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In this part of the course, we will be diving into an area of math that shows up 
everywhere in advanced physics – calculus of variations.
 
Everything discussed in this part of the course is going to build on top of the things 
we’ve covered previously, such as single- and multivariable calculus, so I would 
recommend refreshing up on those. We'll also be looking at lots of examples and 
applications from physics, as the goal is to give you the tools you’ll need to 
understand physics first and foremost.
 
In this lesson, we will first begin by going over the underlying goal of what calculus of 
variations is all about as well as some of the basic concepts.
 
In the following lessons, we will then go over lots of applications, examples and overall, 
looking at calculus of variations at a deeper level. Throughout the lessons, we will also 
discover lots of ways in which variational calculus appears in our current description of 
modern physics.
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1. Brief Introduction To Calculus of Variations
 
 

At this point, we should have single-variable calculus covered quite well. The most 
important part about this in our context is going to be minimizing and maximizing 
single-variable functions, so we'll review this briefly. The applications of finding minima 
or maxima of single-variable functions appear everywhere in physics, so this is certainly 
an important topic.
 
We might, for example, have a function that describes the current in an electric circuit 
as a function of time and finding the maxima of this function would equate to knowing 
when the current is the biggest – lots of real-world applications with that one!
 
Generally, if we have a function of some variable, , we find its extremal points - f x( )

either minima, maxima or stationary points in general - by setting its first derivative 
equal to zero,  and solving for the value of .df / dx = 0 x
 

 
This gives us the value of the variable  at which the function is at an extremal point - x

in other words, when the function  has a minimum, maximum or stationary value.f x( )

 
The underlying reason for why we want to solve the equation  df x / dx = 0( )

specifically comes from the fact that the slope of the tangent line of a given function 
(described by the derivative of that function) is zero at the stationary points.
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Example: Finding The Minimum of a Radial Potential Energy Function

 
 
A very common physical application of finding extrema of single-variable functions is 
for finding the minimum of an “effective potential”, as this tells us a lot about the 
physical behaviour of a system and its stability.
 
For this example, we'll look at a particle or object of mass  moving around in a 
central potential  (meaning that the potential, or the force acting on the particle, 
only depends on the radial distance to the center – for example, gravitational 
potentials are of this form.

m

V r( )

The effective potential, in this case, will be of the form:
 

V r = + V reff( )
L

2mr

2

2
( )

Here, L is the angular momentum of the particle and it is a constant (i.e. conserved).
 
The effective potential is an extremely useful tool for qualitative analysis of how a 
given system behaves. The reason we often analyze effective potentials in many 
problems involving rotation in 3D is because it nicely incorporates both of the 
“radial” as well as the “angular” motion of a system.
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The first term in the effective potential above describes the rotational part of the 
particle’s motion, as it involves the angular momentum . The second term describes 
the radial part of the potential. The effective potential then incorporates both of 
these into one “effective” potential – in a sense, it describes the balance between the 
radial and the angular forces that determine the orbits of the particle.

L

 
Anyway, for our purpose, we want to find the minima of this effective potential as an 
example. The minimum of a radial effective potential generally corresponds to an 
orbit of constant radius (i.e. a circular orbit ) for the particle. Therefore, the radius  
of a circular orbit is found by setting the derivative of the effective potential to zero:

r

 

= 0
dV r

dr

eff( )

⇒   + V r = 0
d

dr

L

2mr

2

2
( )

⇒   · -2 + = 0
L

2mr

2

3
( )

dV r

dr

( )

⇒   =
dV r

dr

( ) L

mr

2

3

 
So, given a specific central potential  - here, we just have one in a general form 

 - we would solve this equation to find the minimum of the effective potential, 
which describes the possible circular orbits a particle can have under this particular 
central potential. As an example, we could look at a gravitational potential (near a 
central mass ) of the form:

V r( )

V r( )

M
 

V r = -( )
GMm

r
 
Plugging this into the equation above and solving for , we find:r
 

- =   ⇒   r =
d

dr

GMm

r

L

mr

2

3

L

GM

2
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So, we find that a particle with a given constant angular momentum  can have a 
circular orbit with radius  around a gravitating central mass .

L

L / GM2 M
 
This is just one particular example of finding extrema of single-variable functions, 
but an extremely useful one. Finding minima of effective potential functions is used, 
for example, to find circular orbits of a charged particle in an electric field or even 
relativistic circular orbits around a black hole - but those are topics for another day!

 
Calculus of variations is based on a similar idea. It is the study of finding extremal 
points of something called functionals, which are essentially functions of other 
functions. In this sense, calculus of variations is just a generalization of finding extremal 
points of single-variable functions.
 
The perhaps difficult thing to conceptualize is that the extremal “points” of a functional 
are not really points, but rather entire functions – functions that either maximize, 
minimize or make stationary a given functional. So, the entire goal of variational 
calculus is to find the stationary “points” (extrema) of functionals. These extrema 
themselves are some kind of functions that depend on the particular problem at hand.
 

1.1. Why Should You Care About Calculus of Variations?
 

Before we discuss calculus of variations in detail, it’s worth discussing why we would 
want to do so in the first place. Well, here are just a couple applications of variational 
calculus:
 

• Finding paths of shortest distance, called geodesics.

• Finding surfaces of minimal surface area.

• Describing the motion of objects under gravity in general relativity.

• Deriving equations of motion for systems in Lagrangian mechanics.

• Modeling the dynamics of fields in field theories.

• Describing the motion of light rays in a material in the field of optics.
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In the context of modern physics, calculus of variations is actually one of the most 
important areas of math to master if you want to understand topics like quantum 
field theory or general relativity.
 
The main reason for this is the fact that almost all our modern theories of physics 
are described by an action principle. In short, this means that the dynamics of any 
given theory (such as the dynamics of the electromagnetic field) can be encoded 
into a quantity called the action – which surprise, surprise, is a functional.
 
Then, the actual dynamics of the given theory (the “field equations” if we’re talking 
about a quantum field theory, for example) are found by making the action 
functional stationary by applying something called the principle of stationary 
action – again, requiring the tools of variational calculus. This is generally the way 
in which all modern field theories are formulated.
 
However, calculus of variations comes up even in classical mechanics in a 
formulation called Lagrangian mechanics. In Lagrangian mechanics, we describe 
the dynamics of a mechanical system by finding stationary solutions to an action 
functional – using calculus of variations. These solutions are the solutions to the 
equations of motion for the system, which are the same solutions we would get by 
using Newton’s laws.
 
So, calculus of variations allows us to describe all of classical mechanics using the 
Lagrangian formulation instead of Newton’s laws. It turns out that the Lagrangian 
formulation is much more powerful and more general than Newton’s laws, making 
this an extremely useful application of variational calculus.

 
Calculus of variations also shows up quite frequently in various geometric 
applications. A typical example of where variational calculus comes up is in finding the 
minimum distance between any two points, say, in the -plane (or on some other, xy
more complicated surface).
 
In this case, the distance itself would be described by a functional called the arc length 
functional. To minimize this arc length functional then means to find curves or functions 

 that minimize (or more generally, make stationary) the arc length functional. We, y x( )

of course, do this using calculus of variations.
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More generally, this problem of finding minimal distances between two points is the 
problem of finding geodesics in various geometries and it is what a large portion of 
differential geometry is about. Therefore, variational calculus is extremely important for 
differential geometry and also for general relativity, since general relativity is based on 
the mathematics of differential geometry!
 
Hopefully all of this gave you a bit of motivation for why you should want to learn 
calculus of variations. We’ll look at lots of examples and physics applications later, 
which should make it even more clear that calculus of variations is an area of math you 
really should want to learn.
 
 

2. Functionals
 
 

In calculus of variations, the central mathematical objects of interest are called 
functionals. In the simplest sense, a functional is a “function of a function” – that is, a 
thing that takes in an entire function as its input and returns a single number. This 
number describes the value of the functional for that particular input function.
 
So, a functional is a more general object than an ordinary function. An ordinary 
function would take in just a single number (the value of a variable , for example) and x
returns another number that describes the value of the function for that input value.

 
Sidenote; a functional is more generally defined as a mapping from a general 
mathematical space to the real or complex numbers. So, the input of a functional 
technically doesn't have to be just the space of functions.
 
For example, we could even think about the dot product with a given vector as a 
functional - this would take in a vector and return a number. In this case, the dot 
product would be thought of as a functional that maps a vector from an inner 
product space to the real (or complex) numbers. We'll revisit in the tensor calculus -
lessons later on when discussing the metric tensor.
 
However, in the context of variational calculus, we will only consider functionals that 
take in a function and return a number (in most cases, a real number). That is, 
functionals that are mappings from the space of functions to the real numbers - 
functions of functions.
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So, we’re interested in functionals that take in some function – usually a single-variable 
function, such as a curve y(x) – and return a number. But how do we express such a 
thing mathematically?
 
Well, perhaps your first guess might be something of the form:
 
F y = y x( ) ( ( ))2

 
This would indeed be a “function of a function” – it takes in an entire function  as y x( )
its input. However, this does NOT return a number, instead it returns another function 
of the variable x. For example, if you were to plug in , you’d get . y x = x( ) 2 F x = x( ) 4

So, this is not a valid functional.
 
Generally, a valid functional that takes in a full function and always returns just a single 
number can be obtained by writing the functional as a definite integral. For example, 
something of the following form would be a valid functional:
 

F y = y x dx( )
1

0
∫ ( ( ))2

 
This would now take in a function y(x) and return a single number instead of a new 
function of x. We can see this by plugging in, for example :y x = x( ) 2

 

F = x dx = x dx = x =
1

0
∫ 2

2
1

0
∫ 4 1

5

1

0

5 1

5

 

In general, we write functionals in the form of a definite integral. For a general 
functional, its integrand (the expression inside the integral) does not have to involve 
just , it can also also involve  itself, the derivative of  -  - or any y x( ) x y x( ) dy x / dx( )

number of higher derivatives of .y x( )

 
However, in physics, we’re most often interested in functionals with their integrands 
being some function that involve just ,  or  and not other, higher order x y x( ) dy x / dx( )

derivatives. These are the most common types of functionals encountered in physics 
and geometry.
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So, the general form of a functional we’re interested in here can be written as:
 

F y = f x, y x , dx( ) ∫
x2

x1

( )
dy x

dx

( )

 
The reason such functionals are interesting to us is because of reasons related to an 
incredibly important area of physics called Lagrangian mechanics. In Lagrangian 
mechanics (and field theory as well), we have something called action functionals, 
which are of the form:
 

S q = L t, q t , dt( ) ∫
t2

t1

i( )
dq t

dt

i( )

 
We won't go over this in more detail now, but the noteworthy point is that this 
functional is exactly of the form shown above - it involves only up to first derivatives.
 
Functionals of the above form are also encountered in geometric applications quite 
often. For example, we'll come to see that the length of a curve  in the -plane y x( ) xy
between two points (  and ) is described by the arc length functional, which x = a x = b
can be explicitly written as:
 

F y = dx( )
b

a
∫ 1 +

dy x

dx

( )
2

 
The arc length functional takes in some curve y(x) in the xy-plane and returns the length along the 
curve between the points a and b. We’ll also discuss this in more detail in a later lesson.
 
In the arc length functional, we have the integrand as:
 

f x, y, =
dy x

dx

( )
1 +

dy x

dx

( )
2
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Important piece of notation: In calculus of variations, we will often be denoting 
the derivative of a single-variable function as:
 

= y'
dy x

dx

( )

 
So, a prime-symbol (‘) above a function  means the derivative of  with respect 
to its argument . With this notation, our arc length functional above, for example, 
would be represented as:

y x( ) y

x

 

F y = dx( ) ∫
x2

x1

1 + y'2

 
This is a piece of notation we'll be using all throughout the upcoming lessons.

3. Calculus of Variations vs Ordinary Calculus
 
 
Calculus of variations is fundamentally based on the same mathematical tools as 
ordinary calculus (derivatives and integrals), but is quite a bit more complicated than 
ordinary calculus. Here, we'll take a brief look at comparing these two, so you may get a 
better idea of what we are actually doing.
 
First of all, calculus of variations considers the optimization of these objects called 
functionals as opposed to ordinary functions.
 
In ordinary calculus, we look at how the values of a function change with a small 
change in its input variable. In variational calculus, on the other hand, we look at how 
the values of a functional change with a small change in its input, which itself is an 
entire function as opposed to a single variable.
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So, we’re essentially looking at how a “function of a function” (i.e. functional) changes 
with a small change in its input function.
 

For a quick recap, here is a table comparing the main differences between ordinary 
functions and functionals:
 

Function Functional

Takes in a number as input Takes in a function as input

Returns a number Returns a number

No general form Generally expressed as a definite integral

Changes described by ordinary 
derivatives

Changes described by functional 
derivatives

 
Here, you'll see the mention of functional derivative. This is essentially the analogue of 
an ordinary derivative but for functionals and will be the topic of the next lesson.
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