between true
and false. However, the effect of B is not tested; that is, those test cases cannot distinguish
between the decision (A or B) and the decision A.

Condition coverage requires that each condition in a decision take on all possible outcomes
at least once (to overcome the problem in the previous example), but does not require that
the decision take on all possible outcomes at least once. In this case, for the decision (A or
B) test cases (TF) and (FT) meet the coverage criterion, but do not cause the decision to
take on all possible outcomes. As with decision coverage, a minimum of two tests cases is
required for each decision.

Condition/decision coverage combines the requirements for decision coverage with those for
condition coverage. That is, there must be sufficient test cases to toggle the decision
outcome between true and false and to toggle each condition value between true and false.
Hence, a minimum of two test cases are necessary for each decision. Using the example (A
or B), test cases (7T) and (FF) would meet the coverage requirement. However, these two
tests do not distinguish the correct expression (A or B) from the expression A or from the
expression B or from the expression (A and B).

MC/DC enhances the condition/decision coverage criterion by requiring that each condition
be shown to independently affect the outcome of the decision. The independence
requirement ensures that the effect of each condition is tested relative to the other
conditions. However, achieving MC/DC requires more thoughtful selection of the test cases,
as will be discussed further in chapter 3, and, in general, a minimum of n+1 test cases for a
decision with n inputs. For the example (A or B), test cases (TF), (FT), and (FF) provide
MC/DC. For decisions with a large number of inputs, MC/DC requires considerably more test
cases than any of the coverage measures discussed above.

Multiple Condition Coverage requires test cases that ensure each possible combination of
inputs to a decision is executed at least once. Thus, multiple condition coverage requires
exhaustive testing of the input combinations to a decision. In theory, multiple condition
coverage is the most desirable structural coverage measure; but, it is impractical for many
cases. For a decision with n inputs, multiple condition coverage requires 2 to the n'th tests.

<Doc Number> Page 64 of 188 Rev. -

Software Verification Plan

Representations for Elementary Logical Expressions

Name Schematic Representation Code example Truth Table
Input Dj.
Output c <:|
and Gate A C=AandB; A B C
c T T T
B T F F
F T F
F F F
or Gate A C=AorB: A B C
c T T T
B T F T
F T T
F F F
xor Gate A C:= A xorB: A B C
c T T F
B j> < l T F T
F T T
F _F _F
not Gate A B B := not A; A B
AP 2 B
F T
<Doc Number> Page 65 of 188 Rev.

Software Verification Plan

AND Gate
The following tests will be performed to achieve test coverage for an “and” gate:

> All inputs are set true with the output observed to be true. This requires one test
case for each n-input “and” gate.

» Each and every input is set exclusively false with the output observed to be false.
This requires n test cases for each n-input “"and” gate.

Changing a single condition starting from a state where all inputs are true will change the
outcome; that is, an “and” gate is sensitive to any false input. Hence, a specific set of n+1
test cases is needed for an n-input “and” gate. These specific n+1 test cases meet the
intent of test coverage by demonstrating that the “and” gate is correctly implemented.

The following is an example of the minimum testing required for a three-input “and” gate.
In this case, it takes four test cases to show that each input "independently" affects the
output.

If(A=1)and(B=1)and (C=1)thenD :=1; end if;

D—

%

Test Case Number 1 2 3 4
Input A T F T T

Input B T T F T

Input C T T T F
Output D T F F F

<Doc Number> Page 66 of 188 Rev. -

Software Verification Plan

OR Gate
The following tests will be performed to achieve test coverage for an “or” gate:

> All inputs are set false with the output observed to be false. This requires one test
case for each n-input “or” gate.

» Each and every input is set exclusively true with the output observed to be true. This
requires n test cases for each n-input “or” gate.

These requirements are based on an “or” gate’s sensitivity to a true input. Here again, n+1
specific test cases are needed to test an n-input “or” gate. These specific n+1 test cases
meet the intent of test coverage by demonstrating that the “or” gate is correctly
implemented.

The following is an example of the minimum testing required for a three-input “or” gate. In
this case, it takes four test cases to show that each input "independently" affects the
output.

If(A=1)or(B=1)or(C=1)thenD:=1; endif;

I

N/

K

!

Test Case Number 1 2 3 4
Input A F T F F

Input B F F T F

Input C F F F T
Qutput D F T T T

<Doc Number> Page 67 of 188 Rev. -

Software Verification Plan

XOR Gate

The “xor” gate differs from both the “and” and the “or” gates with respect to test coverage
in that there are multiple minimum test sets for an “xor”. Consider the two-input “xor”
gate. All of the possible test cases for this “"xor” gate are shown below. For a two-input
“xor” gate, any combination of three test cases will provide test coverage.

The following is an example of the minimum testing required for a two-input “xor” gate.
Minimum testing to meet test coverage requires one of the following sets of test cases:

> testcases 1, 2,and 3
> testcases 1, 2,and 4
> testcases 1, 3,and 4
> test cases 2, 3, and 4

If(A=1)xor(B=1)thenC:=1; endif;

Test Case Number | 1 2 3 4
Input A T | T | F | F

Input B T | F T | F
Qutput C F| T | T/|F

Note that for a test set to distinguish between an “or” and an “xor” gate it must contain
test case 1. Test sets 1, 2, and 3 above can detect when an “or” is coded incorrectly for an
“xor”, and vice versa. While not explicitly required by test coverage, elimination of test set
4 as a valid test set is worth considering. Note also that minimum tests to achieve test
coverage for an “xor” gate with more than two inputs are implementation dependent.
Hence, no single set of rules applies universally to an “xor” gate with more than two inputs.

<Doc Number> Page 68 of 188 Rev. -

Software Verification Plan

Not Gate

The logical “not” works differently from the previous gates: the “"not” works only on a single
operand. That operand may be a single condition or a logical expression. But, with respect
to a gate level representation, there is a single input to the “not” gate as shown below.

D-—"D—<]

Minimum testing to achieve test coverage for a logical “"not” requires the following:
» The input is set false with the output observed to be true.
» The input is set true with the output observed to be false.

<Doc Number> Page 69 of 188 Rev. -

Software Verification Plan

Comparator

A comparator evaluates two numerical inputs and returns a Boolean based on the
comparison criteria. Within the context of DO-178C, a comparator is a condition and also a
simple decision. The following comparison criteria are considered in this tutorial:

» < less than

» > greater than

> <= less than or equal to

» >= greater than or equal to
» == equal to

» I=not equal to

In general, the comparison point can be a constant or another variable.

- . A
x| x> comparison point }—<]

B

A
X >y

Daan
=
=

In either case, two test cases will be used to confirm test coverage for a comparator—one
test case with a true outcome, and one test case with a false outcome. Minimum testing for
a comparator requires the following:

» Input x set at a value above the comparison point (or y)
> Input x set at a value below the comparison point (or y)

Typically, three test cases will be used to assure that simple coding errors have not been
made; that is, that the correct relational operator and comparison point are used in the
code. So, while test coverage only requires two tests, minimum good requirements-based
testing for a comparator requires:

> Input x set at a value slightly above the comparison point
» Input x set at a value slightly below the comparison point
> Input x set at a value equal to the comparison point

The definition of “slightly” is determined by engineering judgment based on the numerical
resolution of the data type and/or target computer, the test equipment driving the inputs,
and the resolution of the output device. Consider for example, the following set of test
cases for a design that sets the output A true when altitude is greater than 2500.

<Doc Number> Page 70 of 188 Rev. -

Software Verification Plan

| > altude S Taritude > 2500 2]

Test Case Number 1 2 3 4 5
Input altitude 25 | 32000 | 2500 | 2499 | 2501
Qutput A F T F F T

Test cases 1 and 2 give the desired test coverage output. However, those test cases do not
confirm that the toggle occurred at 2500, and not elsewhere. Even adding test case 3 does
The design could have been implemented with a
comparison point anywhere between 2501 and 32000, and give the same result for test
cases 1, 2, and 3. Test cases 3, 4, and 5 are a better set, because this set confirms that the

not improve the test suite much.

transition occurs at 2500.

<Doc Number>

Page 71 of 188

Rev.

Software Verification Plan

If Then Else:

The if-then-else statement is a switch that controls the execution of the software. Consider
the following example where X, y, and z are integers and C is a Boolean:

IfCthenz :=xelsez:=vy;

D_xi
_Q Z

By]

DC

<Doc Number> Page 72 of 188 Rev. -

Software Verification Plan

The following tests will be performed for the if-then-else statement:

> Inputs that force the execution of the then path (that is, the decision evaluates to true)
> Inputs that force the execution of the else path (that is, the decision evaluates to false)
» Inputs to exercise any logical gates in the decision

Note that the decision must evaluate to false with confirmation that the then path did not
execute, even if there is no else path.

For example, for a single condition Z, the statement if Z then...else... requires only two test
cases to achieve test coverage. The decision in if X or Y or Z then... else... requires four test
cases to achieve test coverage.

A minimal test set for the statement if Z then a := x else a := y is shown in Table 9. Note
that a case statement may be handled similarly to the if-then-else statement.

Test Case Number 1 2
Traverse the then path Traverse the else path
Input x 12 18
Input y 50 34
Input Z T F
OQutput a 12 34

<Doc Number> Page 73 of 188 Rev. -

Software Verification Plan

While Loop:

Consider the following example where Weight_On_Wheels is a Boolean:
While Weight_On_Wheels loop radar_mode := Off; end loop;

A schematic representation of this code is shown in Figure 10. In this case,
Weight_On_Wheels is the decision for the while loop construct.

while Weight_On_Wheels

radar_mode = Off

end Loop

The following tests will be performed for the while loop:

> Inputs to force the execution of the statements in the loop (that is, the decision
evaluates to true)

> Inputs to force the exit of the loop (that is, the decision evaluates to false)
» Inputs to exercise any logical gates in the decision

Two test cases may be used to achieve test coverage. One test case confirms that
radar_mode remains off as long as Weight _On_Wheels is true. The second test case
confirms that radar_mode could be set to something other than off when
Weight_On_Wheels is false. In the case where Weight_On_Wheels is replaced by a Boolean
expression, the Boolean expression would also need to be evaluated, and the setting of
radar_mode to off confirmed.

<Doc Number> Page 74 of 188 Rev. -

Software Verification Plan

Applying Boolean Logic to Requirements-Based Testing

This process takes the inputs from the requirements-based test cases and maps them to the
schematic representation. This provides a view of the test cases and the source code in a
convenient format. Inputs and expected observable outputs for the requirements-based test
cases for example 1 are given.

Test Case Number 1 2 3 4 5
Input B T F F T T
Input C T T T T F
Input D F F T T F
Qutput A T F T T F

This example shows the test cases annotated on the schematic representation. Note that
intermediate results are also determined from the test inputs and shown on the schematic
representation.

12345
—~ B TFFTT
L/ 12345
B TFFTF 12345

NC TTTTFR 1) TWNTFTTF Aﬁi]
L/)/

FETTF
—~. D
L/

<Doc Number> Page 75 of 188 Rev. -

Software Verification Plan

Knowing the intermediate results is important because some inputs may mask the effect of
other inputs when two or more logic constructs are evaluated together. Test cases where
the output is masked do not contribute to achieving test coverage. Using the annotated
figure, the requirements-based tests cases that do not contribute (or count for credit)
towards achieving test coverage can be identified. Once those test cases are eliminated
from consideration, the remaining test cases can be compared to the building blocks to
determine if they are sufficient to meet the test coverage criteria.

Expression: Z := (A or B) and (C or D);
Step 1: Show the source code schematically.

Ban N
:>B_l
| D———¢
Damm N
::D

Step 2: Map test cases to the source code picture.

A
:>——j FFTFT
T\ FTTTT
B L
> I FTFTF ort
™ FTFTT Z
c _/ and
——— TFFTT
T\ TTFTT
D »—‘/or.‘Z
:>———J FTFFF

<Doc Number> Page 76 of 188 Rev. -

Software Verification Plan

Step 3: Eliminate masked tests. In this case, any false input to the “and” gate will mask the
other input. In this case, the false outcome of “orl” will mask test case 1 for the “or2”
gate. Similarly, the false outcome of “or2” will mask test case 3 for the “orl” gate.

FTFTT

\J

=

A

FFXFT
T\ FTTTT
I

FTRTF ort

XFFETT
T\ TTFTT
Iy

XKTFFF or2

Step 4: Determine test coverage.

and

Gate

Valid Test Inputs

Missing Test Cases

or1

FF Case 1
FT Case 2ord
TF Case 5

None

FF Case 3
FT Case 2
TF Casedord

None

and

TT Case 2,4, 0r5
TF Case 3
FT Case 1

None

Step 5: Confirm output. The outputs computed match those provided.

<Doc Number>

Page 77 of 188

Rev. -

Software Verification Plan

Symbols for Source Code Representation

Name

Schematic Representation

Code example

Comparator
(X with constant)

[>* [X[x= constant2-< |

A = x > constant;

Comparator A =XxX>Yy,
(x with y)
Summer Z:=X+Yy,
(addition or
subtraction may be
shown)
Multiplier z2=xX"y,
Divider Z=x/Y,
v
If-then-else If A then
Z =X
Else
zZ:=y,
End if;
If-then-else I & If A then
| | Z:=X;
::; ;:;', w =3,
[A | Else
’ 2=y,
w = 5;
End if;
While Loop While A Loop
Wihitle A Read (A):
] End loop;
Read (A),
End Loop
<Doc Number> Page 78 of 188 Rev.

Software Verification Plan

4.9.3 Data Coupling and Control Coupling Analysis

Analysis of data coupling and control coupling will be performed to ensure the adequacy of
integration testing. This objective will be achieved in conjunction with hardware/software
integration testing or software integration testing. A structural coverage analysis will be
used to confirm that the requirements based testing has exercised the data and control
coupling between code components. A separate peer review will be to verify that the source
code matches the data flow and control flow defined in the software architecture.

Structural Coverage Analysis of Data and Control Coupling

Structural coverage analyses of data coupling and control coupling will be used to provide a
measurement and assurance of the correctness of these modules/components’ interactions
and dependencies. The intent of this analysis is to show that the software
modules/components affect one another in the ways in which the software designer
intended and do not affect one another in ways in which they were not intended, thus
resulting in unplanned, anomalous, or erroneous behavior. Typically, the measurements and
assurance should be conducted on R-BT of the integrated components (that is, on the final
software program build) in order to ensure that the interactions and dependencies are
correct, the coverage is complete, and the objective is satisfied.

Satisfaction of this objective will be based on the detailed high and low level requirements
of the modules/components’ interfaces and the thorough requirements-based normal range
and robustness tests of the software program. The interfaces and dependencies will be
specified in the design requirements, and if those requirements are tested for both normal
functioning and robustness. Satisfaction of the data and control coupling objective becomes
a by-product of the design and verification processes.

The sections below identify the areas that are applicable and the means with which
verification will occur.

4.9.3.1 Data Coupling Analysis

Data coupling manifests as:

(1) Parameters passed to a function.

In the case of parameters passed to the function (case 1); statement coverage is sufficient
to determine whether all control paths through the function that might be influenced by the
parameter set have been exercised.

(2) Global data set or used by the function whose value is determined at compile-time or as
part of system configuration.

In the case of global configuration data (case 2); analysis should determine the equivalency
classes of all potential configurations. Structural coverage analysis should be executed
under all equivalency classes.

(3) Global data set or used by the function which represents the current state of execution
of the system.

<Doc Number> Page 79 of 188 Rev. -

Software Verification Plan

In the case of global state data (case 3); analysis should determine the potential states (or
their equivalency classes). Structural coverage analysis through instrumentation should
determine if all states have been entered and all legal transitions between states have been
exercised.

Note 1: Sub-functions exist where a function parameter determines which of multiple
independent execution paths is taken through a function. Usually the parameter is used to
determine which case of a large switch statement is executed.

An Approach

Perform a review of the flight software to confirm data coupling and control coupling among
the software components.

To satisfy the control coupling objective, use the structural coverage results to provide
evidence that all functions were executed through high-level test cases. For functions that
could not be exercised by high-level tests, develop additional functional analyses and add to
the Software Verification Cases and Procedures (SVCP). The intent is to provide confidence
that the requirements-based testing has completely exercised the code structure.

<Doc Number> Page 80 of 188 Rev. -

Software Verification Plan

To satisfy the data coupling objective, this analysis includes functional parameters, global
variables, external data, stored data, and resource contention. Analyze the SVCP and
associated test code to confirm the verification coverage of the data coupling in the code. As
with the control coupling, structural coverage results can be used to provide evidence that
the data coupling through parameters was covered.

Although Certification Authority Software Team (CAST) Position Papers are not considered
guidance, the approach outlined in CAST-19 is voluntarily adopted as a reasonable method
for the demonstration of data coupling and control coupling coverage analysis. The table
below examines the objectives of the data coupling coverage approach discussed in CAST-
19.

CAST-19 Objective Where and how the objective is met

Identify data dependencies. This objective is met by defining the data items in
the requirements and during the software
requirements and code reviews ensuring proper
setting and using of the data.

Identify inappropriate data This objective is met by the performance of the
dependencies. software requirements and code reviews.

Define and evaluate the extent of This objective is met by the simplicity and small
interface depth size of the project and verified by the code review.
Determine and minimize coupling This objective is met by the simplicity and small
interdependencies. size of the project. There will be no specific review

test or analysis to verify this objective.

Evaluate accurate use of global data | This objective is met by code review and
requirements base testing. The requirements
based tests will ensure the software performs as
required. The combination of these verifications
adequately verifies the use of global data.

Evaluate input/output data buffers This objective will be met by the accumulation of
all the requirements based tests being executed,
with passed results. The Software Verification
Review checklist addresses this objective.

<Doc Number> Page 81 of 188 Rev. -

Software Verification Plan

4.9.3.2 Control Coupling Analysis

In the C language control coupling manifests in one of three ways:

(1) Static function calls.

In the case of static function calls (case 1); statement coverage is sufficient to determine if
all possible calling points for a function have been executed by the test procedures.

(2) Sub-functions (See Note 1)

- In the case of sub-functions (case 2); analysis should reveal if the controlling parameter a
constant determined at compile-time or whether the controlling parameter may be
dynamically modified during execution.

- If the controlling parameter is a constant determined at compile-time, this case is
equivalent to case 1.

- If the controlling parameter may be dynamically modified during execution, this case is
equivalent to case 3.

(3) Dynamic function calls (i.e. function called through a pointer.)

- Points where a function is called through a pointer (case 3); it is necessary to determine
whether (a) the function pointer has been initialized before use, (b) what the range of
possible values for the function pointer is, and (c) that all possible values of the function
pointer within that range have been executed.

- In the case of function pointers which belong to a jump table which is initialized at
compile-time, this case is reduces to case 1.

- In the case of function pointers that are initialized at powerup, the calling point must be
exercised in all potential configurations of the jump table. (Also see Data Coupling case 2.)

Although Certification Authority Software Team (CAST) Position Papers are not considered
guidance, the approach outlined in CAST-19 is voluntarily adopted as a reasonable method
for the demonstration of data coupling and control coupling coverage analysis. The table
below examines the objectives of the control coupling coverage approach discussed in
CAST-19.

<Doc Number> Page 82 of 188 Rev. -

Software Verification Plan

CAST-19 Objective

Where and how the objective is met

Identify control dependencies.

This objective is met by defining the data items in
the requirements and during the software
requirements and code reviews ensuring proper
setting and usage of the data

Identify inappropriate control
dependencies.

Inappropriate control dependencies will be
removed. This objective will be verified by the
performance of the software requirements and
code reviews.

Verify correct execution call
sequence, including startup
sequences.

This objective is met by reviewing the code against
the requirements and by testing execution related
requirements, with passed results.

Define and evaluate the extent of
interface depth

This objective is met by the simplicity and small
size of the project and by the code review.

Verifying scheduling

This objective is met by reviewing the code against
the requirements and by testing execution related
requirements, with passed results.

Worst-case execution time analysis

This analysis will be part of the Software
Integration Analysis.

<Doc Number>

Page 83 of 188 Rev. -

Software Verification Plan

4.10 Process-Specific Activities

The following sections detail the planned process-specific activities of the Testing Process.

4.10.1 Test Case Development

>
>

Test cases will be developed by a person other than the author of the software.

Test case development can start after the software requirements have been formally
reviewed. An iterative process for updating the test cases works in conjunction with
any PRs processed to necessary changes in the software requirements.

Test cases will be developed using software requirements, any certification
document, as required for the function being tested, and information from the
software detailed design that indicates additional boundary and robustness test steps
are required. Additionally, test steps will be iteratively modified when preliminary
coverage data is available to address any coverage deficiencies. All iterative work in
the lifecycle will be completed using PRs and CM controls.

Test case tools will be chosen based on the verification needs identified. Software
Simulation tools, specific lab equipment used in validation, and on-target testing
tools (script processing tools, external interface stimulation tools) determine the
specific steps developed. Refer to the PSAC for a list of verification tools.

Test cases will be developed that capture test environment setup and parameters,
versions of CM controlled Software, versions of CM controlled test documentation
(including test cases) and industry interface ICDs for verification of external
interfaces.

Test cases will be developed based on functional interfaces and components. Where
applicable, a test case may be used to verify multiple requirements concerning the
same function or functions. The software trace matrix supports tracing from test
case to software requirement. A test case may cover more than one software
requirement, and the test case and trace matrix will indicate all software
requirements covered during the test. Each instance of a core function must employ
a separate test case with the appropriate tracing to the requirement. All iterative
work in the lifecycle is completed using PRs and CM controls.

Test cases will be developed to include positive path testing, plus additional testing
as warranted for robustness. Robustness testing includes boundary conditions,
obscure event mitigation, failure compensation, negative path testing, default case
verification and more. Developed test cases indicate when test steps are for
robustness testing, and may not trace to a specific software requirement.
Additionally, test steps are iteratively modified when preliminary coverage data is
available to address robustness deficiencies. All iterative work in the lifecycle will be
completed using PRs and CM controls.

<Doc Number> Page 84 of 188 Rev. -

Software Verification Plan

4.10.2 Test Case Verification

Test cases will be formally reviewed by an independent party against the software
requirements claimed in each test step. The trace matrix will be validated during the review
to insure proper credit is taken for the software requirements listed. The software
development life cycle steps will be followed to insure any discrepancies found in the review
are addressed. All iterative work in the lifecycle will be completed using PRs and CM
controls. Refer to Peer Review Process for the test cases.

4.10.3 Test Procedure Development

>
>

Test procedures will be developed by a person other than the author of the Software.
Test procedure development can start after the software requirements have been
formally reviewed. Test procedures may be developed in conjunction with the test
case. An iterative process for updating the test procedures works in conjunction with
any PRs processed to necessary changes in the software requirements or related test
cases.

Test procedures will be developed using software requirements, test cases any
certification documents as required for the function being tested, and information
from the software detailed design that indicates additional boundary and robustness
test steps are required. Additionally, test procedures are iteratively modified when
preliminary coverage data is available to address any coverage deficiencies. All
iterative work in the life cycle is completed using PRs and CM controls.

Test tools will be chosen based on the verification needs identified.

Test procedures will be developed using proven test templates that capture test
environment setup and parameters, versions of CM controlled software, versions of
CM controlled test documentation (including test cases) and industry interface ICDs
for verification of external interfaces.

When test procedure gaps are discovered during testing, the PR process will be used
to address the gaps.

Test procedures will be developed based on functional interfaces and components.
Where applicable, a test procedure may be used to verify multiple requirements
concerning the same function or functions. Test procedures will be tied directly to a
test case - one for one. The software trace matrix will support tracing from test
case to software requirement. The test procedure will be an integral part of the test
case trace. As discrepancies in test procedures are identified, iterative changes will
be made as necessary to resolve the discrepancy. All iterative work in the lifecycle
will be completed using PRs and CM controls.

<Doc Number> Page 85 of 188 Rev. -

Software Verification Plan

» Test procedures will be developed to include positive path testing, plus additional
testing as warranted for robustness. Robustness testing will include boundary
conditions, obscure event mitigation, failure compensation, negative path testing,
default case verification and more. Test procedures will be developed to indicate
when test steps are for robustness testing, and may not trace to a specific software
requirement. Additionally, test procedures will be iteratively modified when
preliminary coverage data is available to address robustness deficiencies. All
iterative work in the lifecycle will be completed using PRs and CM controls.

4.10.4 Test Procedure Verification

Test procedures will be formally reviewed by an independent party against the respective
test case and software requirements claimed in each test step. The trace matrix will be
validated during the review to insure proper credit is taken for the software requirements
listed. The software development life cycle steps will be followed to insure any
discrepancies found in the review are addressed. All iterative work in the lifecycle will be
completed using PRs and CM controls. Refer to Peer Review Process of test cases.

4.10.5 Coverage Analysis Verification

Structural coverage analysis results will be formally reviewed by an independent party.
Where code structures are not covered by requirements-based testing, the review will
ensure that:

> If the uncovered code is dead code (extraneous code for which no requirements
exist), it is removed.

» If the uncovered code contains intended functionality not included in the
requirements and/or design, additional requirements (and related test procedures)
are added to address the undocumented functionality.

» If the uncovered code is deactivated code used only in certain configurations of the
airborne product, the code is reachable in the appropriate configuration of the
product, and that the deactivation mechanism prevents inadvertent activation of the
code.

> If the uncovered code is deactivated code not used in any approved configuration
(such as test related code), the deactivated code structure is specifically identified in
the Coverage Results and that the behavior of the code structure is deterministic and
would not cause unintended behavior (determined by analysis).

<Doc Number> Page 86 of 188 Rev. -

Software Verification Plan

4.10.6 Testing Environment

> Each test case will include the following information:

Test Description

Tester Name

Test Date

Software Version tested

Test Method used

Tool(s) Version(s) used (if applicable)

O 0O 0 O O O

> If appropriate (i.e., special equipment required) the test procedure will describe
the specific bench configuration, test tool configuration, and any special
instruction required to insure the tester sets up the correct environment.

> If appropriate (i.e., conformed unit, or special test rig) the test procedure will
describe the following to insure the proper equipment and rig configuration is
achieved before testing

o P/N of test unit
o S/N of test unit
o Identification of special test rig components and gear

» SQA person will audit the test setup before testing.

» Once a test rig or environment has been conformed, the apparatus will be “Locked
Down” for the time required to complete the test procedure. (“Locked Down” means
the equipment and test gear involved in the test setup is physically or electronically
secured from other personnel changing the environment.)

4.10.7 Test Execution

» On-Target testing consists of normal system level test such as TSO, normal flight
test simulation and DO-178C requirements based test. Additionally, special test
cases will be created to exercise areas of the software where normal system level
tests do not obtain full coverage, or configured options on the standard product may
not be enabled. All system level testing will be identified in the software trace matrix
for evaluation and review.

» Specific test procedures will be designed to exercise timing interfaces, critical data
functions and configured options. Validation of the software at the low level will be
achieved by capturing artifacts using lab equipment with electronic output. These
resultant artifacts will be formally reviewed by an independent source and put under
CM control. Data from these tests will also be used in verification by analysis efforts
as required based on total test coverage analysis.

<Doc Number> Page 87 of 188 Rev. -

Software Verification Plan

» Each test case will include the following test run information:

Test Description

Tester Name

Test Date

software Version tested

Test Method used

Tool(s) Version(s) used (if applicable)

o O O O O O

» Testing will commence once the following are complete:
o All software requirements are reviewed and under CM control with no
outstanding (non-deferrable) PRs
o All Test Cases/Procedures are reviewed and under CM control with no
outstanding (non-deferrable) PRs
o All software source files are reviewed and under CM control with no
outstanding (non-deferrable) PRs

4.10.8 Test Results Verification

All traceability data is reviewed and under CM control with no outstanding (non-deferrable)
PRs Software Testing Process Reviews and Analysis

Throughout the Software Testing Process, peer reviews are held to review and analyze the
Test Cases and Test Procedures to determine that they are complete and fully verify the
high-level and low-level requirements. In addition, peer reviews are used to brainstorm
methods for robustness testing. Peer review entry and exit criteria, along with signature
sheets and action items are recorded in the Reviews and Analysis Management System.
The resulting Robustness test cases are reviewed for their ability to reveal vulnerabilities in
the software.

Throughout the Software Testing Process, peer reviews are held to review and analyze the
Test Cases and Test Procedures to determine that they are complete comply with the
Software Verification Plan and cover the software high-level and low-level requirements.

Peer reviews are held to analyze the coverage achieved as a result of requirements-based
testing. Where code structures are not covered, an analysis is performed to determine the
cause. If the cause is determined to be untraceable code as a result of dead code, the code
is removed. If the cause is inadequate requirements or test cases and procedures, the peer
review results include action items to resolve this. If the result is unreachable “required”
code that is traceable, an analysis of each line of uncovered code is documented in the
Structural Coverage Analysis Results document.

4.10.8.1Software Verification Cases and Procedures Document Review

Review of the Software Verification Cases and Procedures occurs when the document is
mature enough to be reviewed. Once prepared, the Software Verification Cases and
Procedures is submitted to Software Configuration Management and entered into the
document control system.

The Software Quality Assurance Engineer coordinates the document review process using
the Document Review Management System. Each reviewer adds his or her comments in the
Document Review Management System. A cycle of comment incorporation and re-review
occurs through Configuration Management until all comments are closed. The Project Lead
is responsible for closing all document comments prior to formal release.

<Doc Number> Page 88 of 188 Rev. -

Software Verification Plan

Once all comments have been closed, the Software Verification Cases and Procedures is
reviewed by the Software Quality Assurance Engineer against the Document Review
Checklist and a cross references from each section of the Software Verification Cases and
Procedures to the DO-178B Section 11 Objective to ensure that full compliance is achieved
(See screenshot below). Once complete, the Software Quality Assurance Engineer signs
and dates the checklists, which is maintained by Software Configuration Management as
CC2 compliance evidence. The Software Verification Cases and Procedures is then signed
and released.

4.10.8.2System Verification Review

The System Verification Review is conducted at the conclusion of the Software Testing
Process. The System Verification Review Checklist will be used during the review.

The Project Engineer conducts the System Verification Review. When the System
Verification Review is held, the Project Engineer records the minutes or assigns someone to
do so. The minutes will include a discussion of the results, agreements and disagreements
reached during the review, updates to the project schedule and resource estimates, and
action item assignments with estimated completion dates.

Representatives from Quality Assurance, Test Engineering, Manufacturing Engineering,
Mechanical Engineering, and Software Engineering are invited to the System Integration
Review.

The review ensures the results of the integration process are complete and correct. If
deficiencies are revealed during the review, corrective actions to resolve the deficiencies are
fed back into the appropriate process.

4.10.8.3Reviews and Analysis of Test Cases, Test Procedures, and Results

Peer reviews are conducted to analyze Test Cases, Test Procedures, and Results. The
following characteristics are evaluated and form the exit criteria for the peer review:

» Test cases: Independent verification of test cases is presented later in this
document.

» Test procedures: The objective is to verify that the test cases were accurately
developed into test procedures and expected results.

» Test results: The objective is to ensure that the test results are correct and that
discrepancies between actual and expected results are explained.

<Doc Number> Page 89 of 188 Rev. -

Software Verification Plan

During the verification process, the Independent Verification Engineer (along with select
members of the development team) reviews the requirements-based test cases to assure
that all requirements are adequately covered. If the requirements-based tests are not
adequate to achieve test coverage, then additional requirements-based tests or analysis
may be needed.

The following questions are considered when evaluating test cases and procedures:

>
>

Y

Y

YV V V V

Do the test cases and procedures adhere to the relevant plans and standards?

If plans or standards have not been followed, is there documented rationale for
deviations from stated plans and standards?

Is the rationale for each test case clearly explained?
Are the test cases and procedures appropriately commented to allow future updates?

Have the test cases and procedures been subjected to appropriate change and
configuration control?

Is the separation between test cases clear? For example, are test starts and stops
identified?

Do the test cases and procedures specify required input data and expected output
data?

Were the inputs for each test case derived from the requirements?

Are the test cases and procedures sufficient to cover all the relevant requirements?
That is, do the traceability matrices provide clear association between test cases and
requirements?

Are the test cases and procedures sufficient to achieve test coverage?

Are sufficient tests identified to provide test coverage for each logic construct?
Are there sufficient robustness test cases and procedures?

Are test cases and procedures correct?

4.10.8.3.1 Review checklists for test cases, procedures, and results

<Doc Number> Page 90 of 188 Rev. -

Software Verification Plan

A checklist is used during review of test procedures and results (See Document Review
Management System in the Software Quality Assurance Plan). During this review, the
checklists themselves are assessed, considering the following questions for test coverage:

>

>
>

YV VvV

Are the checklists sufficient to determine that the requirements-based test cases,
procedures, and results meet the test coverage objective?

Have the checklists been prepared and/or reviewed by quality?

Do the checklists specify:

who performed the review?

what data was reviewed (with revision)?

when it was reviewed?

what was found?

what corrective actions were taken, if necessary?

Do the checklists require evaluation of tolerances specified in the requirements?

Do the checklists ensure that results of the test cases can be visually verified? (e.g.,
can the SQE, or other reviewer, visually determine when requirements-based tests
have passed or failed?)

Will the checklists reveal whether the results of the test cases that are counted for
credit towards test coverage are observable?

Will the checklists address limitations of the structural coverage analysis tool as
documented in the tool qualification?

Will the checklists reveal test cases that violate project standards?

<Doc Number> Page 91 of 188 Rev. -

Software Verification Plan

4.10.9 Software Test Execution

Verification testing of software has two objectives. One objective is to demonstrate that the
software satisfies its requirements. The second objective is to demonstrate with a high
degree of confidence that errors that could lead to unacceptable failure conditions, as
determined by the system safety assessment process, have been removed. The following
three types of testing are used:

» Hardware Software Integration Testing: To verify correct operation of the software
in the target computer environment.

» Software Integration Testing: To verify the interrelationships between software
requirements and components and to verify the implementation of the software
requirements and software components within the software architecture.

» Low-level Testing: To verify the implementation of software and low-level
requirements.

Top Level Verification Testing Process For New Designs and Design Changes

| New Designs '>
V
Davsiopmant Oevelopmaent Imegration Erwv Lab Manufactuing IVAV Test Canfig Mgmt IVAY Tast
Viar&cation ATP
Unit 4:!:60!0 Hardware and Evdroomient Poﬂt;n.numcn A K ‘ Part
Sciie Developed | =, Test Test & Producior
p:w”" m"“‘ -nd' > 'c' M""‘”‘ 1 Procodure repared and | FTocosun | Procecura Ready — |—&1 poamssion
Executed Prepared and Exscited Prepared Prapared Release Test
Exacutod Parformed
=) = ————(..""'"'.......';) (" e =
() I _______ ’(oAy e
(As Appdicadie) P
S
——————————————— &
| Design Changes '>
¥
Davelopmeant Osvalopment Integration Manutactunng VAV Test Config Mgmt IVAY Tast
I |
Verification | s | R | £CO ATP
u«m;:«ﬁm Hardwars and Test ' Test | 'eu | Prepar Fark
80 Efvironment Procedurs Procedul
00 sl g W ol A ST | upsates | Updatsd "1 Production |1 Regmession
o Qo Change(s) Ready Test
Executad Verifiad :(Vmeil("Rooumy: R Part
Lo — ads -

~= July 11,2007 Rev A

<Doc Number> Page 92 of 188 Rev. -

Software Verification Plan

Peer reviews are conducted to ensure that software testing objectives have been satisfied.
The following characteristics are evaluated and form the exit criteria for the peer review:

» Test cases are developed based primarily on the software requirements.

» Test cases are developed to verify correct functionality and to establish conditions
that reveal potential errors.

» Software requirements coverage and traceability analysis are used to determine
what software requirements were not tested.

» Although not required, structural coverage analysis techniques may be used to
determine what software structures were not exercised.

4.10.9.1Test Environment

More than one test environment may be needed to satisfy the objectives for software
testing. The test environment includes the (independently built) software loaded into the
target computer and tested in the target computer environment.

Note: This section must be tailored to specify the actual test environments in use.

4.10.9.2Requirements-Based Test Cases

Requirements-based testing is emphasized because this strategy has been found to be the
most effective at revealing errors. Requirements-based test case selection includes the
following:

> Implementation of both normal range and robustness (abnormal range) test cases.
The specific test cases should be developed from the software requirements and the
error sources inherent in the software development process.

4.10.9.3Normal Range Test Cases

Normal Range test cases are developed to demonstrate the ability of the software to
respond to normal inputs and conditions. Normal range test cases include:

» Real and integer input variables are exercised using valid equivalence classes and
boundary values.

> For time-related functions, such as filters, integrators and delays, multiple iterations
of the code are performed to check the characteristics of the function in context.

> For state transitions, test cases are developed to exercise the transitions possible
during normal operation.

» For software requirements expressed by logical equations, the normal range test
cases verify the variable usage and the Boolean operators.

<Doc Number> Page 93 of 188 Rev. -

Software Verification Plan

4.10.9.4Robustness Test Cases

Robustness test cases are developed to demonstrate the ability of the software to respond
to abnormal inputs and conditions. Robustness test cases include:

>

>
>

Real and integer variables are exercised using equivalence class selection of invalid
values.

System initialization is exercised during abnormal conditions.

The possible failure modes of the incoming data are determined, especially complex,
digital data strings from an external system.

For loops where the loop count is a computed value, test cases may be developed to
attempt to compute out-of-range loop count values, and thus demonstrate the
robustness of the loop-related code.

For time-related functions, such as filters, integrators, and delays, test cases may be
developed for arithmetic overflow protection mechanisms.

For state transitions, test cases may be developed to provoke transitions that are not
allowed by the software requirements.

4.10.9.4.1 Robustness Test Case Selection Strategy

The following criteria will be used, at a minimum, to select robustness test cases:

10.
11.

12.
13.
14.
15.

16.

Starting with the Functional Hazard Assessment (FHA), produce each hazard
conditions and verify expected result.

Test multiple combinations of hazard conditions. Combine hazards.

Identify all range / boundary requirements. Test outside the boundaries of each
range requirement.

Identify all conditions where a fault is asserted. Test all of those conditions.
Combine fault conditions (without reset) and verify expected results.
Perform negative testing. If A AND B THEN X, test If NOT A and B THEN NOT X.

If not required by DO-160 Testing, test critical functionality and other key
functionality over temperature.

Perform testing over non-standard electrical conditions (i.e., power glitching, power
up, power down, brown out)

<Doc Number> Page 94 of 188 Rev. -

Software Verification Plan

4.10.9.5Requirements-Based System Verification Testing Methods

Requirements-based system verification testing methods concentrate on error sources
associated with the software operating within the target computer environment, and on the
high-level functionality. The objective of requirements-based testing is to ensure that the
software in the target computer will satisfy the high-level requirements.

Typical errors revealed by this level of testing include:

>
>
>

vV V V V V

Y

Incorrect input handling.
Failure to satisfy execution requirements.

Incorrect software response to hardware transients or hardware failures, for
example, start-up sequencing, transient input loadds and input power transients.

Data bus and other resource contention problems, for example, memory mapping.
Inability of built-in test to detect failures.

Errors in system interfaces.

Incorrect behavior of feedback loops.

Incorrect control of memory management hardware or other hardware devices under
software control.

Stack overflow.

Incorrect operation of mechanism(s) used to confirm the correctness and
compatibility of field-loadable software.

Violations of software partitioning.

<Doc Number> Page 95 of 188 Rev. -

Software Verification Plan

Peer reviews are conducted to ensure that common software errors were not introduced into
the design. The review includes the focus on the following most common error conditions:

» Implementation Error Source (Data Bugs)

18)Logic bugs - (x = 0; x <= 10; x++) 2> Expect a result of 10
19)Parameter Passing = Incorrect arguments passed

20)Return Codes - Unexpected return codes passed

21)Math Overflow / Underflow > Exceeding integer value

22)Logic Processing Error > Too many nested conditions or calculations

23)Reentrance Problem - If a section of code can be interrupted before it completes its
execution, and can be called again before the first execution has completed, the code
must be designed to be reentrant. This typically requires that all variables
referenced by the reentrant routine exist on the stack and not in static memory.

24)Incorrect Control Flow - The intended sequence of operations can be corrupted by
incorrectly designed conditional loops. This may cause problems such as missing
execution paths, unreachable code, and incorrect control logic.

25)Pointer Errors > Pointing to a NULL pointer in a linked list, improperly incrementing
pointer used to step through look-up tables or lists, bad function pointers.

26)Indexing Problems - Improper use of Index Registers in assembly language have
similar problems to those identified with pointers. Provides the same type of
indirection useful for table look-up, walking through lists, trees, and other data
structures.

27)Variable Scope Errors > Using the same name and applying it to different data items
that exist in different scopes.

28)Improper Data Usage - Using an uninitialized variable or using the same variable for
more than one purpose.

29)Incorrect Flag Usage - Flags are usually global in scope and are almost always static
(stored in a fixed memory location). Flag may inadvertantly be used for more than
one purpose or used to indicate more than one condition. Every flag should be SET,
CLEARED and tested at some point in the program.

30)Incorrect Address - Usually the result of an incorrect pointer. It's possible to code a
bad address into the code. This generally happens when the memory subsystem
changes (i.e., Reduce memory size).

31)Data / Range Overflow / Underflow - May result in passing a parameter that is out
of bounds or storing a data type not large enough to hold the data.

32)Signed / Unsigned data errors - Mixed sign arithmetic can easily lead to calculations
that overflow the data types. Assembly languages have different branch instructions
used after comparing signed and unsigned data. Using the wrong branch instruction
may cause a critical error.

33)Incorrect Conversion / Type-Casting / Scaling - Converting a data value from one
representation to another is common and may cause bugs. Conversion from signed
to unsigned or string to numeric type is common. Typecasts are useful to get data
into whatever representation is needed, but circumvent compiler type-checking,
increasing the risk of making a mistake.

<Doc Number> Page 96 of 188 Rev. -

Software Verification Plan

34)Data Synchronization Errors -» Embedded systems share data among separate

3)

4)

5)

6)

7)

8)

threads of execution. An operation that uses a number of different data inputs must
be synchronized in order to perform its processing. If the data values are updated
asynchronously, the processing may be using some "new" data items with some
"old" data items, and compute the wrong result.

Implementation Error Source (Real-Time Bugs)

Interrupt Handling > It is critical to handle all interrupts that the system will ever
receive. Receiving an unexpected interrupt without being able to handle it will likely
cause failures.

Task Synchronization > Tasks must be synchronized correctly. One task may
acquire raw data; another may process this data as a set; still another may make
control decisions on the processed data values. Proper synchronization usually is
implemented by relying on flags or semaphores to control task regular intervals.

Implementation Error Source (System Bugs)

Stack Overflow / Underflow = Pushing more data into the stack than it can hold is
referred to as a stack overflow. Pulling more data from the stack than was put on
the stack is referred to as a stack underflow. Both result in using bad data and can
cause an unintended jump to an arbitrary address, resulting in a failure.

Race Conditions - A race condition occurs when two or more independent threads
each access the same resource at the same time. The effects of a race condition vary
widely; they're dependent on the specifics of the situation.

Deadlock > When race conditions are avoided by "locking" a resource, preventing
any other thread from accessing it, the design must be evaluated to ensure that
deadlock will never occur. Testing for deadlock is generally ineffective, since only a
particular order of resource locking may produce it, and that ordering may not result
from the most common tests.

Deadlock is only a problem in multi-threading environments that lock resources. The
following four conditions must be present in order for a deadlock to occur. Breaking
any one of these conditions eliminates deadlock:

Mutual exclusion—only one thread can use a locked resource at a time
b. Nonpreemption—threads cannot force another thread to release a resource

c. Hold-and-wait—threads hold resources that they have locked while waiting for
any additional needed resources

d. Circular wait—a circular chain of threads exist, such that each thread holds a
resource needed by the next thread in the chain

Resource Sharing Problems - In the case where a peripherial such as an analog
multiplexer may be used to direct one of a number of different inputs to a single A/D
converter; If one task alters the mux setting to measure a given signal and another
preempts it and sets the mux to pass a different signal, when control returns to the
first task, it will be measuring the wrong signal, likely causing a failure condition.

<Doc Number> Page 97 of 188 Rev. -

Software Verification Plan

6)

7)

8)

9)

Implementation Error Source (Other Bugs)

Syntax / Typing > Compilers do a good job of syntax checking; however, special
attention needs to be placed on coding standards.

Interface > Complex interfaces are a common source of failures. Interface problem
may include incorrect EEPROM erase / write sequence, improper use of LCD
controller chip commands, wrong sequence in reading / writing serial communication
interface registers, etc.

Memory Allocation / Deallocation - Using memory management routines can greatly
simplify the efficient use of available memory. It can also be an added source of
errors. For example, not checking for successful allocation before using the memory,
not freeing memory when it is no longer needed (memory leak).

Peripheral Register Initialization - Peripherials typically have different modes of
operation, increasing the number of applications for which they're useful. This can
complicate the initialization and use of these devices producing another source for
errors.

10)Watchdog Servicing > Watchdog timers help ensure that if something in the system

goes exceptionally wrong, it will fail in a safe, or at least a predictable, manner.
Servicing the watchdog timer must be done properly and at the right time. The
watchdog must be enabled, and set to timeout at the correct interval.

4.10.9.5.1 Requirements-Based Software Verification Testing

This testing method is used and concentrates on the inter-relationships between the
software requirements, and on the implementation of requirements by the software
architecture. The objective of the requirements-based Software Verification Testing is to
ensure that the software components interact correctly with each other and satisfy the
software requirements through successive integration of code components with a
corresponding expansion of the scope of the test cases.

Typical errors revealed by this testing method include:

>

YV V VYV V

Incorrect initialization of variables and constants.
Parameter passing errors.

Data corruption, especially global data.
Inadequate end-to-end numerical resolution.

Incorrect sequencing of events and operations.

<Doc Number> Page 98 of 188 Rev. -

Software Verification Plan

4.10.9.5.2 Requirements-Based Low-Level Testing

This testing method is used and concentrates on demonstrating that each software
component complies with its low-level requirements. The objective of requirements-based
low-level testing is to ensure that the software components satisfy their low-level
requirements:

Typical errors revealed by this testing method include:

» Failure of an algorithm to satisfy a software requirement.
» Incorrect loop operations.
» Incorrect logic decisions.
> Failure to process correctly legitimate combinations of input conditions.
» Incorrect responses to missing or corrupted input data.
» Incorrect handling of exceptions, such as arithmetic faults or violations of array
limits.
» Incorrect computation sequence.
» Inadequate algorithm precision, accuracy, or performance.
4.10.10 Effectiveness of Test Program

The following tasks are performed to determine the effectiveness of the test program.

4.10.10.1 Assess results of requirements-based tests

The first step after test execution is to determine whether all requirements-based tests
pass. In addition to checking the final pass/fail results, the test cases and results for some
randomly selected requirements should be examined to ensure that the results reflect the
given inputs for those cases. Test results are also checked carefully with respect to any
specified tolerances.

The following questions are considered to assess the requirements-based test results:

>
>
>

Are the test result files clearly linked to the test procedures and codes?
Are failed test cases obvious from the test results?

Do the test results indicate whether each procedure passed or failed and the final
pass/fail results?

Do the test results adhere to the relevant plans, standards, and procedures?
Have the test results been subjected to appropriate configuration control?

<Doc Number> Page 99 of 188 Rev. -

Software Verification Plan

4.10.10.2 Assess failure explanations and rework

Each failed test case is documented with an explanation for why it failed, including
references to applicable Action Request. In some cases, rework of some life cycle data will
be required; in other cases, only an explanation for the failed test cases is needed. If
rework is required, the impact of changes should be carefully evaluated and the changed
items should be subjected to the appropriate change and configuration control.

Once all rework is complete, test cases should be rerun in compliance with plans for
regression testing. Note: there may be cases where failed requirements-based tests are
acceptable; however, it is typical for them to be fixed and rerun.

The following questions are considered to assess failures and rework:

> Is there an acceptable rationale for deviations from expected results, standards, or
plans?

» Are explanations for the failed test cases technically sound and accurate?

» Do explanations for failed test cases contain accurate references to relevant problem
reports?

» Are explanations for code or test rework suitable to address the failure?
» Have test cases been re-executed in compliance with plans for regression testing?
> Have the test results from regression testing been documented appropriately?

4.10.10.3 Assess coverage achievement

The Verification Engineer produces test cases that are expected to achieve 100% test
coverage (i.e., the purpose of test documentation is to show compliance with all of the
requirements). If all the requirements have been covered by tests without achieving full
test coverage, dead code, unintended functionality, or incorrectly documented de-activated
code may be indicated. It is the policy to remove all dead code.

The following questions are considered when assessing coverage achievement:
» Has the test coverage criteria been correctly applied?
» Is 100% structural coverage achieved through requirements-based testing?

> If 100% structural coverage is not achieved through requirements-based testing, is
there an explanation detailing which parts of the code were not executed, and why?
Have additional test cases been added?

» Are explanations for drops in coverage sufficiently detailed and acceptable?
» Are there problem reports associated with dead code?
» Has dead code been analyzed and/or removed?

<Doc Number> Page 100 of 188 Rev. -

Software Verification Plan

4.11 Coverage Analysis Methods

The subsequent paragraphs detail the methods that will be used for coverage analysis as
part of the software verification process.

Coverage refers to the extent to which a given verification activity has satisfied its
objectives. Coverage analysis measures will be applied to both requirements definitions and
testing activities. Appropriate coverage measures will be used by SQA to audit verification
activities. This will aid in determining the adequacy of the verification accomplished.

Coverage is viewed as a measure, not a method or a test. As such, results will be
expressed as the percentage of an activity that is accomplished. Two specific measures of
test coverage are identified in the following figure: requirements coverage and software
structure coverage.

Requirements coverage analysis will be used to determine how well the requirements-based
testing verifies the implementation of the software requirements and establishes traceability
between the software requirements and the test cases. Structural coverage analysis will be
used to determine how much of the code structure will be executed by the requirements-
based tests and establishes traceability between the code structure and the test cases.

Software < - T T T T

Requirements-Based
Test Generation - ——— _l

I

, I
Hardware!

Software I

Integration I

I

I

Software
Integration
Tests

Low-Level

Tests

Tests

Software Requirements
Coverage Analysis

v

Ve Software Structure e e— ____J
S Coverage Analysis
F 4

R

End of Testing

Additional

Verification —p- Direct Path

— = Conditional Path

<Doc Number> Page 101 of 188 Rev. -

Software Verification Plan

4.11.1 Requirements Coverage Analysis

Each software requirement contains a finite list of behaviors and features, and that each
requirement is written to be verifiable. Testing based on requirements will be performed
from the perspective of the user (providing a demonstration of intended function), and will
provide a means for the development of test cases concurrently with development of the
requirements.

Peer reviews will go beyond requirements coverage in evaluating the project. Reasons
include:

» The software requirements and the design description (used as the basis for the test
set) may not contain a complete and accurate specification of all the behavior
represented in the executable code.

> The software requirements may not be written with sufficient granularity to assure
that all the functional behaviors implemented in the source code are tested.

» Requirements-based testing alone cannot confirm that the code does not include
unintended functionality.

In addition, software structure may be created that cannot be determined from top-level
software specifications. Derived requirements, as described in DO-178B, will be used for
this reason. Derived requirements will be tested as part of requirements-based testing.

4.11.2 Structural Coverage Analysis

The purpose of structural coverage analysis with the associated structural coverage analysis
resolution is to complement requirements-based testing as follows:

» Provide evidence that the code structure was verified to the degree required for the
applicable software level.

» Provide a means to support demonstration of absence of unintended functions.
> Establish the thoroughness of requirements-based testing.

With respect to intended function, evidence that testing was rigorous and completed is
provided by the combination of requirements-based testing (both normal range testing and
robustness testing) and requirements-based test coverage analysis.

Requirements-based testing cannot completely provide this kind of evidence with respect to
unintended functions. Code that is implemented without being linked to requirements may
not be exercised by requirements-based tests. Such code could result in unintended
functions. In this case, it will be designated this "Dead Code" or require that a requirement
be written for the code. Should a new requirement be added, the applicable lifecycle
artifacts (i.e., the Software Requirements Document) will be updated and the required
processes will be repeated.

<Doc Number> Page 102 of 188 Rev. -

Software Verification Plan

If requirements-based testing proves that all intended functions are properly implemented,
and if structural coverage analysis demonstrates that all existing code is reachable and
adequately tested, these two together provide a greater level of confidence that there are
no unintended functions. Structural coverage analysis will:

» Indicate to what extent the requirements-based test procedures exercise the code
structure.

» Reveal code structure that was not exercised during testing.

Run-time libraries are subject to the same coverage requirements as the rest of the
application code.

It should be noted that the structural coverage tools employed on the project must support
resolution of overloaded operators and/or functions to the extent overloading is used on the
project.

4.11.2.1Achieving Coverage

To achieve test coverage, a structural coverage analysis tool or a code instrumentation
method will be used to monitor statements, entry and exit points, decision and branching
statements, and Boolean conditions. Some tools do not support all of the coverage points
required for test coverage. For example, not all structural coverage tools support coverage
of entry and exit points. Such a tool can support part of the structural coverage analysis if
other means are used to cover entry and exit points.

The structural coverage analysis tool will monitor a statement for multiple coverage points,
as illustrated below:

Return (A and B) or C;
This statement will be monitored for the following coverage points:
» Statement-must be invoked at least once
» Exit Point—-must be invoked at least once
» Decision-must take all possible outcomes (false, true) at least once

KiT,f}.

<Doc Number> Page 103 of 188 Rev. -

Software Verification Plan

Test Case Number 1 2 3 4 5
Input A T F F T T

Input B T T T T F

Input C F F T T F
OQutput D T F T T F

<Doc Number> Page 104 of 188 Rev.

Software Verification Plan

4.11.2.2Statement Coverage

To achieve statement coverage, every executable statement in the program is invoked at
least once during software testing. Achieving statement coverage shows that all code
statements are reachable (in the context of DO-178B, reachable based on test cases
developed from the requirements). Note that statement coverage is considered a weak
criterion because it is insensitive to some control structures. Consider the following code
segment:

If(x>1)and(y=0)thenz:=2z/x; end if;

By choosing x = 2, y = 0, and z = 4 as input to this code segment, every statement is
executed at least once. However, if an “or” is coded by mistake (see code segment below)
in the first statement instead of an “and”, the test case will not detect a problem. This
makes sense because analysis of logic expressions is not part of the statement coverage
criterion.

If(z=2)or(y>1)thenz:=2z+ 1; end if;

4.11.2.3Decision Coverage

Decision coverage requires two test cases: one for a true outcome and another for a false
outcome. For simple decisions (i.e., decisions with a single condition), decision coverage
ensures complete testing of control constructs. But, not all decisions are simple. For the
decision (A or B), test cases (TF) and (FF) will toggle the decision outcome between true
and false. However, the effect of B is not tested; that is, those test cases cannot distinguish
between the decision (A or B) and the decision A.

4.11.2.4Modified Condition Decision Coverage

Condition coverage requires that each condition in a decision take on all possible outcomes
at least once (to overcome the problem in the previous example), but does not require that
the decision take on all possible outcomes at least once. In this case, for the decision (A or
B) test cases (TF) and (FT) meet the coverage criterion, but do not cause the decision to
take on all possible outcomes. As with decision coverage, a minimum of two tests cases is
required for each decision.

Condition/decision coverage combines the requirements for decision coverage with those for
condition coverage. That is, there must be sufficient test cases to toggle the decision
outcome between true and false and to toggle each condition value between true and false.
Hence, a minimum of two test cases are necessary for each decision. Using the example (A
or B), test cases (7T) and (FF) would meet the coverage requirement. However, these two
tests do not distinguish the correct expression (A or B) from the expression A or from the
expression B or from the expression (A and B).

MC/DC enhances the condition/decision coverage criterion by requiring that each condition
be shown to independently affect the outcome of the decision. The independence
requirement ensures that the effect of each condition is tested relative to the other
conditions. However, achieving MC/DC requires more thoughtful selection of the test cases,
as will be discussed further in chapter 3, and, in general, @ minimum of n+1 test cases for a
decision with n inputs. For the example (A or B), test cases (TF), (FT), and (FF) provide
MC/DC. For decisions with a large number of inputs, MC/DC requires considerably more test

<Doc Number> Page 105 of 188 Rev. -

Software Verification Plan

cases than any of the coverage measures discussed above.

Multiple Condition Coverage requires test cases that ensure each possible combination of
inputs to a decision is executed at least once. Thus, multiple condition coverage requires
exhaustive testing of the input combinations to a decision. In theory, multiple condition
coverage is the most desirable structural coverage measure; but, it is impractical for many
cases. For a decision with n inputs, multiple condition coverage requires 2 to the n'th tests.

Representations for Elementary Logical Expressions

Name Schematic Representation Code example Truth Table
Input Di-.
Output c <:|
and Gate A C:=AandB: A B C
c T T T
B T F F
F T F
F _F F
or Gate A C=AorB: A B C
c T T T
B T F T
F T T
F F F
xor Gate A C = AxorB; A B C
c T T F
B j > <] T F T
F T T
F F F
not Gate A B B := not A; A B
DA —De—] 2 &
F T

<Doc Number> Page 106 of 188 Rev. -

Software Verification Plan

AND Gate
The following tests will be performed to achieve test coverage for an “and” gate:

> All inputs are set true with the output observed to be true. This requires one test
case for each n-input “and” gate.

» Each and every input is set exclusively false with the output observed to be false.
This requires n test cases for each n-input “"and” gate.

Changing a single condition starting from a state where all inputs are true will change the
outcome; that is, an “and” gate is sensitive to any false input. Hence, a specific set of n+1
test cases is needed for an n-input “and” gate. These specific n+1 test cases meet the
intent of test coverage by demonstrating that the “and” gate is correctly implemented.

The following is an example of the minimum testing required for a three-input “and” gate.
In this case, it takes four test cases to show that each input "independently" affects the
output.

If(A=1)and(B=1)and(C=1)thenD :=1; end if;

D—

%

Test Case Number 1 2 3 4
Input A T F T T

Input B T T F T

Input C T T T F
Output D T F F F

<Doc Number> Page 107 of 188 Rev. -

Software Verification Plan

OR Gate
The following tests will be performed to achieve test coverage for an “or” gate:

> All inputs are set false with the output observed to be false. This requires one test
case for each n-input “or” gate.

» Each and every input is set exclusively true with the output observed to be true. This
requires n test cases for each n-input “or” gate.

These requirements are based on an “or” gate’s sensitivity to a true input. Here again, n+1
specific test cases are needed to test an n-input “or” gate. These specific n+1 test cases
meet the intent of test coverage by demonstrating that the “or” gate is correctly
implemented.

The following is an example of the minimum testing required for a three-input “or” gate. In
this case, it takes four test cases to show that each input "independently" affects the
output.

If(A=1)or(B=1)or(C=1)thenD :=1; endif;

I

N/

K

!

Test Case Number 1 2 3 4
Input A F T F F

Input B F F T F

Input C F F F T
Qutput D F T T T

<Doc Number> Page 108 of 188 Rev. -

Software Verification Plan

XOR Gate

The “xor” gate differs from both the “and” and the “or” gates with respect to test coverage
in that there are multiple minimum test sets for an “xor”. Consider the two-input “xor”
gate. All of the possible test cases for this “"xor” gate are shown below. For a two-input
“xor” gate, any combination of three test cases will provide test coverage.

The following is an example of the minimum testing required for a two-input “xor” gate.
Minimum testing to meet test coverage requires one of the following sets of test cases:

> testcases 1, 2,and 3
> testcases 1, 2,and 4
> testcases 1, 3,and 4
> test cases 2, 3, and 4

If(A=1)xor(B=1)thenC:=1; endif;

Test Case Number | 1 2 3 4
Input A T | T | F | F

Input B T | F T | F
Qutput C F| T | T/|F

Note that for a test set to distinguish between an “or” and an “xor” gate it must contain
test case 1. Test sets 1, 2, and 3 above can detect when an “or” is coded incorrectly for an
“xor”, and vice versa. While not explicitly required by test coverage, elimination of test set
4 as a valid test set is worth considering. Note also that minimum tests to achieve test
coverage for an “xor” gate with more than two inputs are implementation dependent.
Hence, no single set of rules applies universally to an “xor” gate with more than two inputs.

<Doc Number> Page 109 of 188 Rev. -

Software Verification Plan

Not Gate

The logical “not” works differently from the previous gates: the “not” works only on a single
operand. That operand may be a single condition or a logical expression. But, with respect
to a gate level representation, there is a single input to the “not” gate as shown below.

D-—"D—<]

Minimum testing to achieve test coverage for a logical “not” requires the following:
» The input is set false with the output observed to be true.
» The input is set true with the output observed to be false.

<Doc Number> Page 110 of 188 Rev. -

Software Verification Plan

Comparator

A comparator evaluates two numerical inputs and returns a Boolean based on the
comparison criteria. Within the context of DO-178B, a comparator is a condition and also a
simple decision. The following comparison criteria are considered in this tutorial:

» < less than

» > greater than

> <= less than or equal to

» >= greater than or equal to
» == equal to

» I=not equal to

In general, the comparison point can be a constant or another variable.

- . A
x| x> comparison point }—<]

B

A
X >y

Daan
=
=

In either case, two test cases will be used to confirm test coverage for a comparator—one
test case with a true outcome, and one test case with a false outcome. Minimum testing for
a comparator requires the following:

» Input x set at a value above the comparison point (or y)
> Input x set at a value below the comparison point (or y)

Typically, three test cases will be used to assure that simple coding errors have not been
made; that is, that the correct relational operator and comparison point are used in the
code. So, while test coverage only requires two tests, minimum good requirements-based
testing for a comparator requires:

> Input x set at a value slightly above the comparison point
> Input x set at a value slightly below the comparison point
> Input x set at a value equal to the comparison point

The definition of “slightly” is determined by engineering judgment based on the numerical
resolution of the data type and/or target computer, the test equipment driving the inputs,
and the resolution of the output device. Consider for example, the following set of test
cases for a design that sets the output A true when altitude is greater than 2500.

<Doc Number> Page 111 of 188 Rev. -

Software Verification Plan

| > altude S Taritude > 2500 2]

Test Case Number 1 2 3 4 5
Input altitude 25 | 32000 | 2500 | 2499 | 2501
Qutput A F T F F T

Test cases 1 and 2 give the desired test coverage output. However, those test cases do not
confirm that the toggle occurred at 2500, and not elsewhere. Even adding test case 3 does
not improve the test suite much. The design could have been implemented with a
comparison point anywhere between 2501 and 32000, and give the same result for test
cases 1, 2, and 3. Test cases 3, 4, and 5 are a better set, because this set confirms that the
transition occurs at 2500.

<Doc Number> Page 112 of 188 Rev. -

Software Verification Plan

If Then Else:

The if-then-else statement is a switch that controls the execution of the software. Consider
the following example where X, y, and z are integers and C is a Boolean:

IfCthenz :=xelsez:=vy;

D_xi
_Q Z

By]

DC

<Doc Number> Page 113 of 188 Rev. -

Software Verification Plan

The following tests will be performed for the if-then-else statement:

> Inputs that force the execution of the then path (that is, the decision evaluates to true)
> Inputs that force the execution of the else path (that is, the decision evaluates to false)
» Inputs to exercise any logical gates in the decision

Note that the decision must evaluate to false with confirmation that the then path did not
execute, even if there is no else path.

For example, for a single condition Z, the statement if Z then...else... requires only two test
cases to achieve test coverage. The decision in if X or Y or Z then... else... requires four test
cases to achieve test coverage.

A minimal test set for the statement if Z then a := x else a := y is shown in Table 9. Note
that a case statement may be handled similarly to the if-then-else statement.

Test Case Number 1 2
Traverse the then path Traverse the else path
Input x 12 18
Input y 50 34
Input Z T F
OQutput a 12 34

<Doc Number> Page 114 of 188 Rev. -

Software Verification Plan

While Loop:

Consider the following example where Weight_On_Wheels is a Boolean:
While Weight_On_Wheels loop radar_mode := Off; end loop;

A schematic representation of this code is shown in Figure 10. In this case,
Weight_On_Wheels is the decision for the while loop construct.

while Weight_On_Wheels

radar_mode = Off

end Loop

The following tests will be performed for the while loop:

> Inputs to force the execution of the statements in the loop (that is, the decision
evaluates to true)

> Inputs to force the exit of the loop (that is, the decision evaluates to false)
» Inputs to exercise any logical gates in the decision

Two test cases may be used to achieve test coverage. One test case confirms that
radar_mode remains off as long as Weight _On_Wheels is true. The second test case
confirms that radar_mode could be set to something other than off when
Weight_On_Wheels is false. In the case where Weight_On_Wheels is replaced by a Boolean
expression, the Boolean expression would also need to be evaluated, and the setting of
radar_mode to off confirmed.

<Doc Number> Page 115 of 188 Rev. -

Software Verification Plan

Applying Boolean Logic to Requirements-Based Testing

This process takes the inputs from the requirements-based test cases and maps them to the
schematic representation. This provides a view of the test cases and the source code in a
convenient format. Inputs and expected observable outputs for the requirements-based test
cases for example 1 are given.

Test Case Number 1 2 3 4 5
Input B T F F T T
Input C T T T T F
Input D F F T T F
Qutput A T F T T F

This example shows the test cases annotated on the schematic representation. Note that
intermediate results are also determined from the test inputs and shown on the schematic
representation.

12345
—~ B TFFTT
L/ 12345
B TFFTF 12345

NC TTTTFR 1) TWNTFTTF Aﬁi]
L/)/

FETTF
—~. D
L/

<Doc Number> Page 116 of 188 Rev. -

Software Verification Plan

Knowing the intermediate results is important because some inputs may mask the effect of
other inputs when two or more logic constructs are evaluated together. Test cases where
the output is masked do not contribute to achieving test coverage. Using the annotated
figure, the requirements-based tests cases that do not contribute (or count for credit)
towards achieving test coverage can be identified. Once those test cases are eliminated
from consideration, the remaining test cases can be compared to the building blocks to
determine if they are sufficient to meet the test coverage criteria.

Expression: Z := (A or B) and (C or D);
Step 1: Show the source code schematically.

Ban N
:>B_l
| D———¢
Damm N
::D

Step 2: Map test cases to the source code picture.

A
:>——j FFTFT
T\ FTTTT
B L
> I FTFTF ort
™ FTFTT Z
c _/ and
——— TFFTT
T\ TTFTT
D »—‘/or.‘Z
:>———J FTFFF

<Doc Number> Page 117 of 188 Rev. -

Software Verification Plan

Step 3: Eliminate masked tests. In this case, any false input to the “and” gate will mask the
other input. In this case, the false outcome of “orl” will mask test case 1 for the “or2”
gate. Similarly, the false outcome of “or2” will mask test case 3 for the “orl1” gate.

FTFTT

\J

=

A

FFXFT
T\ FTTTT
I

FTRTF ort

XFFETT
T\ TTFTT
Iy

XKTFFF or2

Step 4: Determine test coverage.

and

Gate

Valid Test Inputs

Missing Test Cases

or1

FF Case 1
FT Case 2ord
TF Case 5

None

FF Case 3
FT Case 2
TF Casedord

None

and

TT Case 2,4, 0r5
TF Case 3
FT Case 1

None

Step 5: Confirm output. The outputs computed match those provided.

<Doc Number>

Page 118 of 188

Rev. -

Software Verification Plan

Symbols for Source Code Representation

Name

Schematic Representation

Code example

Comparator
(X with constant)

=

X[x = constant—2-< |

A = x > constant;

Comparator A =XxX>Yy,
(x with y)
Summer Z:=X+Yy,
(addition or
subtraction may be
shown)
Multiplier z2=xX"y,
Divider Z=x/Y,
v
If-then-else If A then
Z =X
Else
zZ:=y,
End if;
If-then-else I & If A then
| | Z:=X;
::; ;:;', w =3,
[A | Else
’ 2=y,
w = 5;
End if;
While Loop While A Loop
Wihitle A Read (A):
] End loop;
Read (A),
End Loop
<Doc Number> Page 119 of 188 Rev.

Software Verification Plan

4.11.2.5Coverage Analysis Tools

A structural coverage analysis tool will be used to provide visibility into testing by either
instrumenting code or providing other intervention techniques to gain visibility. The tool will
be capable of instrumenting the code, provide flags, or other monitoring mechanisms to the
original source code or object code. This enables the analysis tool to determine exactly what
parts of the code are exercised. Once the code is instrumented, test cases are executed and
the coverage analysis tool tracks which parts of the code are exercised by the test cases
and, where complex analysis is required, how they are exercised. Pass/fail criteria for
structural coverage are specified and tool analyzes the code against these criteria. If the
pass/fail criteria are not specified, the tool will report the level of structural coverage the
test cases achieve.

The Coverage Analysis Management System will be used to obtain both Statement and
Decision Coverage.

Coverage Analysis Management System Screen Shot

" Coverage Analysts Management System - Microsoft internet Explarer provided by Hoadrunner | f—ﬁﬁx
O- i~ € 201 fevew, Faacormul tants com Projec Exampleropect LO0/CAVS Asxt -asp Progr e w |00AGensonT ype s b ke IS s
Fle B Yev Fportes Josk delb Google G w Gs PR, B e
s ran Glouts £ 106 g irscfc B Sede B 0K g dmex £ fek g2 wou QChese g OT @ K05 2 CNlogre #5303 - Actity @ MS
. -
WG 8 Goveraps Anshves Menpgament Sysiem ’-) ¢
-~
Salect Softwars Release 7o Dipley: | S3lect A Ralasss w [Search l Current Software Relessn Doplayed
Program: Fight Managensnt Sezten Manage Source Ffes InstrumentSource Tede Parform Coverage Anphets Clear{otabeze Homs P
Coveroge Analysls Detad
Frlmase Flie Yersion | Line No | Fusction Name Code Element Marker G e
1.000 ie a2 i] veld DisplanFunctian (vaid) Sivgle Statement CMARK|) v
1000 | Xele 4 044 | veld TestFunction Ivold) Sirole Statement CMARKI) v
1.000 Xrlc 4.2 1ne word A0C_Getdeg [byte Chan) If Statement (1) CMARKIY) v
1000 | Xrlc a“l 120 | word ADC_Getivg [byte Chan) Serple Statamant CMARK 3| v
1000 | Xrie 42 151 static void ADC_SanThres froid) Gvple Statemant CMARK 4 v
1000 | X lc 42 159 | static void ADC_BunThresh feoéd) I Statement (1) CMARKIS) v
1.000 Xrlxs 4.2 175 static void ADC_RunThresh proid) Covw Statement (1) CMARK G v
1.000 iz 43 175 static void ADC RunThred feod) I Statement 2} CMARK(T) v
1.000 | X¥Z.e 4.2 198 | static void ADC_ RanThresh hoid) Case Statement (2) CMARY{E v
1.000 XZe 42 00 Stalic void ADC_RunThresh hold) If Statement (3) CMARKLS) v
1.000 XYl 42 m static void ADC_RunThresh feoid) Ele If Statemenrt (1) CMARK(1D) v
1000 | ¥rie 41 22 | static vold ADC_RunTheesh prold) Caze Statement (1) CmarKi1n) v
1000 | xele 42 226 | static void A0C_RunThresh fwoid) If Stazement (4) CMARK(1Z) v
1000 | XZe 4 43 | static void ADC_RenThresh feotd) Caza Statemeat (4) CMARK(13) v
1.000 Xrlc 42 i static void ADC_RunThresh feoid) Caomplex Path NOTED) Analpvn v
Dore Q Traerret 200% .~
<Doc Number> Page 120 of 188 Rev. -

Software Verification Plan

The Coverage Analysis Management System process is as follows. Specifics of this process
and this tool are described in the CAMS Tool Qualification Accomplishment Summary.

SQA Verifies That
Software Under CM Control Instrument Source ® T“Ee"ehlg A Cmark ';°'
: ac tatement
And Requirements-Based | Code With Cmarks Decision Point
Test Procedure Complete (By Design Engineer)

. y v

CAMS Database
Loaded With Cmark
Pointers To The
Source Code

Run Cmark Source
Generation Utility
(By Design Engineer)

Instrumented Source
File Generated

S l

L Build New Instrumented Source
Instrumentefl Instrumented Files Placed Under
Executable Object Source Files CM Control And

Code Produced (By CM Engineer) Labeled (Baselined)

_/—\

[A
Produce And Release No.
Load Control
Procedure

L

Load Control
Procedures In Place?

Yes
\ 4

Load and Verify
Image In Target

The Load Control
Process Is Performed
b By CM And

Witnessed By SQA

Load Control Process
Defined In Verification

Cases And Procedures (By CM Engineer)
Perform
Requirements- Cmark Status Read
Based Testing Into CAMS Tool And
(By IV&V) Coverage Flags Set

If 100% Converge Is
Not Achieved, An
Analysis Is Performed
To Determine The
100% Coverage Cause And Corrective
Achieved? Action. Updates To
Requirements, Better
Test Cases Or Removal

Resolve Coverage

Analysis Issues N
(By IV&V / Engineer)

Of Dead Code Are
Typical Resolutions

Yes

4

Complete August 21, 2007
Coverage Analysis Management System

<Doc Number> Page 121 of 188 Rev. -

Software Verification Plan

4.11.3 Source Code to Object Code Traceability

<Level A Only>

To implement certain features, compilers for some languages may produce object code that
is not directly traceable to the Source Code, for example, initialization, built-in error
detection, or exception handling. That object code or executable object which cannot be
traced to Source Code, must be verified. The software planning process should provide a
means to detect this object code and to ensure verification coverage, and should define the
means in the appropriate plan.

Methods for Satisfying this Objective

1. Perform Structural Coverage Analysis at Object Code or EOC Level
2. Compiler Qualification

4.11.4 Data Coupling and Control Coupling Analysis

Analysis of data coupling and control coupling is to ensure the adequacy of integration
testing. It follows that this objective cannot be achieved without hardware/software
integration testing or software integration testing. DO-178C/ED-12C will hopefully clarify
that this is a structural coverage analysis which confirms that the requirements based
testing has exercised the data and control coupling between code components. DO-
178B/ED-12B also requires a separate review or analysis to verify that the source code
matches the data flow and control flow defined in the software architecture. Such a review
or analysis would satisfy the objective of DO-178B/ED-12B section 6.3.4b.

4.11.4.1Structural Coverage Analysis of Data and Control Coupling

The intent of the structural coverage analyses of data coupling and control coupling is to
provide a measurement and assurance of the correctness of these modules/components’
interactions and dependencies. That is, the intent is to show that the software
modules/components affect one another in the ways in which the software designer
intended and do not affect one another in ways in which they were not intended, thus
resulting in unplanned, anomalous, or erroneous behavior. Typically, the measurements and
assurance should be conducted on R-BT of the integrated components (that is, on the final
software program build) in order to ensure that the interactions and dependencies are
correct, the coverage is complete, and the objective is satisfied.

Satisfaction of this objective will be based on the detailed high and low level requirements
of the modules/components’ interfaces and the thorough requirements-based normal range
and robustness tests of the software program. The interfaces and dependencies will be
specified in the design requirements, and if those requirements are tested for both normal
functioning and robustness. Satisfaction of the data and control coupling objective becomes
a by-product of the design and verification processes.

The following sections identify the areas that are applicable and the means with which

<Doc Number> Page 122 of 188 Rev. -

Software Verification Plan

verification will occur.

4.11.4.2Data Coupling Analysis

Data coupling manifests as:

(1) Parameters passed to a function.

In the case of parameters passed to the function (case 1); statement coverage is sufficient
to determine whether all control paths through the function that might be influenced by the
parameter set have been exercised.

(2) Global data set or used by the function whose value is determined at compile-time or as
part of system configuration.

In the case of global configuration data (case 2); analysis should determine the equivalency
classes of all potential configurations. Structural coverage analysis should be executed
under all equivalency classes.

(3) Global data set or used by the function which represents the current state of execution
of the system.

In the case of global state data (case 3); analysis should determine the potential states (or
their equivalency classes). Structural coverage analysis through instrumentation should
determine if all states have been entered and all legal transitions between states have been
exercised.

Note 1: Sub-functions exist where a function parameter determines which of multiple
independent execution paths is taken through a function. Usually the parameter is used to
determine which case of a large switch statement is executed.

To satisfy the control coupling objective, use the structural coverage results to provide
evidence that all functions were executed through high-level test cases. For functions that
could not be exercised by high-level tests, develop additional functional analyses and add to
the Software Verification and Procedures (SVCP). The intent is to provide confidence that
the requirements-based testing has completely exercised the code structure.

To satisfy the data coupling objective, this analysis includes functional parameters, global
variables, external data, stored data, and resource contention. Analyze the SVCP and
associate test code to confirm the verification coverage of the data coupling in the code. As
with the control coupling, structural coverage results can used to provide evidence that the
data coupling through parameters was covered.

CAST-19 Objective Where and how the objective is met

Identify data dependencies. This objective is met by defining the data items in
the requirements and during the software
requirements and code reviews ensuring proper

<Doc Number> Page 123 of 188 Rev. -

Software Verification Plan

CAST-19 Objective Where and how the objective is met

setting and using of the data.

For global and static scoped objects, this objective
should be understood to include the explicit
verification of initialization dependencies. Because
the precedence and declaration order of global and
static scoped objects can cause failure to properly
initialize, explicit test cases which verify the
correct instantiation and initialization of objects in
these scopes.

Identify inappropriate data This objective is met by the performance of the
dependencies. software requirements and code reviews.

Define and evaluate the extent of This objective is met by the simplicity and small
interface depth size of the project and verified by the code review.
Determine and minimize coupling This objective is met by the simplicity and small
interdependencies. size of the project. There will be no specific review

test or analysis to verify this objective.

Evaluate accurate use of global data | This objective is met by code review and
requirements base testing. The requirements
based tests will ensure the software performs as
required. The combination of these verifications
adequately verifies the use of global data.

Evaluate input/output data buffers This objective will be met by the accumulation of
all the requirements based tests being executed,
with passed results. The Software Verification
Review checklist addresses this objective.

4.11.4.3Control Coupling Analysis

In the C language control coupling manifests in one of three ways:

(1) Static function calls.

In the case of static function calls (case 1); statement coverage is sufficient to determine if
all possible calling points for a function have been executed by the test procedures.

(2) Sub-functions (See Note 1)

- In the case of sub-functions (case 2); analysis should reveal if the controlling parameter a
constant determined at compile-time or whether the controlling parameter may be
dynamically modified during execution.

<Doc Number> Page 124 of 188 Rev. -

Software Verification Plan

- If the controlling parameter is a constant determined at compile-time, this case is
equivalent to case 1.

- If the controlling parameter may be dynamically modified during execution, this case is
equivalent to case 3.

(3) Dynamic function calls (i.e. function called through a pointer.)

- Points where a function is called through a pointer (case 3); it is necessary to determine
whether (a) the function pointer has been initialized before use, (b) what the range of
possible values for the function pointer is, and (c) that all possible values of the function
pointer within that range have been executed.

- In the case of function pointers which belong to a jump table which is initialized at
compile-time, this case is reduces to case 1.

- In the case of function pointers that are initialized at powerup, the calling point must be
exercised in all potential configurations of the jump table. (Also see Data Coupling case 2.)

<Doc Number> Page 125 of 188 Rev. -

Software Verification Plan

CAST-19 Objective

Where and how the objective is met

Identify control dependencies.

This objective is met by defining the data items in
the requirements and during the software
requirements and code reviews ensuring proper
setting and using of the data

Identify inappropriate control
dependencies.

Inappropriate control dependencies will be
removed. This objective will be verified by the
performance of the software requirements and
code reviews.

Verify correct execution call
sequence, including startup
sequences.

This objective is met by reviewing the code against
the requirements and by testing execution related
requirements, with passed results.

Define and evaluate the extent of
interface depth

This objective is met by the simplicity and small
size of the project and by the code review.

Verifying scheduling

This objective is met by reviewing the code against
the requirements and by testing execution related
requirements, with passed results.

Worst-case execution time analysis

This analysis will be part of the Software
Integration Analysis.

4.11.4.40utputs of Data and Control Coupling Activity

Data and control coupling outputs are produced as a result of requirements-based testing.
The analysis of these outputs is based on a comparison of the module interface software
requirements (data and control coupling requirements) plus data and control flow diagrams
against the results of the requirements-based testing plush structural coverage analysis
results, showing that the testing was complete and the data and control coupling behavior
was as expected. This activity will be performed in one of two ways or in combination:

1. Dynamic Activity (Test) - Using a tool that captures the data and control coupling
behavior as part of collecting the structural coverage analysis metrics during
requirements-based testing. This method involved incrementing the source code and

collecting outputs of the tool.

2. Static Activity (Analysis) - Performing a static analysis including analyzing the link

map or call tree.

<Doc Number>

Page 126 of 188 Rev. -

Software Verification Plan

4.12 Process-Specific Activities

The following sections detail the planned process-specific activities of the Testing Process.

4.12.1 Test Case Development

>
>

Test cases will be developed by a person other than the author of the software.

Test case development can start after the software requirements have been formally
reviewed. An iterative process for updating the test cases works in conjunction with
any PRs processed to necessary changes in the software requirements.

Test cases will be developed using software requirements, any certification
document, as required for the function being tested, and information from the
software detailed design that indicates additional boundary and robustness test steps
are required. Additionally, test steps will be iteratively modified when preliminary
coverage data is available to address any coverage deficiencies. All iterative work in
the lifecycle will be completed using PRs and CM controls.

Test case tools will be chosen based on the verification needs identified. Software
Simulation tools, specific lab equipment used in validation, and on-target testing
tools (script processing tools, external interface stimulation tools) determine the
specific steps developed. Refer to the PSAC for a list of verification tools.

Test cases will be developed that capture test environment setup and parameters,
versions of CM controlled Software, versions of CM controlled test documentation
(including test cases) and industry interface ICDs for verification of external
interfaces.

Test cases will be developed based on functional interfaces and components. Where
applicable, a test case may be used to verify multiple requirements concerning the
same function or functions. The software trace matrix supports tracing from test
case to software requirement. A test case may cover more than one software
requirement, and the test case and trace matrix will indicate all software
requirements covered during the test. Each instance of a core function must employ
a separate test case with the appropriate tracing to the requirement. All iterative
work in the lifecycle is completed using PRs and CM controls.

Test cases will be developed to include positive path testing, plus additional testing
as warranted for robustness. Robustness testing includes boundary conditions,
obscure event mitigation, failure compensation, negative path testing, default case
verification and more. Developed test cases indicate when test steps are for
robustness testing, and may not trace to a specific software requirement.
Additionally, test steps are iteratively modified when preliminary coverage data is
available to address robustness deficiencies. All iterative work in the lifecycle will be
completed using PRs and CM controls.

<Doc Number> Page 127 of 188 Rev. -

Software Verification Plan

4.12.2 Test Case Verification

Test cases will be formally reviewed by an independent party against the software
requirements claimed in each test step. The trace matrix will be validated during the review
to insure proper credit is taken for the software requirements listed. The software
development life cycle steps will be followed to insure any discrepancies found in the review
are addressed. All iterative work in the lifecycle will be completed using PRs and CM
controls. Refer to Peer Review Process for the test cases.

4.12.3 Test Procedure Development

>
>

Test procedures will be developed by a person other than the author of the Software.
Test procedure development can start after the software requirements have been
formally reviewed. Test procedures may be developed in conjunction with the test
case. An iterative process for updating the test procedures works in conjunction with
any PRs processed to necessary changes in the software requirements or related test
cases.

Test procedures will be developed using software requirements, test cases any
certification documents as required for the function being tested, and information
from the software detailed design that indicates additional boundary and robustness
test steps are required. Additionally, test procedures are iteratively modified when
preliminary coverage data is available to address any coverage deficiencies. All
iterative work in the life cycle is completed using PRs and CM controls.

Test tools will be chosen based on the verification needs identified.

Test procedures will be developed that capture test environment setup and
parameters, versions of CM controlled software, versions of CM controlled test
documentation (including test cases) and industry interface ICDs for verification of
external interfaces.

When test procedure gaps are discovered during testing, the PR process will be used
to address the gaps.

Test procedures will be developed based on functional interfaces and components.
Where applicable, a test procedure may be used to verify multiple requirements
concerning the same function or functions. Test procedures will be tied directly to a
test case - one for one. The software trace matrix will support tracing from test
case to software requirement. The test procedure will be an integral part of the test
case trace. As discrepancies in test procedures are identified, iterative changes will
be made as necessary to resolve the discrepancy. All iterative work in the lifecycle
will be completed using PRs and CM controls.

<Doc Number> Page 128 of 188 Rev. -

Software Verification Plan

» Test procedures will be developed to include positive path testing, plus additional
testing as warranted for robustness. Robustness testing will include boundary
conditions, obscure event mitigation, failure compensation, negative path testing,
default case verification and more. Test procedures will be developed to indicate
when test steps are for robustness testing, and may not trace to a specific software
requirement. Additionally, test procedures will be iteratively modified when
preliminary coverage data is available to address robustness deficiencies. All
iterative work in the lifecycle will be completed using PRs and CM controls.

4.12.4 Test Procedure Verification

Test procedures will be formally reviewed by an independent party against the respective
test case and software requirements claimed in each test step. The trace matrix will be
validated during the review to insure proper credit is taken for the software requirements
listed. The software development life cycle steps will be followed to insure any
discrepancies found in the review are addressed. All iterative work in the lifecycle will be
completed using PRs and CM controls. Refer to Peer Review Process of test cases.

4.12.5 Coverage Analysis Verification

Structural coverage analysis results will be formally reviewed by an independent party.
Where code structures are not covered by requirements-based testing, the review will
ensure that the uncovered code is removed (dead code) or that additional requirements
(and related test procedures) are added to address the undocumented functionality or that
the required code structure that can’t be reached is specifically identified in the Coverage
Results and that the behavior of the code structure is deterministic and would not cause
unintended behavior (determined by analysis). Refer to Peer Review Process.

<Doc Number> Page 129 of 188 Rev. -

Software Verification Plan

4.12.6 Testing Environment

> Each test case will include the following information:

Test Description

Tester Name

Test Date

Software Version tested

Test Method used

Tool(s) Version(s) used (if applicable)

O 0O 0 O O O

> If appropriate (i.e., special equipment required) the test procedure will describe
the specific bench configuration, test tool configuration, and any special
instruction required to insure the tester sets up the correct environment.

> If appropriate (i.e., conformed unit, or special test rig) the test procedure will
describe the following to insure the proper equipment and rig configuration is
achieved before testing

o P/N of test unit
o S/N of test unit
o Identification of special test rig components and gear

» SQA person will audit the test setup before testing.

» Once a test rig or environment has been conformed, the apparatus will be “Locked
Down” for the time required to complete the test procedure. (“Locked Down” means
the equipment and test gear involved in the test setup is physically or electronically
secured from other personnel changing the environment.)

4.12.7 Test Execution

» On-Target testing consists of normal system level test such as TSO, normal flight
test simulation and DO-178B requirements based test. Additionally, special test
cases will be created to exercise areas of the software where normal system level
tests do not obtain full coverage, or configured options on the standard product may
not be enabled. All system level testing will be identified in the software trace matrix
for evaluation and review.

» Specific test procedures will be designed to exercise timing interfaces, critical data
functions and configured options. Validation of the software at the low level will be
achieved by capturing artifacts using lab equipment with electronic output. These
resultant artifacts will be formally reviewed by an independent source and put under
CM control. Data from these tests will also be used in verification by analysis efforts
as required based on total test coverage analysis.

<Doc Number> Page 130 of 188 Rev. -

Software Verification Plan

> Each test case will include the following test run information:

Test Description

Tester Name

Test Date

software Version tested

Test Method used

Tool(s) Version(s) used (if applicable)

o O O O O O

» Testing will commence once the following are complete:

o All software requirements are reviewed and under CM control with no
outstanding (non-deferrable) PRs

o All Test Cases/Procedures are reviewed and under CM control with no
outstanding (non-deferrable) PRs

o All software source files are reviewed and under CM control with no
outstanding (non-deferrable) PRs

o All traceability data is reviewed and under CM control with no outstanding
(non-deferrable) PRs

o The final software build has been created and is under CM control

» All discrepancies found as a result from formal testing will be handled in one of the
following ways:

o Analysis determines the test case/procedure can be modified to produce a
more complete result. In this case, an PR is written, and the test
case/procedure is updated, reviewed and the test re-executed. The new
resultant artifacts are then used in the formal data analysis.

o Analysis determines the deficiency cannot be mitigated by any formal test
means as described above. In this case, the deficiency is formally
documented in the test results.

» All gaps in test coverage results will be documented in the test results document
deficiencies section. Additional analysis of the software will commence on the areas
where the deficiencies are identified. The analysis findings will be documented as
additional coverage information in the results document.

4.12.8 Test Results Verification

When all testing is complete, and the results have been evaluated and documented, the
formal findings will be formally reviewed and put under CM control. Any issues found in the
formal review will be documented. If the issues found warrant a change in the test
case/procedure, a PR will be used to implement this change. If this PR is not deferrable, the
software life cycle will be used to correct any artifacts and re-execute the test procedure
and re-evaluated the generated results. Refer to Peer Review Process of test cases.

<Doc Number> Page 131 of 188 Rev. -

Software Verification Plan

5.0 VERIFICATION ENVIRONMENT

The Software verification environment includes a block diagram of the testing environment,
description of the equipment for testing, the testing and analysis tools and the guidelines for
applying the tools and hardware test equipment. It also identifies the target test
environment including any emulation.

5.1 Test Environment Description

<Describe the test environment here>

5.1.1 Block Diagram of Test Environment

5.2 List of Test Equipment Used To Verify Software

Description Manufacturer & Model No.

5.3 Testing and Analysis Tools

Description Manufacturer & Model No.

5.3.1 Guidelines for Applying the Tools and Hardware Test Environment

<Guidelines Here>

<Doc Number> Page 132 of 188 Rev. -

Software Verification Plan

5.4 Test Procedure Structure

1. Test Case & Procedure Identifier
2. Test Objective

3. Test Coverage

Test Case No. Test Type Requirement(s) Tested
Case 001 Normal 000.0000
Case 002 Normal / Robust 000.0000
000.0000
000.0000
Case 003 Normal 000.0000
Case 004 Normal 000.0000
Case 005 Normal 000.0000
Case 006 Normal 000.0000
Case 007 Robust 000.0000

4. Assumptions
5. Constraints
6. Special Requirements

7. Execution Summary

<Doc Number> Page 133 of 188

Rev. -

Software Verification Plan

Setup Identification

Test Date:

Test Operator:

Test Support Equipment:

Test Setup:

Software Under Test:

Comments and Notes

Procedure Results

Check FAIL if the results of any verify statement in this test procedure produced a fail.
Otherwise, check PASS.

PASS FAIL

Optional Comment:

Signatures

Executed By:

Case and Procedure Descriptions

Case 001: Valid Set Command

<Doc Number> Page 134 of 188 Rev.

Software Verification Plan

6.0 TRANSITION CRITERIA

Transition criteria for entering the verification process relative to the planning and
development processes are included in Section 5. Specific verification activities are carried
out when a software data item completes any phase of development. The criterion for
beginning a verification activity is the indication, by the engineer responsible for the
production of the data item, that the item is ready for verification. In addition, the item is
CM controlled. For-Credit testing cannot be started until the code being tested has been
formally reviewed.

Section 4 addresses transition criteria for the following:

>

>

Conditions necessary to consider the verification closed and successful for the
Planning Process.

Conditions necessary to consider the verification closed and successful for the
Requirements Process.

Conditions necessary to consider the verification closed and successful for the Design
Process.

Conditions necessary to consider the verification closed and successful for the
Software Coding Process.

Conditions necessary to consider the verification closed and successful for the
Integration Process.

Conditions necessary to consider the verification closed and successful for the
Testing of Outputs of the Integration Process.

Conditions necessary to consider the verification closed and successful for the
Verification of Verification Process Outputs.

<Doc Number> Page 135 of 188 Rev. -

Software Verification Plan

7.0 PARTITIONING CONSIDERATIONS

Partitioning established that two or more components are protected from the actions of each
other. As a definition, partitioning consists of one of the following:

Strict Protection

Component X can be said to be strictly protected from Y if any behavior of Y has no effect
on the operation of X. An example of this type of protection would be two components
within a line replaceable unit (LRU) with no communication between them.

Safety Protection

Component X can be said to be safely protected from Y if any behavior of Y has no effect on
the safety properties of X. An example of this would be the use of a Cyclic Redundancy Code
around data passed through a non-assured data link. The only safety property of
importance would be the corruption of data. Loss of data could not be a safety property of
interest in this example. This approach requires the identification of the safety properties
that can be derived from the safety analysis/hazard analysis.

Two-way protection

Component X is protected from Y, and Y is protected from X. An example of this type of
protection would be two components within a line replaceable unit (LRU) with no
communication between them.

One-way protection

Component X is protected from Y, but component Y is not protected from X. An example of
this would be a computer that can only receive ARINC 429 data from the primary system. In
this case, the primary software could affect the maintenance software but the maintenance
software would not be able to interfere with the primary software.

7.1 Guidelines for Evaluating Protection

A component can effect the operation of other components by affecting the temporal (time)
behavior or the data (space) of the other components. The project team first categorizes
the type of protection claimed according to the definitions specified above. If the project
team’s approach to protection is to separate (partition) components in both time and space,
then the project team is required to demonstrate the partitioning in time and space between
the two components to demonstrate either one-way or two-way strict protection.

However, if the project team proposes to use safety protection, then the team must identify
all the safety properties of time and space which could be affected and then demonstrate
that the safety properties have not been violated. In evaluating time properties, the
following items are considered by SQE as appropriate to the design:

<Doc Number> Page 136 of 188 Rev. -

Software Verification Plan

7.1.1 Time

The following items can affect the time parameters of a program and need to be
investigated to demonstrate that they either have no effect or that their effect is acceptable
based on the identified safety parameters. This list is not intended to be all inclusive.

>

>

>

1)
2)
3)
4)
>

1)
2)
3)
4)
5)
6)
7)
>

1)
2)
3)
4)
5)
6)
7)

Interrupts and interrupt inhibits (software and hardware)
Loops (e.g. infinite loops)

Real time correspondence:

frame overrun

interference with real time clock

counter/timer corruption

pipeline and caching

Control Flow defects (timing aspects):

Incorrect branching into a partition or protected area
Corruption of a jump table (double duty?)
Corruption of the processor sequence control
Corruption of return addresses

Unrecoverable hardware state corruption (e.g., mask and halt)
Memory, I/O contention

Data flags

Software traps:

Divide by zero

Un-implemented instruction

Specific software interrupt instructions

Unrecognized instruction

Recursion termination

Indirect non terminating call loops

Holdup commands (performance hedges)

<Doc Number> Page 137 of 188 Rev. -

Software Verification Plan

7.1.2 Space

The following items can affect the space parameters of a program and need to be
investigated to demonstrate that they either have no effect or that their effect is acceptable
based on the identified safety parameters. This list is not intended to be all inclusive.

> Loss of input or output data

» Corruption of input or output data

» Corruption of internal data:

1) Direct or indirect memory writes

2) Table overrun

3) Incorrect linking

4) Calculations involving time

5) Delayed data

6) Program overlays

7) Buffer sequence (double jeopardy)

> External device interaction (e.g. displays):
1) Loss of data (e.g. overwritten)

2) Delayed data

3) Incorrect data (unlikely across systems)

4) Protocol halts (e.g. ack nacks)

» Control Flow defects (space aspects):

1) Incorrect branching into a partition or protected area
2) Corruption of a jump table (double duty?)

3) Corruption of the processor sequence control
4) Corruption of return addresses

5) Unrecoverable hardware state corruption (e.g., mask and halt)

7.2 Project Specific Partitioning

The project will not use partitioning techniques. All source code will be developed and
verified in accordance with applicable DO-178C objectives.

<Doc Number> Page 138 of 188 Rev. -

Software Verification Plan

8.0 COMPILER ASSUMPTIONS

The C language was chosen because it is an industry standard for embedded applications.
This makes a wide variety of code development tools available for use. The nature of the C
language is such that any ANSI-C compatible compiler for the target processor will be
acceptable. If compiler optimizations are used, they are specifically accounted for in the
software verification overview in the program’s Plan for Software Aspects of Certification. In
addition, the project team relies on the DO-178C process to ensure the validity of the
compiler.

<Doc Number> Page 139 of 188 Rev. -

Software Verification Plan

9.0 REVERIFICATION GUIDELINES

Once a modification has been implemented into the source code, reverification guidelines
are implemented. These guidelines include reviews, inspections, walkthroughs, analysis,
and tests of software. They are divided into three specific tasks:

9.1 Inspect, Review, or Analyze Changes

This task includes many of the non-testing aspects of the verification process (i.e., reviews,
analysis, inspections, and walkthroughs). In this task, the software life cycle data (e.g.,
requirements, design, architecture, code, test cases, and procedures) are reviewed for
accuracy and consistency.

9.2 Perform Regression Testing

Regression testing is another aspect of the verification process that is addressed when
software changes. Software progresses through several versions before one is ready for
release. Regression testing is performed on each version of software. Any specific change
can (a) fix only the problem that was reported, (b) fail to fix the problem, (c) fix the
problem but adversely affect some other function or aspect that was previously working, or
(d) fail to fix the problem and adversely affect something else. Since it is not always
possible to re-run every test on every version of software, analysis is used to determine
which tests should be run on the interim versions. The following “types” of tests are
performed during the regression testing process:

» Bug verification tests - run to verify that the fix for a bug addresses the problem and
doesn’t introduce additional problems.

» Build acceptance tests — tests run to make sure that a build is ready to go to the test
team.

» Regression test pass with a regression test suite - running regressions tests that
have been automated.

> Regression test pass on closed bugs — rerunning the regression tests even after the
bugs have been “fixed”. Includes robustness tests.

» Regression test pass without a test suit - manually running regression tests.
Includes robustness tests.

It is a standard practice that the most important tests are run first in order to quickly
validate operation and assess risks. In some cases, regression testing may be run in parallel
with other development activities. Generally, a test that has passed twice should be
considered as regressed, unless the code has been frequently changed. A test that has
failed once should not be re-executed unless the developer informs the test team that the
defect has been fixed.

For tests that have already passed once, the second execution is reserved for the final
regression pass, unless frequent changes to the code indicate otherwise. In every case,
the change impact analysis must lead to a set of regression tests that are unique to the set
of changes being proposed. All of these identified regression tests are run on the final
version of the software prior to release.

<Doc Number> Page 140 of 188 Rev. -

Software Verification Plan

9.3 Perform Other Verification

In addition to the inspections, reviews, analysis, and regression testing, other types of
verification activities are performed. Some of these activities are performed at the software
level, some at the system level, and some at the integrated system level. For example,
requirements-based tests, acceptance tests, bench tests, structural coverage analysis, etc.
may need to be performed. These additional verification activities will vary, depending on
the extent of the change and the function(s) affected. In all cases, these tests are planned
after the change impact analysis is performed and agreed upon.

<Doc Number> Page 141 of 188 Rev. -

Software Verification Plan

10.0 PREVIOUSLY DEVELOPED SOFTWARE

Previously developed software includes software that was developed under a different
standard, such as MIL-STD-2167A. It also includes software that was developed under a
previous revision of DO-178C. When this occurs, certification credit may be requested.

There was no previously developed software used in the program. All software was
developed under DO-178C objectives.

<Doc Number> Page 142 of 188 Rev. -

Software Verification Plan

11.0 MULTIPLE VERSION DISSIMILIAR SOFTWARE

Multiple version dissimilar software is a set of two or more programs developed separately
to satisfy the same functional requirements. This has proven to be an effective method for
implementing software redundancy. Errors specific to one of the versions are detected by
comparison of the multiple outputs.

This project does not contain multiple version dissimilar software.

<Doc Number> Page 143 of 188 Rev. -

Software Verification Plan

APPENDIX A: SOFTWARE PLANNING REVIEW CHECKLIST

The complete Software Planning Review objectives and activities checklist is provided below.
The Software Planning Review Checklist is automatically leveled by the Qualtech Compliance

Management System.
lifecycle data of a particular design assurance level.

applicable control categories.

Each checklist includes the applicable objectives, activities and
The checklists also include the

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?

3 NA
It is best practice to add action items directly into QCMS as they occur.

All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?
The activities of the software development processes and integral

5 processes of the software life cycle that will address the system 4.1a,4.3
requirements and software level(s) have been defined.

The software life cycle(s), including the inter-relationships between the

6 processes, their sequencing, feedback mechanisms, and transition criteria 4.1b,4.3
have been determined.

The software life cycle environment, including the methods and tools to be

7 used for the activities of each software life cycle process have been 4.1c
selected.

Additional considerations, such as those discussed in section 12, have been

8 4.1d
addressed.

9 Software development standards consistent with the system safety 41e
objectives for the software to be produced have been defined. '
Software plans that comply with subsection 4.3 and section 11 have been

10 4.1f, 4.6
produced.

11 Development and revision of the software plans have been coordinated. 4.1g,4.6

12 Archive, retrieval, and release have been established. 7.2.7

13 The means of compliance has been proposed and FAA ACO is in agreement 91
with the Plan for Software Aspects of Certification is obtained. '
The software plans were developed at a point in time in the software life

14 cycle that provided timely direction to the personnel performing the 4.2a
software development processes and integral processes.

The software development standards to be used for the project have been

15 . 4.2b

defined or selected.
<Doc Number> Page 144 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference

16 Methods and tools have been chosen that provide error prevention in the 49
software development processes.)
The software planning process provides coordination between the software

17 development and integral processes to provide consistency among 4.2d
strategies in the software plans.

18 The software planning process includes a means to revise the software 4%
plans as a project progresses. '
If multiple-version dissimilar software is used in a system, the software

19 planning process includes the methods and tools to achieve the error 4.2f
avoidance or detection necessary to satisfy the system safely objectives.

20 The software plans and software development standards are under change 4.9
control and reviews of them completed. <8
If deactivated code is planned, the software planning process describes

21 how the deactivated code (selected options, flight test) will be defined, 4.2h
verified and handled to achieve system safety objectives.
If user-modifiable code is planned, the process, tools, environment, and

22 data items substantiating the guidelines of paragraph 5.2.3 are specified in 4.2i
the software plans and standards.

23 A means for detecting object code that is not directly traceable to the 4.4.9b
source code and a means to ensure its verification coverage are defined. o
The SCM process provides a defined and controlled configuration of the

24 . 7.1a
software throughout the software life cycle.
The SCM process provides the ability to consistently replicate the

25 Executable Object Code for software manufacturing or to generate it in 7.1b
case of a need for investigation or modification.
The SCM process provides control of process inputs and outputs during the

26 software life cycle that ensures consistency and repeatability of process 7.1c
activities.
The SCM process provides a known point for review, assessing status, and

27 change control by control of configuration items and the establishment of 7.1d
baselines.
The SCM process provides controls that ensure problems receive attention

28 . 7.1e
and changes are recorded, approved, and implemented.

29 The SCM process provides evidence of approval of the software by control 7 1f
of the outputs of the software life cycle processes. ’

30 The SCM process provides an assessment of the software product 71
compliance with requirements. =8

31 The SCM process ensures that secure physical archiving, recovery and 71h
control are maintained for the configuration items. '

<Doc Number> Page 145 of 188 Rev. -

Software Verification Plan

ID

Checklist Item

Reference

32

A process exists that ensures that configuration identification will be
established for the software life cycle data.

7.2.1a

33

A process exists that ensures that configuration identification will be
established for each configuration item, for each separately controlled
component of a configuration item, and for combinations of configuration
items that comprise a software product.

7.2.1b

34

A process exists that ensures that configuration items will be configuration-
identified prior to the implementation of change control and traceability
data recording.

7.2.1c

35

A process exists that ensures that a configuration item will be
configuration-identified before that item is used by other software life cycle
processes, referenced by other software life cycle data, or used for
software manufacture or software loading.

7.2.1d

36

If the software product identification cannot be determined by physical
examination (for example, part number plate examination), then a process
exists that ensures that Executable Object Code will contain configuration
identification which can be accessed by other parts of the airborne system
or equipment.

7.2.1e

37

A process exists that ensures that baselines will be established for
configuration items used for certification credit. (Intermediate baselines
may be established to aid in controlling software life cycle process
activities.)

7.2.2a

38

A process exists that ensures that a software product baseline will be
established for the software product and defined in the Software
Configuration Index.

7.2.2b

39

A process exists that ensures that baselines will be established in controlled
software libraries (physical, electronic, or other) to ensure their integrity.
Once a baseline is established, it will be protected from change.

7.2.2c

40

A process exists that ensures that change control activities are followed
when developing a derivative baseline from an established baseline.

7.2.2d

41

A process exists that ensures that baselines will be traceable to the baseline
from which it was derived.

7.2.2e

42

A process exists that ensures that a configuration item will be traceable to
the configuration item from which it was derived.

7.2.2f

43

A process exists that ensures that each baseline or configuration item will
be traceable either to the output it identifies or to the process with which it
is associated.

7.2.2¢

44

A process exists that ensures that problem reports will be prepared that
describes the process non-compliance with plans, output deficiency, or
software anomalous behavior, and the corrective action taken.

7.2.3a

<Doc Number> Page 146 of 188

Rev. -

Software Verification Plan

ID

Checklist Item

Reference

45

A process exists that ensures that problem reports will include
configuration identification of affected configuration items(s) or definition
of affected process activities, status reporting or problem reports, and
approval and closure of problem reports.

7.2.3b

46

A process exists that ensures that problem reports requiring corrective
action of the software product or outputs of software life cycle processes
invoke the change control activity.

7.2.3c

47

The documented change control process will preserve the integrity of the
configuration items and baselines by providing protection against their
change.

7.2.4a

48

The change control process ensures that any change to a configuration item
requires a change to its configuration identification.

7.2.4b

49

A process exists that ensures that changes to baselines and to configuration
items under change control will be recorded, approved, and tracked.
Problem reporting is related to change control, since resolution of a
reported problem may result in changes to configuration items or
baselines.

7.2.4c

50

A process exists that ensures that software changes will be traced to their
origin and the software life cycle processes repeated from the point at
which the change affects their outputs. (For example, an error discovered
at hardware/software integration, that is shown to result from an incorrect
design, should result in design correction, code correction and repetition of
the associated integral process activities.)

7.2.4d

51

A process exists that ensures that throughout the change activity, software
life cycle data affected by the change should be updated and records
should be maintained for the change control activity.

7.2.4e

52

The change review activity includes a confirmation that affected
configuration items are configuration identified.

7.2.5a

53

The change review activity includes an assessment of the impact on safety-
related requirements with feedback to the system safety assessment
process.

7.2.5b

54

The change review activity includes an assessment of the problem or
change, with decisions for action to be taken.

7.2.5¢

55

The change review activity includes feedback of problem report or change
impact and decisions to affected processes.

7.2.5d

56

The status accounting activity includes reporting on configuration item
identification, baseline identification, problem reporting status, change
history, and release status.

7.2.6a

57

The status accounting activity includes a definition of the data to be
maintained and the means of recording and reporting status of this data.

7.2.6b

<Doc Number> Page 147 of 188

Rev. -

Software Verification Plan

ID

Checklist Item

Reference

58

A process exists that ensures that software life cycle data associated with
the software product will be retrievable from the approved source.

7.2.7a

59

Procedures have been established to ensure the integrity of the stored data
(regardless of medium of storage) by:

1. Ensuring that no unauthorized changes can be made.

2. Selecting storage media that minimize regeneration errors or
deterioration.

3. Exercising and/or refreshing archived data at a frequency compatible
with the storage life of the medium.

4. Storing duplicated copies in physically separate archives that minimize
the risk of loss in the event of a disaster.

7.2.7b

60

The duplication process will be verified to produce accurate copies and
procedures exist that ensure error-free copying of the Executable Object
Code.

7.2.7c

61

A process exists that ensures that configuration items will be identified and
released prior to use of software manufacture and the authority for their
release should be established. As a minimum, the components of the
software product loaded into the airborne system or equipment (which
includes the Executable Object code and may also include associated media
for software loading) will be released.

7.2.7d

62

Data retention procedures have been established to satisfy airworthiness
requirements and enable software modification.

7.2.7e

63

All Review checklist items have been addressed and marked?

NA

64

All action items have been entered into QCMS?

NA

65

The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

Naming Example:
$S1060.pdf

NA

<Doc Number> Page 148 of 188

Rev. -

Software Verification Plan

APPENDIX B: SOFTWARE REQUIREMENTS REVIEW CHECKLIST

The complete Software Requirements Review objectives and activities checklist is provided

below.

The Software Requirements Review Checklist is automatically leveled by the

Qualtech Compliance Management System. Each checklist includes the applicable
objectives, activities and lifecycle data of a particular design assurance level. The checklists
also include the applicable control categories.

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?

3 NA
Itis best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

5 High-level requirements have been developed. 5.1.1a
Derived high-level requirements have been defined and have been

6 - 5.1.1b
indicated to the System Safety Assessment Process.
System functions to be performed by the software have been defined and
the functional, performance, and safety-related requirements of the system

7 are satisfied by the software high-level requirements, and that derived 6.3.1a
requirements and the reason for their existence have been correctly
defined.
Each high-level requirement is accurate, unambiguous and sufficiently

8 6.3.1b
detailed and the requirements do not conflict with each other.
No conflicts exist between the high-level requirements and the

9 hardware/software features of the target computer, especially, system 6.3.1c
response times and input/output hardware.

10 Each high-level requirement can be verified. 6.3.1d

11 The Software Requirements Standard were followed during the software 6.3 16
requirements process and deviations from the standards are justified. e
The functional, performance, and safety-related requirements of the

12 system that are allocated to software were developed into the software 6.3.1f
high-level requirements.

13 Configuration items have been identified. 7.2.1

14 Baselines and traceability have been established. 7.2.2
Problem reporting, change control, change review, and configuration status

15 .) 7.23-7.26
accounting have been established.

<Doc Number> Page 149 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
The system functional and interface requirements that are allocated to

16 software have been analyzed for ambiguities, inconsistencies and 5.1.2a
undefined conditions.

Input to the software requirements process detected as inadequate or

17 incorrect have been reported as feedback to the input source processes for 5.1.2b
clarification correction.

18 Each system requirement that is allocated to software has been specified in 5.1 9c
the high-level requirements. o
High-level requirements that address system requirements allocated to

19 . 5.1.2d
software to preclude system hazards have been defined.

20 The high-level requirements conform to the Software Requirements 512
Standards, and are verifiable and consistent. a

2 The high-level requirements are stated in quantitative terms with 5.1.9f
tolerances where applicable. o

2 The high-level requirements do not describe design or verification detail 512
except for specified and justified design constraints. 8

23 Each system requirement allocated to software is traceable to one or more 5.19h
software high-level requirements. h

24 Each high-level requirement is traceable to one or more system 519
requirements, except for derived requirements. o

25 Derived high-level requirements have been provided to the system safety 5 1.2i
assessment process. 4
High-level requirements and traceability to those high-level requirements

26 . 6.2a
have been verified.

27 All Review checklist items have been addressed and marked? NA

28 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

29 NA
Naming Example:
$51060.pdf

<Doc Number> Page 150 of 188 Rev. -

Software Verification Plan

APPENDIX C: SOFTWARE PRELIMINARY DESIGN REVIEW CHECKLIST

The complete Software Preliminary Design Review objectives and activities checklist is
provided below. The Software Preliminary Design Review Checklist is automatically leveled

by the Qualtech Compliance Management System.

Each checklist includes the applicable

objectives, activities and lifecycle data of a particular design assurance level. The checklists
also include the applicable control categories.

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?

3 NA
It is best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?
The software architecture does not conflict with the high-level

5 requirements, especially functions that ensure system integrity, for 6.3.3a
example, partitioning schemes.

6 The accuracy and behavior of the proposed algorithms have been verified, 6.3.1
especially in the area of discontinuities. =8

7 The software architecture was developed from the high-level requirements. 5.2.1a
A correct relationship exists between the components of the software and

8 6.3.3b
the architecture. This relationship exists via data flow and control flow.
No conflicts exist in the architecture, especially initialization, asynchronous

9 operation, synchronization and interrupts, between the software 6.3.3c
architecture and the hardware/software features of the target computer.

10 The software architecture can be verified (e.g., there are no unbounded 6.3.3d
recursive algorithms). e
The Software Design Standards were followed during the software design

11 process and deviations to the standards were justified, especially 6.3 3e
complexity restrictions and design constructs that would not comply with e
the system safety objectives.

12 All Review checklist items have been addressed and marked? NA

13 All action items have been entered into QCMS? NA

<Doc Number> Page 151 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

14 NA

Naming Example:
SS1060.pdf

<Doc Number> Page 152 of 188 Rev. -

Software Verification Plan

APPENDIX D: SOFTWARE CRITICAL DESIGN REVIEW CHECKLIST
The complete Software Critical Design Review objectives and activities checklist is provided

below.

The Software Critical Design Review Checklist is automatically leveled by the

Qualtech Compliance Management System. Each checklist includes the applicable
objectives, activities and lifecycle data of a particular design assurance level. The checklists
also include the applicable control categories.

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?

3 NA
It is best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?
The software low-level requirements satisfy the software high-level

5 requirements and derived requirements and the design basis for their 6.3.2a
existence were correctly defined.

6 Each low-level requirement is accurate and unambiguous and the low-level 6.3.2b
requirements do not conflict with each other. e
No conflicts exist between the software requirements and

7 hardware/software features of the target computer, especially, the use of 6.3.2¢
resources (such as bus loading), system response times, and input/output o
hardware.

8 Each low-level requirements can be verified. 6.3.2d
The Software Design Standards were followed during the software design

9 L S 6.3.2e
process, and deviations from the standards were justified.

10 The high-level requirements and derived requirements were developed 6.3.2f
into the low-level requirements. e
The accuracy and behavior of the proposed algorithms, especially in the

11 . S o 6.3.2g
area of discontinuities have been verified.

12 Low-level requirements were developed from high-level requirements. 5.2.1a

13 Derived low-level requirements have been defined and provided to the 591b
System Safety Assessment Process. o

14 Partitioning beaches have been prevented or isolated. 6.3.3f
Low-level requirements and software architecture developed during the

15 software design process conform to the Software Design Standards and are 5.2.2a
traceable, verifiable and consistent.

<Doc Number> Page 153 of 188 Rev. -

Software Verification Plan

ID

Checklist Item

Reference

16

Derived requirements have been defined and analyzed to ensure that the
high level requirements are not compromised.

5.2.2b

17

Software design process activities could introduce possible modes of failure
into the software or, conversely, preclude others. The use of partitioning
or other architectural means in the software design may alter the software
level assignment for some components of the software. In such cases,
additional data has been defined as derived requirements and proved the
system safely assessment process.

5.2.2c

18

Control flow and data flow have been monitored when safety-related
requirements dictate (e.g., watchdog timers, reasonableness-checks and
cross-channel comparisons).

5.2.2d

19

Responses to failure conditions are consistent with the safety-related
requirements.

5.2.2e

20

Inadequate or incorrect inputs detected during the software design process
have been provided to either the system life cycle process, the software
requirements process, or the software planning process as feedback for
clarification or correction.

5.2.2f

21

All Review checklist items have been addressed and marked?

NA

22

All action items have been entered into QCMS?

NA

23

The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

Naming Example:
$S1060.pdf

NA

<Doc Number> Page 154 of 188

Rev. -

Software Verification Plan

APPENDIX E: SOFTWARE CODE REVIEW CHECKLIST

The complete Software Code Review objectives and activities checklist is provided below.
The Software Code Review Checklist is automatically leveled by the Qualtech Compliance

Management System.

Each checklist includes the applicable objectives, activities and

lifecycle data of a particular design assurance level. The checklists also include the

applicable control categories.

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?

3 NA
Itis best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

5 Source Code has been developed that is traceable, verifiable, consistent 5314
and correctly implements low-level requirements. o
The Source Code is accurate and complete with respect to the software

6 low-level requirements, and no Source Code implements and 6.3.4a
undocumented function.

7 The Source Code matches the data flow and control flow defined in the 6.3.4b
software architecture. e
The Source Code does not contain statements and structures that cannot

8 g . 6.3.4c
be verified and the code does not have to be altered to test it.
The Software Code Standards were followed during the development of the

9 code, especially complexity restrictions and code constraints that would be 6.3.4d
consistent with the system safety objectives.

10 The software low-level requirements were developed into Source Code. 6.3.4e
Verification evidence exists that ensures the correctness and consistency of
the Source Code, including stack usage, fixed point arithmetic overflow and

11 resolution, resource contention, worst-case execution timing, exception 6.3.4f
handling, use of uninitialized variables of constants, unused variables or
constraints, and data corruption due to task or interrupt conflicts.

12 Software load control has been established. 7.2.8

13 Software life cycle environment control has been established. 7.2.9
The Source Code implements the low-level requirements and conforms to

14) 5.3.2a
the software architecture.

<Doc Number> Page 155 of 188 Rev. -

Software Verification Plan

ID

Checklist Item

Reference

15

The Source Code conforms to the Software Code Standards.

5.3.2b

16

The Source Code is traceable to the Design Description.

5.3.2c

17

Inadequate or incorrect inputs detected during the software coding process
have been provided to the software requirements process, software design
process or software planning process as feedback for clarification or
correction.

5.3.2d

18

The results of the traceability analyses and requirements-based and
structural coverage analyses show that each software requirement is
traceable to the code that implements it and to the review, analysis, or test
case that verifies it.

6.2b

19

Software load control, which includes procedures for part numbering and
media identification that identify software configurations that are intended
to be approved for loading into the airborne system or equipment, has
been established.

7.2.8a

20

Software load control, which includes whether the software is delivered as
an end item or is delivered installed in the airborne system or equipment,
records should be kept that confirm software compatibility with the
airborne system or equipment hardware, has been established.

7.2.8b

21

Configuration identification has been established for the Executable Object
Code (or equivalent) of the tools used to develop, control, build, verify, and
load the software.

7.2.9a

22

The SCM process for controlling qualified tools, complies with the
objectives associated with Control Category 1 or 2 data.

7.2.9b

23

The SCM process for controlling the Executable Object Code (or equivalent)
of tools used to build and load the software (for example, compliers,
assemblers, linkage editors) complies with the objectives associated with
Control Category 2 data, as a minimum.

7.2.9c

24

All Review checklist items have been addressed and marked?

NA

25

All action items have been entered into QCMS?

NA

26

The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

Naming Example:
$51060.pdf

NA

<Doc Number> Page 156 of 188

Rev. -

Software Verification Plan

APPENDIX F: INTEGRATION REVIEW CHECKLIST

The complete Integration Review objectives and activities checklist is provided below. The
Integration Review Checklist is automatically leveled by the Qualtech Compliance

Management System.
lifecycle data of a particular design assurance level.

applicable control categories.

Each checklist includes the applicable objectives, activities and
The checklists also include the

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?

3 NA
It is best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?
Verification evidence that the Executable Object Code has been successfully

5 loaded into the target hardware for hardware / software integration has 5.4.1a
been produced.

6 The test cases have been accurately developed into test procedures and 6.3.6b
expected results. e

7 Output of software integration process is complete and correct. 6.3.5

8 Executable Object Code is compatible with target computer. 6.4.3a

9 Verification evidence exists that the Executable Object Code can be 5.4.93
generated from the Source Code and linking and loading data. o

10 Verification evidence exists that the software has been successfully loaded 54.9b
into the target computer for hardware/software integration. o
Inadequate or incorrect inputs detected during the integration process

1 have been provided to the software requirements process, the software 5.4.9¢
design process, the software coding process or the software planning o
process as feedback for clarification or correction.
Software integration testing has been performed to verify the

12 interrelationships between software requirements and components and to 6.4
verify the implementation of the software requirements and software '
components within the software architecture.

13 Hardware/Software integration testing has been performed to verify 6.4
correct operation of the software in the target computer environment.)

14 Low-level testing has been performed to verify the implementation of 6.4
software low-level requirements. '

<Doc Number> Page 157 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
15 All Review checklist items have been addressed and marked? NA
16 All action items have been entered into QCMS? NA

The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

17 NA
Naming Example:
SS1060.pdf

<Doc Number> Page 158 of 188 Rev. -

Software Verification Plan

APPENDIX G: SOFTWARE VERIFICATION REVIEW CHECKLIST

The complete Software Verification Review objectives and activities checklist is provided
below. The Software Verification Review Checklist is automatically leveled by the Qualtech

Compliance Management System.
activities and lifecycle data of a particular design assurance level.

include the applicable control categories.

Each checklist includes the applicable objectives,
The checklists also

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?
3 NA
It is best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing
4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?
5 The test results have been verified to be correct and discrepancies between 6.3.6¢
actual and expected results are explained. o
6 Executable Object Code complies with low-level requirements. 6.4.2.1,6.4.3
7 Executable Object Code complies with high-level requirements. 6.4.2.1,6.4.3
8 Executable Object Code is robust with low-level requirements. 6.4.2.2,6.4.3
9 Executable Object Code is robust with high-level requirements. 6.4.2.2,6.4.3
10 Test coverage of high-level requirements has been achieved. 6.4.4.1
11 Test coverage of low-level requirements has been achieved. 6.4.4.1
12 Test coverage of software structure (modified condition/decision coverage) 6.4.4.2a,
has been achieved. 6.4.4.2b
.. . 6.4.4.23,
13 Test coverage of software structure (decision coverage) has been achieved. 6.4.4.9b
Test coverage of software structure (statement coverage) has been 6.4.4.2a,
14 .
achieved. 6.4.4.2b
Test coverage of software structure (data coupling and control coupling)
15) 6.4.4.2c
has been achieved.
Software development processes and integral processes comply with
16 8.1a
approved software plans and standards.
The transition criteria for the software life cycle processes have been
17 - 8.1b
satisfied.
18 Communication and understanding between the applicant and the 9.0
certification authority has been established and maintained.)
19 Compliance substantiation has been provided. 9.2
<Doc Number> Page 159 of 188 Rev. -

Software Verification Plan

ID

Checklist Item

Reference

20

If the code tested is not identical to the airborne software, those
differences have been specified and justified.

6.2c

21

When it was not possible to verify specific software requirements by
exercising the software in a realistic test environment, other means were
provided and their justification for satisfying the software verification
process objectives are recorded in the Software Verification Results.

6.2d

22

Deficiencies and errors discovered during the software verification process
have been reported to the software development processes for clarification
and correction.

6.2e

23

Software integration testing has been performed to verify the
interrelationships between software requirements and components and to
verify the implementation of the software requirements and software
components within the software architecture.

6.4

24

Hardware/Software integration testing has been performed to verify
correct operation of the software in the target computer environment.

6.4

25

Low-level testing has been performed to verify the implementation of
software low-level requirements.

6.4

26

Objective evidence exists that normal range test cases were performed that
demonstrate the ability of the software to respond to normal inputs and
conditions which include real and integer input variables were exercised
using valid equivalence classes and boundary values.

6.4.2.1a

27

Objective evidence exists that normal range test cases were performed that
demonstrate the ability of the software to respond to normal inputs and
conditions which include for time-related functions, such as filters,
integrators and delays, multiple iterations of the code were performed to
check the characteristics of the function in context.

6.4.2.1b

28

Objective evidence exists that normal range test cases were performed that
demonstrate the ability of the software to respond to normal inputs and
conditions which include for state transitions, test cases were developed to
exercise the transitions possible during normal operation.

6.4.2.1c

29

Objective evidence exists that normal range test cases were performed that
demonstrate the ability of the software to respond to normal inputs and
conditions which include for software requirements expressed by logic
equations, the normal range test cases verified the variable usage and the
Boolean operators.

6.4.2.1d

<Doc Number> Page 160 of 188

Rev. -

Software Verification Plan

ID

Checklist Item

Reference

30

Objective evidence exists that robustness test cases were performed that
demonstrate the ability of the software to respond to abnormal inputs and
conditions which include c. The possible failure modes of the incoming data
should be determined, especially complex, digital data strings from an
external system.

6.4.2.2a

31

Objective evidence exists that robustness test cases were performed that
demonstrate the ability of the software to respond to abnormal inputs and
conditions which included for loops where the loop count is a computed
value, test cases were developed to attempt to compute out-of-range loop
count values, and thus demonstrate the robustness of the loop-related
code.

6.4.2.2a

32

Objective evidence exists that robustness test cases were performed that
demonstrate the ability of the software to respond to abnormal inputs and
conditions: Real and integer variables were exercised using equivalence
class selection of invalid values.

6.4.2.2a

33

Objective evidence exists that robustness test cases were performed that
demonstrate the ability of the software to respond to abnormal inputs and
conditions: System initialization was exercised during abnormal conditions.

6.4.2.2a

34

Objective evidence exists that robustness test cases were performed that
demonstrate the ability of the software to respond to abnormal inputs and
conditions: A check was made to ensure that protection mechanisms for
exceeded frame times respond correctly.

6.4.2.2a

35

Objective evidence exists that robustness test cases were performed that
demonstrate the ability of the software to respond to abnormal inputs and
conditions: For time or time-related functions, such as filters, integrators
and delays, test cases were developed for arithmetic overflow protection
mechanisms.

6.4.2.2a

36

Objective evidence exists that robustness test cases were performed that
demonstrate the ability of the software to respond to abnormal inputs and
conditions: For state transitions, test cases were developed to provoke
transitions that are not allowed by the software requirements.

6.4.2.2a

37

Objective evidence exists that for shortcomings in requirements-based test
cases or procedures, the test cases were supplemented or tested
procedures changed to provide the missing coverage. The method(s) used
to perform the requirements-based coverage analysis may need to be
reviewed.)

6.4.4.3a

<Doc Number> Page 161 of 188

Rev. -

Software Verification Plan

ID

Checklist Item

Reference

38

Objective evidence exists that for shortcomings in software requirements,
the software requirements were modified and additional test cases
developed and test procedures executed.

6.4.4.3b

39

Objective evidence exists that for dead code, the code was removed and an
analysis performed to assess the effect and the need for re-verification.

6.4.4.3c

40

Objective evidence exists that for deactivated code, there are a couple
verifications: For deactivated code which is not intended to be executed in
any configuration used within an aircraft or engine, a combination of
analysis and testing shows that the means by which such code could be
inadvertently executed are prevented, isolated, or eliminated. For
deactivated code which is only executed in certain configurations of the
target computer environment, the operational configuration needed for
normal execution of this code was established and additional test cases and
test procedures developed to satisfy the required coverage objectives.

6.4.4.3d

41

Objective evidence exists that the SQA process has take an active role in
the activities of the software life cycle processes, and have those
performing the SWA process enabled with the authority, responsibility and
independence to ensure that the SQA process objectives are satisfied.

8.2a

42

Objective evidence exists that the SQA process provides assurance that
software plans and standards are developed and reviewed for consistency.

8.2b

43

Objective evidence exists that the SQA process provided assurance that the
software life cycle processes comply with the approved software plans and
standards.

8.2c

<Doc Number> Page 162 of 188

Rev. -

Software Verification Plan

APPENDIX H: SOFTWARE CONFORMITY REVIEW CHECKLIST

The complete Software Conformity Review objectives and activities checklist is provided
below. The Software Conformity Review Checklist is automatically leveled by the Qualtech
Compliance Management System. Each checklist includes the applicable objectives,

The checklists also

activities and lifecycle data of a particular design assurance level.

include the applicable control categories.

ID Checklist Item Reference
An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist? NA
A person has been assigned to document action items in QCMS?

3 NA
It is best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

5 A conformity review of the software product will be conducted following 8.1c 8.3
this review. D
If certification credit was sought for the use of previously developed

6 software, objective evidence exists that the current software product 3 3i
baseline is traceable to the previous baseline and the approved changes to '
that baseline.
Planned life cycle process activities for certification credit, including the

7 generation of software life cycle data, have been completed and records of 8.3a
their completion are retained.
Software life cycle data developed from specific system requirements,

8 safety-related requirements, or software requirements are traceable to 8.3b
those requirements.

9 Software life cycle data complies with software plans and standards, and is 8.3¢
controlled in accordance with the SCM Plan.)

10 Problem reports comply with the SCM Plan, have been evaluated and have 334
their status recorded. '

11 Software requirement deviations are recorded and approved. 8.3e

12 The Executable Object Code can be generated from the archived source 8.3f
code. ’

13 The approved software can be loaded successfully through the use of 33
released instructions. 28

14 Problem reports deferred from a previous software conformity review are 8.3h
re-evaluated to determine their status. '

<Doc Number> Page 163 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
Planned software life cycle process activities for certification credit,

15 including the generation of software life cycle data, have been completed 8.3a
and records of their completion are retained.
Software life cycle data developed from specific system requirements,

16 safety-related requirements, or software requirements are traceable to 8.3b
those requirements.

17 Software life cycle data complies with software plans and standards, and is 3.3c
controlled in accordance with the SCM plan.)

18 Problem reports comply with the SCM Plan, have been evaluated and have 8.3d
their status recorded. '

19 Software requirement deviations are recorded and approved. 8.3e
The Executable Object Code can be regenerated from the archived Source

20 8.3f
Code.

2 The approved software can be loaded successfully through the use of 33
released instructions. 8

2 Problem reports deferred from a previous software conformity review are 3.3h
re-evaluated to determine their status. '
If certification credit is sought for the use of previously developed software,

23 the current software product baseline is traceable to the previous baseline 8.3i
and the approved changes to that baseline.

24 All Review checklist items have been addressed and marked? NA

25 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

26 NA
Naming Example:
SS1060.pdf

<Doc Number> Page 164 of 188 Rev. -

Software Verification Plan

APPENDIX I: PEER REVIEW CHECKLIST - PLANNING

The complete Planning Peer Review checklist is provided below.

automatically leveled by the Qualtech Compliance Management System.
includes the applicable review and analysis criteria.

This Checklist is

Each checklist

ID

Checklist Item

Reference

1

An attendee list has been generated and circulated for signature?

NA

The Review Evaluator has been identified and added to this checklist?

The Review Evaluator is someone other than the person presenting the
requirements, design or test data. This documents the independence
evidence.

NA

A person has been assigned to document action items in QCMS?

Itis best practice to add action items directly into QCMS as they occur.

NA

All of the data to be reviewed (i.e., Presentations, Excel matrix containing
all of the requirements to be reviewed, architectural diagrams, etc.) has
been documented and uploaded to the /Review Results Folder?

NA

Has the Plan for Software Aspects of Certification (PSAC) been reviewed,
with the review records recorded in DRMS, with all comments closed with
approved modifications to the reviewed material to correct review
deficiencies?

NA

Has the Software Development Plan (SDP) been reviewed, with the review
records recorded in DRMS, with all comments closed with approved
modifications to the reviewed material to correct review deficiencies?

NA

Has the Software Verification Plan (SVP) been reviewed, with the review
records recorded in DRMS, with all comments closed with approved
modifications to the reviewed material to correct review deficiencies?

NA

Has the Software Configuration Management Plan (SCMP) been reviewed,
with the review records recorded in DRMS, with all comments closed with
approved modifications to the reviewed material to correct review
deficiencies?

NA

Has the Software Quality Assurance Plan (SQAP) been reviewed, with the
review records recorded in DRMS, with all comments closed with approved
modifications to the reviewed material to correct review deficiencies?

NA

<Doc Number> Page 165 of 188

Rev. -

Software Verification Plan

ID

Checklist Item

Reference

10

Has the Software Requirements Standards document been reviewed, with
the review records recorded in DRMS, with all comments closed with
approved modifications to the reviewed material to correct review
deficiencies?

NA

11

Has the Software Design Standards document been reviewed, with the
review records recorded in DRMS, with all comments closed with approved
modifications to the reviewed material to correct review deficiencies?

NA

12

Has the Software Coding Standards document been reviewed, with the
review records recorded in DRMS, with all comments closed with approved
modifications to the reviewed material to correct review deficiencies?

NA

13

If there are any other plan documents for the project, have they been
reviewed, with the review records recorded in DRMS, with all comments
closed with approved modifications to the reviewed material to correct
review deficiencies?

(Identify the specific plan in the comment block)

NA

14

Has the Plan for Software Aspects of Certification (PSAC) been signed and
released into the project's Configuration Management system (CC1 or CC2
as appropriate for the software level)?

NA

15

Has the Software Development Plan (SDP) been signed and released into
the project's Configuration Management system (CC1 or CC2 as appropriate
for the software level)?

NA

16

Has the Software Verification Plan (SVP) been signed and released into the
project's Configuration Management system (CC1 or CC2 as appropriate for
the software level)?

NA

17

Has the Software Configuration Management Plan (SCMP) been signed and
released into the project's Configuration Management system (CC1 or CC2
as appropriate for the software level)?

NA

18

Has the Software Quality Assurance Plan (SQAP) been signed and released
into the project's Configuration Management system (CC1 or CC2 as
appropriate for the software level)?

NA

19

Has the Software Requirements Standards document been signed and
released into the project's Configuration Management system (CC1 or CC2
as appropriate for the software level)?

NA

20

Has the Software Design Standards document been signed and released
into the project's Configuration Management system (CC1 or CC2 as
appropriate for the software level)?

NA

<Doc Number> Page 166 of 188

Rev. -

Software Verification Plan

ID Checklist Item Reference
Has the Software Coding Standards document been signed and released

21 into the project's Configuration Management system (CC1 or CC2 as NA
appropriate for the software level)?
If there are any other plan documents for the project, have they been

2 signed and released into the project's Configuration Management system NA
(CC1 or CC2 as appropriate for the software level)?
(Identify the specific plan in the comment block)

23 Does the Plan for Software Aspects of Certification (PSAC) content comply NA
with DO-178C Section 11.1?
Does the Software Development Plan (SDP) content comply with DO-178C

24 . NA
Section 11.2?
Does the Software Verification Plan (SVP) content comply with DO-178C

25 . NA
Section 11.3?

26 Does the Software Configuration Management Plan (SCMP) content comply NA
with DO-178C Section 11.4?

27 Does the Software Quality Assurance Plan (SQAP) content comply with DO- NA
178C Section 11.57?

)8 Does the Software Requirements Standards document content comply with NA
DO-178C Section 11.6?

29 Does the Software Design Standards document content comply with DO- NA
178C Section 11.7?

30 Does the Software Coding Standards document content comply with DO- NA
178C Section 11.8?

31 Is each plan/standard internally consistent? NA
Is the system/software description between the various plans documents

32 consistent? That is, does the text in each plan document appear to be NA
describing the same system?
Are the software development and verification life cycle activities defined

33 . . . - . NA
consistently and in sufficient detail in the planning documents?
Are the inputs, activities, transition criteria (entrance and exit), and outputs
specified for each process (as appropriate to the software level)?

34 . . . e NA
(This includes evaluating the consistency of the specifications between
various plans, such as between the PSAC and SDP.)
Are all certification basis inputs cited in the plans?

35 (For example, any project that has an FAA Issue Paper that affects software NA
invoked on it should include that Issue Paper, along with DO-178C)

<Doc Number> Page 167 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
If the plans and standards are followed as written, would this ensure that
36 all applicable objectives are met (including any additional objectives NA
imposed by the certification authority)?
Are the plans and standards written with sufficient clarity to allow project
37 . - NA
personnel to follow them without further definition?
Are the interfaces and communications channels between the software and
38 system development processes addressed in the plans, and are they clearly NA
defined?
Are the interfaces and communications channels between the software
39 development and system safety assessment process addressed in the plans, NA
and are they clearly defined?
40 Is all COTS software identified and addressed in the plans? NA
41 Is user-modifiable software identified and addressed in the plans? NA
42 Is field-loadable software identified and addressed in the plans? NA
43 Is option-selectable software identified and addressed in the plans? NA
44 Is multiple-version dissimilar software identified and addressed in the NA
plans?
Are any product service history clRAMS for certification credit identified
45 . NA
and addressed in the plans?
Are any proposed alternative methods of compliance identified and
46 . NA
addressed in the plans?
47 Are any other applicable additional considerations identified and addressed NA
in the plans?
Is the appropriate level of structural coverage identified in the plans, and is
48 . . . o NA
the coverage analysis and resolution process clearly identified?
49 Do the plans clearly identify the development and/or verification tools to NA
be used on the project?
Do the plans provide rationale for why the identified tools do or do not
require qualification?
(If any of these 3 questions are answered "no", the given tool does not
require qualification:
50 1. Can the tool insert and error into the airborne software or fail to detect NA
an existing error within the scope of its intended usage?
2. will the tool's output not be verified or confirmed by other verification
activities, as specified in Section 6 of RTCA/DO-178C?
3. Are processes of DO-178C eliminated, reduced, or automated by the use
of the tool?)
<Doc Number> Page 168 of 188 Rev. -

Software Verification Plan

ID

Checklist Item

Reference

51

Is service history claimed for the use of any tool?

If yes, has the tool changed, or is the use of the tool different from the cited
historical usage?

Does the documented tool service history support the intended use of the
tool?

NA

52

Are any tools to be qualified supported with a tool qualification plan that
conforms to the requirements in DO-178C Section 12.2 (either in the PSAC,
or as a separate document)?

NA

53

Are there any unique additional considerations associated with the project
(such as unique alternative means or methods of compliance, unique
approaches to development/verification/SCM/SQA, etc.) that do not
comply with certification authority published policy or issues?

NA

54

Is the use of a Real-Time Operating System (RTOS) planned?
If yes, do the plans describe where the RTOS requirements are to be
defined, and how they will be traced?

NA

55

Is the use of a Board Support Package (BSP) planned?
If yes, do the plans describe where the BSP requirements are to be defined,
and how they will be traced?

NA

56

Is an Application Programming Interface (API) planned to be used?
If yes, do the plans describe where the APl requirements are to be defined,
and how they will be traced?

NA

57

Is a device driver planned to be used?
If yes, do the plans describe where the device driver requirements are to be
defined, and how they will be traced?

NA

58

Is Object-Oriented (OO0) design/programming planned to be used?
If yes, then are the additional considerations attendant with OO and the
specific 00 language to be used addressed in the plans?

NA

59

Do the plans describe how and where software performance requirements
are defined and how they will be traced?
(This includes software timing, size restrictions, throughput, etc.)

NA

60

Do the plans describe how and where fail-safe and fail-operational
requirements are defined how they will be traced?

NA

61

Do the plans describe the partitioning scheme, with emphasis on its ability
to support the high-level requirements and the software level(s)
established by the system safety assessment process?

NA

62

Do the plans describe where system response times are addressed?

NA

63

Do the plans identify the mechanism to be used to determine if the Input /
Output (I/0) of the system is adequate?

NA

<Doc Number> Page 169 of 188

Rev. -

Software Verification Plan

ID Checklist Item Reference
Do the plans identify how and where requirements for time-critical tasks

64 are specified? NA
(Time-critical task requirements need to be specified in quantifiable terms.)
Do the plans describe where software requirements will address timing

65 constraints, strategy for dealing with timing limits, required timing margins, NA
and methods to be used in measuring timing margins?

66 Do the plans describe where error prevention, fault tolerance, and error NA
detection are to be specified in the requirements, design, and code?

67 Is use of one or more compiler-provided libraries planned? NA
If no, the remaining library questions do not need to be answered.
Do the plans identify where the requirements are to be specified, and how

68 . NA
they will be traced?
Do the plans identify if the source code is available for run-time library

69 : . NA
functions to be used on the project?
Do the plans identify if structural coverage appropriate to the software

70 NA
level will be applied to the libraries?
Do the plans describe how library code not used by the application will be

71) NA
dealt with?
Do the plans identify if there is dead or deactivated code known to be in

72 . . NA
the libraries?
Do the plans describe how problems found in the library routines will be

73 . . . NA
dealt with by the library developer and the project team?

74 All Review checklist items have been addressed and marked? NA

75 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

76 NA
Naming Example:
$S1060.pdf

<Doc Number> Page 170 of 188 Rev. -

Software Verification Plan

APPENDIX J: PEER REVIEW CHECKLIST - REQUIREMENTS

The complete Requirements Review checklist is provided below. This Checklist is
automatically leveled by the Qualtech Compliance Management System. Each checklist
includes the applicable review and analysis criteria.

ID Checklist Item Reference

The following definitions have been discussed and are understood?

System Requirements:

System requirements are inspection requirements (i.e., weight,
measurement, power, etc.) and categories or place holders for groups of
high-level requirements (i.e., the system shall process ARINC 429
messages). System requirements are not verifiable through Test or
Analysis.

Note: System requirement validation is not part of the software life cycle
process. The validity of the system requirements should be assured by the
system life cycle process. System requirements are included in the software
lifecycle to the extent that it identifies those system requirements that will
be implemented in software.

High-Level Requirements:

High-level software requirements are those requirements that are
developed from analysis of the system requirements, safety-related
requirements, and system architecture. High-level requirements are
written as individually verifiable requirements. High-level requirements are
verifiable through test or analysis. They are used by Test Engineering to
develop requirements-based and robustness test cases. High-level
requirements are tested at the “black-box” level.

NA

Low-Level Requirements:

Low-level software requirements are detailed implementation instructions
directed at the Engineer responsible for writing the source code. They are
verified through low-level test and analysis. Low-level requirements are
typically documented in terms of function descriptions and pseudo code.

Derived Requirements:

Derived software requirements are additional requirements resulting from
the software development processes, which may not be directly traceable
to higher level requirements.

2 An attendee list has been generated and circulated for signature? NA

<Doc Number> Page 171 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
The Review Evaluator has been identified and added to this checklist?

3 The Review Evaluator is someone other than the person presenting the NA
requirements, design or test data. This documents the independence
evidence.
A person has been assigned to document action items in QCMS?

4 NA
Itis best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

5 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

6 Is each high-level requirement uniquely identified (does each entry in the NA
tool contain only one requirement)?
Are the high-level requirements unambiguous? (Does each requirement

7 mean the same thing to all stake holders, including the specifier, the NA
systems engineer, the software engineer, the verification engineer, etc?)
Is the terminology used in the high-level requirements fully defined?
(For example, a requirement that states "The controller shall assert control

8 e " : " NA
of the engine within 150 msec of a warm-start" should define what "assert
control" means)
Are the high-level requirements consistently written (e.g.: terminology

9 . . NA
attributes, data definitions)?
Are the high-level requirements complete, that is, are all system

10 requirements allocated to software reflected in the high-level NA
requirements?
Is each high-level requirement verifiable through testing? (This includes

1 clear definition of test parameters, such as defining the time measurement NA
start and stop criteria for the requirements "The controller shall assert
control of the engine within 150 msec of a warm-start.")

12 Does each requirement conform to the Software Requirements Standards? NA

13 Have requirements been reviewed to determine that algorithms are NA
accurate?

14 Are performance requirements (such as response time requirements) NA
stated?

<Doc Number> Page 172 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference

15 If the requirements involve complex decision chains, are they expressed in NA
a form that facilitates comprehension?

16 Has the precision and accuracy of calculations been specified? NA

17 Have Assumptions and Dependencies been clearly stated? NA
Are the high-level requirements consistent with each other? That s, do the

18 . . . NA
requirements NOT conflict or contradict each other?

19 Are the high-level requirements accurate? NA

20 Is each high-level requirement either traced to one or more specific system NA
requirement(s) or identified as a derived requirement?
For high-level requirements traced to one or more specific system

21 requirement(s), does the high-level requirement logically relate to the NA
system requirement(s)?
For each system-level requirement allocated to software, are there high-

22 level software requirements that (collectively) cover all aspects of the NA
system requirement?
If a Real-Time Operating System (RTOS) is used, are the requirements and

23 . . e NA
interfaces identified and traced?
If a Board Support Package (BSP) is used, are the requirements and

24 . . g NA
interfaces identified and traced?
If an Application Programmable Interface (API) is used, are the

25 NA
requirements and interfaces identified and traced?
If a device driver is used, are the requirements and interfaces identified and

26 NA
traced?

27 Are derived requirements clearly identified? NA

)8 Should any identified derived requirements logically be traced to a higher- NA
level requirement?

29 All Review checklist items have been addressed and marked? NA

30 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

31 NA
Naming Example:
SS1060.pdf

<Doc Number> Page 173 of 188 Rev. -

Software Verification Plan

<Doc Number> Page 174 of 188 Rev.

Software Verification Plan

APPENDIX J: PEER REVIEW CHECKLIST - DESIGN

The complete Design Review checklist is provided below. This Checklist is automatically

leveled by the Qualtech Compliance Management System.

applicable review and analysis criteria.

Each checklist includes the

ID

Checklist Item

Reference

The following definitions have been discussed and are understood?

System Requirements:

System requirements are inspection requirements (i.e., weight, measurement,
power, etc.) and categories or place holders for groups of high-level requirements
(i.e., the system shall process ARINC 429 messages). System requirements are not
verifiable through Test or Analysis.

Note: System requirement validation is not part of the software life cycle process.
The validity of the system requirements should be assured by the system life cycle
process. System requirements are included in the software lifecycle to the extent that
it identifies those system requirements that will be implemented in software.

High-Level Requirements:

High-level software requirements are those requirements that are developed from
analysis of the system requirements, safety-related requirements, and system
architecture. High-level requirements are written as individually verifiable
requirements. High-level requirements are verifiable through test or analysis. They
are used by Test Engineering to develop requirements-based and robustness test
cases. High-level requirements are tested at the “black-box” level.

Low-Level Requirements:

Low-level software requirements are detailed implementation instructions directed
at the Engineer responsible for writing the source code. They are verified through
low-level test and analysis. Low-level requirements are typically documented in terms
of function descriptions and pseudo code.

Derived Requirements:

Derived software requirements are additional requirements resulting from the
software development processes, which may not be directly traceable to higher level
requirements.

NA

Is each low-level requirement uniquely identified (does each entry in the tool contain
only one requirement)?

NA

Are the low-level requirements unambiguous? (Does each requirement mean the
same thing to all stake holders, including the specifier, the systems engineer, the
software engineer, the verification engineer, etc.)

NA

Is the terminology used in the low-level requirements fully defined?

NA

<Doc Number> Page 175 of 188

Rev. -

Software Verification Plan

ID Checklist Item Reference
Are the low-level requirements consistently written (e.g.: terminology attributes, data
5 definitions)? NA
Are the low-level requirements complete, that is, are all high-level requirements NA
6 reflected in the low-level requirements?
7 | Is each low-level requirement verifiable through inspection, analysis, or testing? NA
g | Does each low-level requirement conform to the Software Design Standards? NA
Have the low-level requirements been reviewed to determine that algorithms are NA
9 accurate?
10 | Are performance requirements (such as timing, size, and throughput) stated? NA
If the requirements involve complex decision chains, are they expressed in a form
11 | that facilitates comprehension? NA
12 | Have any real-time constraints been specified in sufficient detail? NA
13 | Has the precision and accuracy of calculations been specified? NA
14 | Are units specified consistently? NA
Are the low-level requirements consistent with each other? That is, do the
15 requirements NOT conflict with or contradict each other? NA
16 | Are the low-level requirements accurate? NA
Has review of the design identified problems with the requirements, such as:
* missing requirements?
" . . 5
17 ambiguous reqm.rements. NA
* extraneous requirements?
* untestable requirements?
* implied requirements?
18 | Is the design consistent with the high-level requirements? NA
19 | Are deviations from the requirements documented and approved? NA
20 | Are all assumptions documented? NA
21 | Have major design decisions been documented? NA
22 | Is the design consistent with the documented major design decisions? NA
23 | Are run-time libraries used in the design? If so, address the following questions. NA
24 | Are the libraries specified? NA
25 | Do the requirements, design, and code exist for the used library functions? NA
Will structural coverage be applied on the libraries or just on features used by the
26 application program? NA
27 | How is code not used by the application dealt with? NA
28 | Is there dead code in the libraries? NA
29 | Have the libraries been verified? NA
30 | Are requirements and design for time-critical tasks specified in quantifiable terms? NA

<Doc Number> Page 176 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
31 Do software requirements and design address timing constraints, strategy for dealing NA
with timing limits, required timing margins, method of measuring timing margins?
32 If used, is error prevention, fault tolerance, or error detection specified in the NA
requirements, design, and code?
33 If interrupt service routines (ISRs) are used, are they documented in the NA
requirements/design? Do they work properly?
34 | Does the ISR - Block any continuing execution? NA
35 | Does the ISR - Call reentrant functions? NA
36 | Does the ISR - Pass stress testing? NA
37 | Does the ISR - Allow calls to functions before completing? NA
38 | Have the common concurrency problems such as Deadlock been addressed? NA
39 | Have the common concurrency problems such as Livelock been addressed? NA
40 | Have the common concurrency problems such as Race conditions been addressed? NA
41 | Have the common concurrency problems such as Re-entrancy been addressed? NA
42 | Have the common concurrency problems such as Priority inversion been addressed? NA
Have the common concurrency problems such as Mutual exclusion violation been
43 NA
addressed?
Have the common concurrency problems such as Non-deterministic execution order
44 NA
been addressed?
45 | Is partitioning/protection used? If so, is it documented in requirements and design? NA
How is synchronization and communication addressed in the system (e.g.,
46 | synchronous or asynchronous)? Are the synchronization and communication NA
mechanisms documented in the requirements and design data?
If buffers are shared, has the reader-writer (producer-consumer) problem been
47 NA
addressed?
48 | Have the common communication problems such as Lost data been addressed? NA
49 | Have the common communication problems such as Stale data been addressed? NA
Have the common communication problems such as System hanging been
50 NA
addressed?
Have the common communication problems such as Bounded buffer been
51 NA
addressed?
52 | Have the common communication problems such as Corrupted data been addressed? NA
53 Are critical sections protected? How are they protected? Is the protection adequate NA
and accurately implemented?
What kind of scheduling algorithm has been selected for the real-time system? Is the
54 | algorithm documented in the requirements and design? Is the scheduling algorithm NA
deterministic and verifiable?
55 | If the scheduler uses priorities, does the design detail how priorities are determined? NA
56 If the scheduler uses priorities, does the design detail what happens when two tasks NA
have the same priority?
<Doc Number> Page 177 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
If the scheduler uses priorities, does the design detail how has priority inversion been
57 NA
addressed?
58 | If the scheduler uses priorities, does the design detail how are interrupts handled? NA
If concurrent tasks are run, are the handled correctly? (l.e., Is multitasking used?)
59 | What algorithms are used to implement concurrency? Are threads used? If threads NA
are used, how do they affect timing?
Is there a mechanism to detect when real-time tasks that do not meet their
60 | deadlines? If detected, what is the response and is it consistent with the safety NA
requirements?
61 | Are fail-safe, fail-operational requirements specified? NA
62 Is each low-level requirement either traced to one or more specific high-level NA
requirement(s) or identified as a derived requirement?
63 For low-level requirements traced to one or more specific high-level requirement(s), NA
does the low-level requirement logically relate to the high-level requirement(s)?
For each high-level requirement, are there low-level software requirements that
64 (collectively) cover all aspects of the high-level requirement? (That s, would NA
implementation of the low-level requirements mean that the high-level requirement
is properly
Is the low-level to high-level traceability able to be followed but forward (high-to-low)
65 . NA
and backward (low-to-high)?
66 Are there any inconsistencies between the data reviewed and the software NA
development plans?
67 Do any conversations with developers indicate that the plans were not followed? NA
(Determine through interview/discussion with developers.)
Do verification records exist to demonstrate verification of all applicable design
68 - L o NA
objectives? Were the verification activities thorough and well documented?
69 | Is the architecture sufficient to provide service to time-critical tasks? NA
70 | Does the architecture conform to design standards? NA
71 | Is the software architecture compatible with target computer? NA
72 | Does the design adequately address real-time requirements? NA
73 | Does the design adequately address performance issues (memory and timing)? NA
74 | Does the design adequately address spare capacity (CPU and memory)? NA
75 | Does the design adequately address maintainability? NA
76 | Does the design adequately address understandability? NA
77 | Does the design adequately address data requirements? NA
78 | Does the design adequately address loading and initialization? NA
79 | Does the design adequately error handling and recovery? NA
80 | Are memory and timing budgets reasonable and achievable? NA
81 Is the partitioning schema sufficient to support the high-level requirements and the NA
software level established by the system safety assessment?

<Doc Number> Page 178 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
Has partition integrity (i.e., protection) been achieved (in terms of time, space, and

82 NA
throughput)?

33 Does the interrupt/control structure support the known system priorities and high- NA
level requirements?

84 | Does the architecture support the timing and sizing requirements? NA

85 Are the synchronous vs. asynchronous aspects of the design supported by the NA
architecture?

86 | Is exception handling properly addressed? NA

87 | Are data flows consistent? NA

88 | Are interfaces consistent? NA

89 Does the communication mechanism specified in the low-level requirements for each NA
interface support the high-level requirements?

90 | Are derived requirements clearly identified? NA

91 Should any identified derived requirements logically be traced to a higher-level NA
requirement?

92 | All Review checklist items have been addressed and marked? NA

93 | All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly named and
uploaded to the /Signatures directory?

94 NA
Naming Example:
§51060.pdf

<Doc Number> Page 179 of 188 Rev. -

Software Verification Plan

APPENDIX K: PEER REVIEW CHECKLIST - CODE

The complete Code Peer Review checklist is provided below. This Checklist is automatically
leveled by the Qualtech Compliance Management System. Each checklist includes the
applicable review and analysis criteria.

ID Checklist Item Reference

1 An attendee list has been generated and circulated for signature? NA

The Review Evaluator has been identified and added to this checklist?

2 The Review Evaluator is someone other than the person presenting the NA
requirements, design or test data. This documents the independence
evidence.

A person has been assigned to document action items in QCMS?

It is best practice to add action items directly into QCMS as they occur.

All of the data to be reviewed (i.e., Presentations, Excel matrix containing
4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

5 Are naming conventions following the standards? NA
6 Have all code modules been technically reviewed and are under NA
appropriate configuration management control per the software level?
7 Do all code modules compile without error, and without unacceptable NA
warnings?
8 Does the calling sequence correspond with the software architecture? NA
9 Does the source code have to be altered to test it? NA
10 Are the data definitions correct? Consider the following criteria: NA
11 Data typing is correct and consistent. NA
12 Units are consistent between modules (e.g., radians, degrees). NA
13 All variables used are defined prior to use. NA
14 Data are properly initialized. NA
15 Global data integrity is assured. NA
16 Variables are not used for more than one purpose. NA
17 Does the source code conform to standards? Consider the following areas NA
typically found in standards:
18 Is indentation schema being followed? NA
19 Are prologue headers per the standards? NA
20 Is the size of the modules per the standards? NA
21 Does the code do what the comments say it does? NA
22 Is there only one entry and exit point? NA

<Doc Number> Page 180 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
23 Are only the standard coding constructs as defined in the coding standards NA
used?
24 Are nesting considerations being addressed? NA
95 Hf-:IS c9mputationa| correctness been achieved? Consider the following NA
criteria:
26 Sign conventions are consistent and correct. NA
27 Precision is maintained in mixed mode arithmetic. NA
28 Desired accuracy is maintained during rounding or truncation. NA
29 Divide by zero is prohibited/ trapped. NA
30 Ar‘e the logic constructs and data handling correct? Consider the following NA
criteria:
31 Loops are correctly implemented. NA
32 Subscripts are used properly. NA
33 Is each loop executed the correct number of times? NA
34 Will each loop terminate? NA
35 Will the program terminate? NA
36 Are all possible loop fall-throughs correct? NA
37 Are all CASE statements evaluated as expected? NA
38 Is there any unreachable code? NA
39 Are there any off-by-one iteration errors? NA
40 Are there any dangling ELSE clauses? NA
41 Is pointer addressing used correctly? NA
42 Are Priority rule.es and br.ackets in arithmetic expression evaluation used as NA
required to achieve desired results?
43 Are boundary conditions considered? (e.g., null or negative values, adding NA
to an empty list, etc.)
44 Are pointer parameters used as values and vice-versa? NA
45 Is the number of input parameters equal to the number of arguments? NA
46 Do parameter and argument attribute match? NA
47 Do the units of parameters and arguments match? NA
48 Are any input-only arguments altered? NA
49 Are global variable definitions consistent across modules? NA
50 Are any constants passed as arguments? NA
51 Are any functions called and never returned from? NA
52 Are all interfaces correctly used as defined in the Software Design NA
53 Are returned VOID values used? NA
54 Are data mode definitions correctly used? NA
<Doc Number> Page 181 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
55 Are data and storage areas initialized before use, correct fields accessed NA
and/or updated?
56 Is data scope correctly established and used? NA
57 If identifiers with identical names exist at different procedure call levels, NA
are they used correctly according to their local and global scope?
58 Is there unnecessary packing or mapping of data? NA
59 Are all pointers based on correct storage attributes? NA
60 Is the correct level of indirection used? NA
61 Are any string limits exceeded? NA
62 Are all variables EXPLICITLY declared? NA
63 Are all arrays, strings, and pointers initialized correctly? NA
64 Are all subscripts within bounds? NA
65 Are there any non-integer subscripts? NA
66 Is the code understandable (i.e., choice of variable names, use of NA
comments, etc.)
67 Is there sufficient and accurate commentary to allow the reader to NA
understand the code?
68 If the program uses deactivated code, answer the following questions: NA
69 Does the code use a common code deactivation mechanism throughout? NA
70 Does the deactivation mechanism agree with the software plans? NA
71 Is the deactivation mechanism clear and understandable to a code NA
reviewer?
72 Does traceability exist between the code and the software low-level NA
requirement?
73 Is the design implemented completely and correctly? NA
74 Are there missing or extraneous functions? NA
75 All Review checklist items have been addressed and marked? NA
76 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?
77 NA
Naming Example:
$51060.pdf
<Doc Number> Page 182 of 188 Rev. -

Software Verification Plan

APPENDIX L: PEER REVIEW CHECKLIST - INTEGRATION

The complete Integration Peer Review checklist is provided below.

automatically leveled by the Qualtech Compliance Management System.
includes the applicable review and analysis criteria.

This Checklist is

Each checklist

ID Checklist Item Reference

1 An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist?

2 The Review Evaluator is someone other than the person presenting the NA
requirements, design or test data. This documents the independence
evidence.
A person has been assigned to document action items in QCMS?

3 NA
It is best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

5 Are the compiler options set according to the project standard for each NA
code file?

6 Does each code file compile without error, and without disallowed NA
warnings?

7 Does the program link without error? NA

3 Does the linker screen out any compiled code that is not used in the NA
Executable Object Code?

9 Does the link map have any overlapping sections? NA

10 Are differently scoped memory blocks properly contained in the link map? NA

11 Are dynamic memory blocks (e.g.: STACK or HEAP) separate from static NA
memory blocks (such as code or variable memory)?

12 Are the hardware addresses in the link map correct? NA

13 Are there any missing components from the software, according to the link NA
map?

14 All Review checklist items have been addressed and marked? NA

15 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

16 . NA
Naming Example:
$51060.pdf

<Doc Number> Page 183 of 188 Rev. -

Software Verification Plan

APPENDIX M: PEER REVIEW CHECKLIST - TEST PROCEDURES

The complete Test Procedure Peer Review checklist is provided below. This Checklist is
automatically leveled by the Qualtech Compliance Management System.
includes the applicable review and analysis criteria.

Each checklist

ID Checklist Item Reference

1 An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist?

2 The Review Evaluator is someone other than the person presenting the NA
requirements, design or test data. This documents the independence
evidence.
A person has been assigned to document action items in QCMS?

3 NA
It is best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

5 Is the test environment defined? NA

6 Does each test have a header that identifies the author, revision date, test NA
objectives, required configuration, and initial setup?

7 Is each test traceable to a specific requirement or requirements? NA

8 Does the test procedure define the exact sequence of steps required to NA
execute the test?

9 For each test procedure, are the expected results clearly defined? NA

10 Are the expected results consistent with the requirements? NA

11 Do the collective test procedures achieve the objectives for the case? NA
Have normal range test cases been developed for all requirements?

12 e NA
Example: Verify if A then B.

13 Have negative test cases been developed for all requirements? NA
Example: Verify is NOT A, then NOT B.
Do the test cases show positive proof for the occurrence of events

14 whenever possible (e.g.: a variable changes value to show a specific action NA
is taken)?

15 Do test cases against range-based requirements include test to verify the NA
bottom, midpoint and top of the range?
Do test cases against range-based requirements where zero is included in

16 the allowed range include test cases near and at the zero value, as NA
appropriate?

<Doc Number> Page 184 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference

17 Have a complete set of robustness test cases have been developed? NA

18 If test cases are run on a simulator or emulator, have any of the test steps NA
been eliminated by the simulator or emulator?

19 Have test cases and procedures been reviewed for correctness? NA
Do the test cases and procedures adhere to the relevant plans and

20 standards? For example, have coding standards, especially those relevant NA
to limitations of structural coverage tools, been followed?

21 Are the test cases and procedures appropriately commented to allow NA
future updates?

P Have the test cases and procedures been subjected to appropriate change NA
and configuration control?

23 Is the rationale for each test case clearly explained? NA

24 Do the test cases and procedures specify required input data, expected NA
output data, and input/output data (e.g., temporary stores)?

25 Were the inputs for each test case derived from the requirements (as NA
opposed to being derived from the source code)?

26 Have the appropriate memory locations and variables been preset? NA

27 Are the test cases and procedures sufficient to meet coverage NA
requirements?

28 Are sufficient tests to provide coverage identified for each logic construct? NA
Are requirements where analysis is required in addition to (or in lieu of)

29 requirements-based testing clearly documented (e.g., requirements for NA
hardware polling)?
Will the test results reveal whether the results of the test cases that are

30 . NA
counted for credit are observable?

31 Will the test results reveal test cases that violate project standards? NA

32 Will the test results reveal test cases that are not expected to achieve 100% NA
structural coverage (e.g., hardware polling)?

33 Will the test results specify where further evaluation of specified tolerances NA
is required?
Is the separation between test cases clear? For example, are test start and

34 stop identified? This assists tracing the source of unexpected drops in NA
coverage.

35 Does each test case contain inputs, conditions, and expected results? NA

36 Does each test case have procedures for test set-up (to include NA
environment), test execution, and pass-fail criteria?

<Doc Number> Page 185 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
Are test cases that depend on results from previous test cases clearly

37 identified (e.g.: A test case that assumes that variable X is set to a specific NA
value as a result of the previous test case)?

38 If the program uses deactivated code, answer the following question: NA

39 Do test cases exist to verify the deactivation mechanism? NA
Are the test cases and procedures sufficient to cover all the relevant

40 requirements? That is, do the traceability matrices provide clear association NA
between test cases and requirements?

41 Is the design implemented completely and correctly? NA

42 Are there missing or extraneous functions? NA

43 All Review checklist items have been addressed and marked? NA

44 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

45 NA
Naming Example:
SS1060.pdf

<Doc Number> Page 186 of 188 Rev. -

Software Verification Plan

APPENDIX N: PEER REVIEW CHECKLIST - TEST RESULTS

The complete Test Results Peer Review checklist is provided below.

automatically leveled by the Qualtech Compliance Management System.
includes the applicable review and analysis criteria.

This Checklist is

Each checklist

ID Checklist Item Reference

1 An attendee list has been generated and circulated for signature? NA
The Review Evaluator has been identified and added to this checklist?

2 The Review Evaluator is someone other than the person presenting the NA
requirements, design or test data. This documents the independence
evidence.
A person has been assigned to document action items in QCMS?

3 NA
Itis best practice to add action items directly into QCMS as they occur.
All of the data to be reviewed (i.e., Presentations, Excel matrix containing

4 all of the requirements to be reviewed, architectural diagrams, etc.) has NA
been documented and uploaded to the /Review Results Folder?

5 Are the test result files clearly linked to the test procedures and code? (i.e., NA
does configuration control and traceability exist?)

6 Is each test result clearly linked to a test case? NA

7 Are failed test cases obvious from the test results? NA

3 Do the test results indicate whether each procedure passed or failed and NA
the final pass/fail results?

9 Do the test results adhere to the relevant plans, standards, and NA
procedures?

10 Have the test results been subjected to appropriate configuration control, NA
per the software level?

11 Is there an acceptable rationale for deviations from expected results, NA
standards, or plans?

12 Are explanations for the failed test cases intelligible? NA

13 Do explanations for failed test cases contain accurate references to NA
relevant problem reports?

14 Are explanations for code or test rework suitable to address the failure? NA

15 Have test cases been re-executed in compliance with plans for regression NA
testing?

16 Have the test results from regression testing been documented? NA

<Doc Number> Page 187 of 188 Rev. -

Software Verification Plan

ID Checklist Item Reference
If the rationale for a failed test case or other deviation from expected

17 results includes a "test stand tolerance" issue, is the test stand generally NA
adequate for running that particular test case?

18 Did any safety-related test case fail? NA
Is 100% structural coverage (as appropriate to the software level) achieved

19 . . NA
through requirements-based testing?
If 100% structural coverage (as appropriate to the software level) is not

20 achieved through requirements-based testing, is there an explanation NA
detailing which parts of the code were not executed and why?

21 Are explanations for drops in coverage sufficiently detailed and acceptable? NA

22 Are there problem reports associated with dead code? NA

23 Has dead code been removed? NA

24 Is deactivated code indicated as NOT exercised? NA

25 All Review checklist items have been addressed and marked? NA

26 All action items have been entered into QCMS? NA
The attendee list (with signatures) have been scanned to PDF, properly
named and uploaded to the /Signatures directory?

27 NA
Naming Example:
SS1060.pdf

<Doc Number> Page 188 of 188 Rev. -

