
Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Understand

Services

offered by

TCP

TCP State

Transition

Diagram and 3-

Way handshake

What is meant

by Connection

Oriented

Flow and

Congestion

Control

TCP hdr

segment format

12
3

4

5

Mastering TCP -> About this Course

TCP various

Timers

6 Advanced Features :

SACK, dupACK,

Fast Recovery, Nagle

Algorithm, Fast

retransmit etc

7

TCP

Windowing

Mechanism

8

Understand Why

TCP is designed

the way it is

today !!

9

http://www.csepracticals.com/
asagar2
Sticky Note

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Getting started

Overview of OSI Model and TCP/IP Stack

Transport Layer Overview

Transport Layer Standardized Protocols – UDP/TCP

UDP Vs TCP

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

OSI Model Basics

➢ TCP is a transport layer protocol, designed for reliable communication between processes

➢ Let us start with the basics and understand the transport layer and understand the picture at the broader level

➢ In this section of the course, we will understand how TCP as a protocol fits in the Networking

TCP/IP stack (Implementation of OSI Model)

➢ Let us build the background first . . .

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

• OSI Model and TCP IP stack

Application layer

Presentation layer

Session layer

Transport Layer

Network Layer

Data link layer

Physical layer

Theoretical OSI model

Reference/Standard/Guideline . . .

The Open Systems Interconnection model is a conceptual model

that characterizes and standardizes the communication functions of

a telecommunication or computing system without regard to its

underlying internal structure and technology

OSI Model Basics

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

• OSI Model and TCP IP stack

Application layer

Presentation layer

Session layer

Transport Layer

Network Layer

Data link layer

Physical layer

Theoretical OSI model

Reference/Standard/Guideline . . .

• Description of the Networking subsystem (network stack)

• It is a guideline . . .

• Layer – logically complete functionality of a networking component is

referred to as a layer

• Each layer has a specific function

• Functions of layers do not overlap

• Data/packet moves across the layers bi-directionally

• All layers stack together to built a complete networking subsystem

• One most common example of OSI model implementation is

TCP/IP network stack which runs inside your OS

OSI Model Basics

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

• OSI Model and TCP IP stack

Application layer

Presentation layer

Session layer

Transport Layer

Network Layer

Data link layer

Physical layer

Theoretical OSI model

Reference/Standard/Guideline . . .

Practical OSI model

TCP/IP Stack

Application layer

Transport Layer

Network Layer

Data link layer

Physical layer

What is actually implemented in OS

Pres. layer and session layer are partially Implemented in

layers above it and below

Actual Implementation

OSI Model Basics

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

• Isolated, Non-Overlapping Responsibilities

App X App Y

Data Link Layer
Node to Node delivery

Network Layer
Host to Host Deliver

Transport Layer
Process to Process Delivery

Application layer

Transport Layer

Network Layer

Data link layer

Physical layer

Generic, implements networking application

Process to Process Delivery

Source node to Destination node

From node to its adjacent node

Transmit data as electrical signals

Src Dst

OSI Model Basics

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

App X App Y

Data Link Layer
Node to Node delivery

Network Layer
Host to Host Deliver

Transport Layer
Process to Process Delivery

Application layer

Transport Layer

Network Layer

Data link layer

Physical layer

Ping (ICMP), HTTP, WhatsApp, All mobile APPs etc

UDP, TCP

IP, IPv6

Ethernet

Src Dst

OSI Model Basics

• Isolated, Non-Overlapping Responsibilities

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer

• Table of Contents

Transport Layer (also called Socket Layer)

➢ Transport Layer Goals

➢ Transport Layer Protocols

➢ UDP

➢ TCP

Application layer

Transport Layer

Network Layer

Data link layer

Physical layer

Transport Layer

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ Goals :

➢ Facilitate communication (data exchange) between applications running on different machines deployed in the Network

➢ Transport layer provides two world-wide standardized famous protocols to achieve its goal :

➢ User Datagram Protocol (UDP) protocol

➢ Transmission Control Protocol (TCP)

➢ TCP and UDP most have the same end goal : Facilitate data exchange between processes, but they do it in a different way

Transport Layer

Transport Layer Goals

App X App Y

Data Link Layer
Node to Node delivery

Network Layer
Host to Host Deliver

Transport Layer
Process to Process Delivery

Src Dst

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer -> UDP Protocol

User Datagram Protocol

➢ Very Simple and Straight-forward protocol for data exchange between process

➢ Work on send and forget Model

➢ UDP protocol do not maintain any state

of the peer it is communicating with

➢ UDP protocol do not remember who it was communicating with after sending data (Connection-less), and it also

forgets that it has actually send any data (Stateless Protocol)

➢ UDP protocol sends data in chunks or discrete individual units called datagrams

➢ TCP protocol on the other hand is completely opposite to UDP – Connection Oriented , Stateful and Byte Oriented

Application

(send D to A on R)

Transport

(UDP/TCP)

S R

➢ Forget the recipient after sending data

➢ Not bother to say hello before sending Data

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer -> UDP Protocol

User Datagram Protocol

➢ Work on send and forget Model

➢ Unreliable delivery : UDP don’t care of the packet

(datagram) has actually reached the destination

or not

➢ Out of Order delivery : UDP don’t care if datagrams reaches the destination

out of order !

S R

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer -> TCP Protocol

Transmission Control Protocol

➢ Complex and result of research of over 20 yrs

➢ TCP is a connection oriented protocol

➢ Mutually agree and know each other first

S R

Sender detail :

Port no = 100

Ip address = 10.10.1.1

Sender can process 5000B/sec

Connection

Establishment

Application

(say Hello to A on R)

Transport

(TCP)

A = 100,

10.10.1.1

A = 10,

10.1.1.1

Connection request

Connection AcknowledgementRecv detail :

Port no = 80

Ip address = 10.1.1.1

Recvr can process 1000B/sec

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer -> TCP Protocol

Transmission Control Protocol

➢ TCP is a stateful protocol

➢ Keep Track Of Data sent and recvd
S R

Sender detail :

Port no = 100

Ip address = 10.10.1.1

Sender can process 5000B/sec

Connection

Established

Application

(say Hello to A on R)

Transport

(TCP)

A = 100,

10.10.1.1

A = 10,

10.1.1.1

Recv detail :

Port no = 80

Ip address = 10.1.1.1

Recvr can process 1000B/sec

100B sent, 500B bytes next

200B recvd

50th B resend

100B sent, 500B bytes next

200B recvd

50th B not recvd

Data Housekeeping

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer -> TCP Protocol

Transmission Control Protocol

➢ Byte Oriented Protocol

➢ TCP Send & RECV data as continuous flow of bytes

➢ Like flow of water thorough a pipe

➢ Ensures every drop of water (= byte) is recvd by the recvr successfully

➢ Every byte of data is tracked by TCP protocol

➢ Out of order delivery of the packet

➢ TCP (the receiving) handles this gracefully

➢ Ensures that data is consumed by the receiving application in the correct order

2 1
Application

Transport

(TCP)21

2

1

Wrong order

Correct order
S R

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer -> TCP Protocol

Transmission Control Protocol

➢ Reliable Delivery

➢ Ensure all Application data bytes are delivered to recipient, none should be missed

➢ TCP Sender and receiver jointly implements Reliable delivery procedures

➢ TCP implements ARQ (Automatic Repeat Request) for data recovery

➢ Very detailed and complex mechanism – Hence a separate course

Application

Transport

(TCP)

S R

Application

Transport

(TCP)

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

TCP UDP

Slower and complex service Simpler and fast service

Connection-oriented Connectionless

Stateful Stateless

Reliable : Can recover lost packets, detect

malformed corrupted packets, react to

congestion in the network. Order

preservance etc

Unreliable : No such mechanism, a packet

lost or corrupted is gone forever, Order

cant be guaranteed

Byte Stream Oriented Protocol Datagram oriented protocol

if the application needs reliability Appln do not needs reliability

Eg : Downloading a software pkg Eg : Audio/Video streaming

UDP Vs TCP

UDP Vs TCP

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Transport Layer

Summary

➢ We had a quick overview on TCP/IP stack and OSI Model

➢ We discussed two famous transport layer protocols : UDP and TCP

➢ In the remaining sections of the course, We shall going to have a deep-dive into TCP protocol internals !

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP

TCP

Overview

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Preliminaries

➢ In this Section of the course , we will touch on all aspects of TCP but at a higher level, no drilling down as of now

➢ This will help us to build the base and understand what we shall going to explore in subsequent sections of the course

➢ This will also help us understand the higher level functionality of the TCP, and alert are mind in advance to ask right

“how” and “why” questions

➢ Then in subsequent section of the course, we shall dive deep into technicalities of the TCP protocol in greater detail

➢ Understanding TCP in a clear and concise manner is a little tough and require some organized effort

➢ We have to be patient and go in an organized way step by step manner to conquer TCP

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Preliminaries

➢ TCP Goals :

➢ TCP has loads of research behind it , and it is a result of research spanning over 20 years to make TCP stand where

it is today

➢ TCP has been designed for Reliable Data Delivery in a lossy network

Data Loss in

Communication

Repairing Techniques:

1. CRC (Ethernet layer)

2. Checksum (IP Layer)

3. Error correcting codes (Application)

(add additional info

In the packet, Discarding the pkt)

Repairing Techniques:

Checksum

Resend the Data (TCP use this !)

This is called ARQ (Automatic Repeat Request)

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Preliminaries

➢ TCP sending and receiving process may reside anywhere on the network – separated by tens of intermediate routers

in the network

➢ Intermediate routers can themselves impose problems – packet loss, slow routers etc

➢ Network itself (like bandwidth) impose problems on rate of communication

➢ In a nut-shell, there can be ‘n’ number of factors which causes disruption in data flow between tcp-sender and tcp-

receiver

➢ Network is like open ocean, anything can happen any time !

➢ So, several Question arises to implement ARQ strategy to deal with packet loss/corruption or other anomalies imposed

by disturbing agents of network

ARQ Challenges

A B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Preliminaries

1. How Receiver detects that packet is malformed ?

2. How sender can determine whether the receiver has received the packet ?

3. How long the sender should wait for ACK from Receiver ?

4. What if ACK itself is lost ?

5. How receiver will manage when it receives packets out of sequence ?

6. What if receiver is slow than Sender Or Receiver receives duplicate copes of the packet ?

7. What if network itself is slower or recover over a period of time ?

8. With how much rate should the sender send the packets to receiver ?

TCP ARQ mechanism takes above stated points into consideration to implement its reliable data delivery functionality

Over lossy network

Not implemented over night, it is an outcome of research spanning around 20 years with 100s of research papers !

We shall try to find the answers to

All these questions in this course !

ARQ Challenges

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Byte Oriented Protocol - Deprecated

TCP – Byte Oriented Protocol

➢ TCP Sender and Receiver Exchange data as a stream of bytes

➢ Analogy :

➢ TCP sender is sending water flow towards receiver in a pipe, where each drop of water is a Byte

➢ TCP Sender and Receiver keeps track of how much water is sent and received by keeping explicit track of each

drop of water separately (byte of data)

10001010101010101010101 ->

Sending Process Receiving Process

TCP TCP

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Byte Oriented Protocol

TCP – Byte Oriented Protocol

➢ TCP Keeps track of appln data sent and recvd at the Byte Level.

➢ Therefore TCP is called as Byte or Stream oriented protocol

➢ Analogy :

➢ TCP sender is sending water flow towards receiver in a pipe, where each drop of

water is a Byte

➢ TCP Sender and Receiver keeps track of how much water is sent and received by

keeping explicit track of each drop of water separately (byte of data)

➢ Each byte of data is tracked by a unique id called Sequence no. at either ends

➢ However, Sending and Receiving speed may not be same

➢ Therefore, TCP sender and Receiver both needs buffers

➢ Sending and Receiving Buffers

➢ Implemented as Circular Queues

N no of bytes are packaged

into segments

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Oriented Protocol -> Deprecated

TCP – Connection Oriented Protocol

➢ TCP is COP, meaning, Sender and Receiver must mutually agree with each other that they want to

establish TCP communication before actually exchange of TCP data

Analogy : Dialing a phone number, waiting for the other end to answer the call

➢ By connection Setup means, Sender and receiver saves in its internal data structure the state of

connection which includes :

> With whom are they communicating (IP address and port number)?

> How many bytes of data sent and received ?

> What is the next byte to expect or send over a connection ?

> What is peer’s capacity to process the data ?

➢ Both sender and Receiver save the state of connection

➢ It is for this reason, that large file transfer peer the network when disrupted, can resume because

Sender and receiver knows where they left last time

Connection is Virtual ,

Not physical !

Connection is

Duplex

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Segments and Sequence Numbers

Segments and Sequence Numbers

Application

TCP (byte oriented)

IP (packet oriented)

➢ TCP is sandwiched between Application and IP layer

➢ TCP packs the application data into discrete packages

called Segments

➢ Size of segments is decided dynamically and keeps on

changing depending on network or recipient

state

➢ Segments size is chosen to avoid unnecessary

fragmentation at IP layer

➢ Segments contain ‘N’ bytes of data, where N is

segment size

➢ TCP stamp every byte it is sending in segments with a

unique number called sequence number

➢ The SEQ no of first byte is also treated as Segment

number

TCP Hdr

TCP Hdr

Appln data

TCP HdrIP

Appln data

Sending

side

Receiving

side

IP Datagrams

Appln data

Appln data TCP Hdr

TCP Hdr Appln data

Appln data

Appln data

Segments

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Segments and Sequence Numbers

Segments and Sequence Numbers

➢ Sequence number : Sequence number is the unique id of a Byte of data which TCP sender sends to TCP receiver

➢ Every byte of data provided by application to underlying TCP is assigned incremental sequence numbers by TCP

➢ SN of first byte of application data present in a segment is also referred to as segment number

➢ Example :

➢ Every Byte of Data is identified by a SEQ no so that TCP can keep track of each byte whether reliably delivered to

receiver or not

➢ TCP do not examine “what” data application is sending to it and how it is structured. From TCP perspective all data is

just 0’s and 1’s (junk !!)

Sending Process

800 700 600 500Sending TCP
010010…

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Segments and Sequence Numbers

Segments and Sequence Numbers

Numerical :

Slide no 34 and 35

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Sequence Number and Acknowledgement Numbers

➢ Sequence Number field is mandatory and is always present in a TCP segment (irrespective of segment type)

➢ Acknowledgement Number is Valid only when ACK bit is set

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ The flow of Segments between communication TCP processes in either direction is controlled and regulated by

➢ Sequence Number (32 bit)

➢ Acknowledgement Number (32 bit)

➢ Sequence Number is like a unique identifier of the segment. In TCP, every byte has sequence number, not every segment

➢ Sequence number of the first byte in payload of segment is termed as sequence number of segment

➢ Sequence number is incremented by TCP sender by the amount of bytes the sender has sent in previous segment

Sequence number : 1000 Payload carrying 500 bytes of Application Data

Sequence number : 1500 Payload carrying 500 bytes of Application Data

Segment 1000

Segment 1500

Tcp hdr

Tcp hdr

Sequence Number

Mastering TCP -> Sequence Number and Acknowledgement Numbers

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ The flow of Segments between communication TCP processes in either direction is controlled and regulated by

➢ Sequence Number (32 bit)

➢ Acknowledgement Number (32 bit)

➢ Acknowledgement number is the sequence number of the segment which the TCP receiver expects from TCP sender

in the next segment

➢ In other words, if TCP Receiver specifies ACK # as 2000 with ACK bit set in segment, it means, TCP receiver is telling

TCP sender – “I have successfully received 1999 bytes of data, I am expecting 2000th byte and onwards now in your

next segment”

➢ ACK bit combined with ACK number is a feedback to the TCP sender from TCP receiver about the confirmation of the

successful reception of TCP payload data

➢ TCP piggybacks – in the same segment, TCP sender can ship next payload bytes, specifying new sequence number and at

the same time ACKnowledge the previous TCP data it has received from peer using ACK no and ACK bit

Acknowledgement Number

Mastering TCP -> Sequence Number and Acknowledgement Numbers

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Reliable Data Delivery

A

TCP Segments Type

ACK received

ACK received

ACK sent

ACK sent +

Own Data

B

Duplex

communication

TCP Segments Type

Data Segments

Pure ACK Segments

Data + ACK Segments
New Data Sent

New Data Sent

ACK received

ACK sent

ACK tells the sender

the next expected byte !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Reliable Data Delivery

TCP Reliable Data Delivery

➢ The main reason why TCP has been designed and one of the most widely standard protocol in use today is because it

guarantees – Reliable Data Delivery

➢ Other Transport Protocol such as UDP/IP works on “send and forget” principle. There is no feedback mechanism

from Recipient which tells sender to retransmit lost data

Sender Receiver

There is no mutual agreement either

Between sender and receiver if they

Really want to participate in

communication

Sender has no way to determine

if UDP DG3 has been delivered

or not, if lost it is lost forever

UDP’s Send and Forget Scheme

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Reliable Data Delivery

TCP Reliable Data Delivery

➢ Contrary to “send and forget” scheme, TCP works on Feedback mechanism to implement Reliable delivery of data

➢ Remember Network Layer (L3 routing) also works on “send and forget” scheme

➢ It is the TCP recipient responsibility to send feedback msg to TCP Sender. These Feedbacks are called ACKs in TCP

terms

➢ TCP sender starts the timer when it sends a segment. Before expiration of this Timer if it receives ACK from TCP

recipient, then Sender assumes data has been delivered. This Timer is called Retransmission Timer and is set for each

segment it has sent

➢ If TCP sender do not receives ACK from recipient, and RT expires, TCP sender assumes data has been lost and it

retransmits the segment to recipient. In addition to retransmission, TCP sender takes certain action to avoid further

congestion because it assumes that data is lost because of congestion in the network or Receiver is probably

overwhelmed

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Reliable Data Delivery

TCP Reliable Data Delivery

A

Feedback scheme of TCP

ACK received

ACK received

RT for segment 3 expires

ACK sent

ACK sent +

Own Data

Each time Device A

sends a message,

it starts a timer.

Device B sends an

acknowledgment

back to Device A

when it receives a

message,

so that Device A

knows that it

successfully transmitted the

message. If a message is

lost, the timer goes

off, and Device A

retransmits the data

SNs runs independently

In two directions











 Timer Started

 Timer Cancelled

 Timer Fired



B

Duplex

communication





1

2

3

4

5

6

7

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP + IP

TCP + IP

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Header Format

TCP Header Format

➢ Fields which are in grey are set by TCP recipient while sending the ACK segment to Sender

➢ Src and Dst port number identified the TCP sender and TCP recipient processes

➢ The 4-tuple [TCP sender IP address, TCP sender port number, TCP receiver IP address and TCP receiver port number]

Identifies the TCP connection uniquely

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Summary

Summary

➢ In this Section, We had a quick short tour over TCP protocol and tried understood its goals, objectives and

functionality at a high level

➢ We understood what is meant by :

➢ Connection Oriented Protocol

➢ Byte Stream Oriented Protocol

➢ Feedback Mechanism and Retransmission

➢ TCP hdr format

➢ In the Subsequent Sections of the course, We shall dive deep into various features of TCP one by one and understand

each of those in detail since, it is TCP MASTERCLASS course

➢ Along the way, you will have many numerical and assignments to grasp the idea better

➢ It is not a cake walk to understand TCP internal design in the first attempt

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Summary

End Goal of this Course

➢ Encapsulating the end goals through just one diagram, our end-goal is to understand the below TCP Graph

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP

TCP

Connection Management

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management

➢ TCP is a connection-oriented protocol.

Before either end can send data to the other, a connection must be established between them

➢ In this section of the course, We shall discuss TCP connections management from start to finish

➢ We shall discuss the finite state machine for TCP connection management

➢ 3-way handshake mechanism

➢ Synchronization of ISNs (Initial Sequence numbers)

➢ Connection Termination

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Who is Client and Who is Server ?

➢ First we should under the meaning of Server and Client

➢ Server

➢ A Server is any process which is waiting for Connection Initiation request from Client Process

➢ Server process, by itself, never starts the initiation of communication

➢ It only responds to request from other process (clients)

➢ Example : web server

➢ Client

➢ A Client is any process which initiates the connection with the Server

➢ Eg : Browser

Process A

(Client)

Process B

(Server)

Connection Initiation Request

Connection Establishment

Data Exchange

Connection Termination

Process C

(Server)

Connection Initiation Request

Client Server

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> TCP 4-tuples

➢ TCP Connection is uniquely defined by 4 tuples :

[TCP client IP address, TCP client port number, TCP server IP address and TCP server port number]

➢ TCP Server Process could be running anywhere on the internet/Network. Same is True for TCP Client

➢ For the TCP Client process to connect to TCP Server process , TCP client needs to know :

> TCP Server’s machine IP address and

(Helps Identifying the machine X running TCP process in the network)

> TCP Server process Port number

(Machine X may have many TCP Server Process running, which among these ?)

➢ Similarly, TCP Server’s need to know TCP client’s IP address and port number sending the reply

➢ When TCP client’s initiates the TCP connection with TCP Server, TCP client sends its own IP address and port

number to TCP Server in IP hdr and TCP hdr respectively

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

internet

internet

TCP Client

TCP Server

10.0.0.1:4000

TCP Server

12.0.0.1:44000

12.0.0.1:45000

TCP Server

100.100.0.1:30000

TCP Server

122.100.0.1:55000

Routers

TCP Client

TCP Client

Connected to:

100.100.0.1:30000

Connected to:

12.0.0.1:44000

Connected to:

12.0.0.1:45000

Every TCP Connection has its own life-cycle and

Completely isolated from other TCP connections

Mastering TCP -> Connection Management -> TCP 4-tuples

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Connection Open -> Three Way handshake

Active opener

(client)

Passive

opener

(Server)

1

2

3

1
SYN – want to initiate a TCP connection

All my future segments will have seq no 100+

Do not contain any application data, consume

1 sequence number

2

SYN – want to initiate a TCP connection

ACK – client’s request for connection initiation

Specified in segment with seq no 101 -1 is

accepted

All my future segments will have seq no 1000+

3
ACK – request specified in Server’s

segment with sequence no 1001 – 1 is

Accepted

3-way

Handshake

Both parties should show agreement to

Communicate with each other !

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Active opener

(client)

Passive

opener

(Server)

1

2

3

3-way

Handshake

Client can send TCP data

segments to Server. TCP

Server can only ACK the TCP

data from client. TCP server

cannot send its own TCP data

segments to Client.

Uni-direction (Half Open)

communication

Server Has got the permission

from the client, and now TCP

Server can also send data to

TCP client.

Bi-Directional

Communication

In the 1 and 2 , each party is telling the other

Party the ISN it wishes to use

Step 1 and 2 combined is called

Sequence Number Synchronization

Mastering TCP -> Connection Management -> Connection Open -> Three Way handshake

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Connection Close

Active closer

(client)

Passive closer

(Server)

1

2

4

Client Wishes to

terminate the

connection. Using

close(), Client sends FIN

segment to TCP Server

Since Server knows that

Client is looking to

terminate the connection, it

will also initiate connection

termination by sending FIN

segment to client

3
Client has closed the

connection successfully. After

this point, Client cannot send

Segment with progressive

Seq# anymore. However, it

can only ACKnowledge the

segments coming from Server

(Half Close)

Server Receives

Connection Termination

request. Server

Acknowledges the

request by sending ACK

Client Approves the

Connection termination

request by sending ACK

with ACK# = 1601,

approving segment 1600

send in step 3

TCP connection

has been shutdown

in both directions

➢ Closing of the connection takes exchange of 4

segments

➢ 2 and 4 are pure ACKs , which do not consume

sequence number (notice, for 2 and 3 Sequence no

is same = 1600)

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Sequence Number Consumption Rules

➢ SYN segments do not contain any application data, yet they consume 1 sequence number because they need to be

acknowledged

➢ FIN segments MAY not contain any application data, yet they consume atleast 1 sequence number because they need to

be acknowledged

➢ Pure ACKs do not contain any application data, they do not consume any sequence number either because ACKs are

not acknowledged

➢ Data Segments Consume as many sequence numbers as the no of application bytes they are carrying as payload

Any segments that needs an acknowledgement consumes a sequence number

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Active opener

(client)

Mastering TCP -> Connection Management -> Assignment

SYN

SENT

Passive opener

(client)

SYN

RECVD

ESTABLISHED

ESTABLISHED

SEQ = w ?

ACK, ACK = w + 300

SEQ = r ?

ACK, ACK = 900

D

A

T

A

Transfer

D

A

T

A

Transfer

x = 201

y = 201

w = 201

r = 501

z = L + 1

How Many bytes of TCP payload

Transported in segment w

And r respectively ?

Ans : 300 and 400 bytes

Why is y == w ? Explain.

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Pure ACKs

Active closer

(client)

Passive closer

(Server)

1

2

4

3
This is Pure ACK segment, in

which only ACK bit is set.

Such Segment do not contain

any application payload,

therefore they do not consume

any sequence numbers.

Pure ACK Segment

ACKs are not acknowledged,

If they are lost, they are lost !

ACKs are no ACKed !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Connection Timeout

➢ Active opener i.e. Client sends Connection initiation request (SYN segment) to server which is already down. What will

happen ?

➢ Obviously, the Server will not respond with any ACK. Clients waits for time t, and again probe server with another

CIR. This continues . . . For how long ?

Active opener

(client)

Passive opener

(Server)

T = 0

T = 3

T = 6

T = 12

Exponential back-off

Default no of maximum retries is 5

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

➢ The rules that determine what TCP does are determined by what state TCP is in.

➢ The current state is changed based on various stimuli, such as segments that are transmitted or received,

timers that expire, application reads or writes, or information from other layers.

➢ These rules can be summarized in TCP’s state transition diagram

➢ To understand TCP state transition diagram, be ready to move back and forth between 3-way handshake, Connection

termination Steps we already discussed

➢ Keep the TCP state transition diagram in mind to answer questions in examination . . .

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Active Opener

(Client) sends

SYN to Server

Client do not

Recv ACK from

Server

Timeout or

close

The other Peer has not

replied with ACK ever

! Close() after backoff

algorithm

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Server Recvs SYN

from client.

Send SYN + ACK

Recv : SYN

Send : SYN + ACK

Timeout or

close

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Recv : SYN

Send : SYN + ACK

Simultaneous

Open

Timeout or

close

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Recv : SYN

Send : SYN + ACK

Recv : ACK

Recv : SYN + ACK

Send : ACK

Server Recvd ACK

from client

Client Recvd ACK

from Server

Timeout or

close

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Recv : SYN

Send : SYN + ACK

Recv : ACK

Recv : SYN + ACK

Send : ACK

close()

Send : FIN
close()

Send : FIN

Timeout or

close

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Recv : SYN

Send : SYN + ACK

Recv : ACK

Recv : SYN + ACK

Send : ACK

close()

Send : FIN
close()

Send : FIN

Server Recvs Connection

close request from client.

Server ACK it. TCP

expects appln to invoke

close() now

Appln on Server

invokes close().

TCP send FIN to

client

close()

Send : FIN

Server Recvs ACK

from client in

response to FIN it

sent

Recv : ACK

Timeout or

close

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Timeout or

close

TCP Recvs FIN + ACK from Peer, it

sends ACK. This step is blend of 1

and 2 because TCP has recvd a single

segment with ACK and FIN bit set

instead of recieving two separate

segments with ACK and FIN bit set.

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Recv : SYN

Send : SYN + ACK

Recv : ACK

Recv : SYN + ACK

Send : ACK

close()

Send : FIN
close()

Send : FIN

close()

Send : FIN Recv : ACK

Client has recvd ACK

from server for the FIN it

had sent. Client expects

the FIN from Server also

Client Recvs FIN from Server.

It sends ACK permitting the

server to shutdown the

connection. Client itself slips

into MSL state

Recv : FIN + ACK

Send : ACK

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Recv : SYN

Send : SYN + ACK

Recv : ACK

Recv : SYN + ACK

Send : ACK

close()

Send : FIN
close()

Send : FIN

close()

Send : FIN Recv : ACK

Recv : FIN + ACK

Send : ACK

TCP has already send

FIN, but also it recvs

SYN from peer –

Simultaneous close



Close the

connection when

2MSL timer

expires

Timeout or

close

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine Simplified

Active opener

(client)

Passive opener

(Server)

Data transfer in Established State

Active open

SYN_SENT

Passive open

(LISTEN)

SYN_RCVD
ESTABLISHED

FIN_WAIT_1

Active close

ESTABLISHED

CLOSE_WAIT

Passive close

FIN_WAIT_2 LAST_ACK

TIME_WAIT 2MSL

CLOSED



CLOSED
Timer Expire

Definitions :

SYN_SENT – Active opener sends SYN

SYN_RCVD – Passive opener recvs SYN,

and send ACK for it

ESTABLISHED – When ACK is recvd for SYN

FIN_WAIT_1 – Active closer Sent the FIN, waiting

For ACK

CLOSE_WAIT – passive closer recvd FIN and sent

ACK for it. Waiting to send its own FIN now.

FIN_WAIT_2 – Active closer recvd ACK for its FIN,

Waiting for FIN from other end now

LAST_ACK – passive closer sends its FIN in response

To FIN it recvd from other end, waiting for ACK of

this FIN

TIME_WAIT – active closer in FIN_WAIT_2 state

recvd FIN from peer, sent ACK for it

CLOSED – Active closer’s 2MSL timer expired

- passive closer in LAST_ACK state

recvs ACK for its FIN

Note : Attached are FSM docs in resource

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> Finite State Machine

CLOSED

LISTEN SYN_SENT

SYN_RCVD Established

CLOSE

WAIT

LAST

ACK

FIN_WAIT

1

FIN_WAIT

2

CLOSING

TIME_WAIT

(2MSL)

start

Recv : SYN

Send : SYN + ACK

Recv : ACK

Recv : SYN + ACK

Send : ACK

close()

Send : FIN
close()

Send : FIN

close()

Send : FIN Recv : ACK

Recv : FIN + ACK

Send : ACK



Timeout or

close

Passive close

Active close

Simultaneous

close

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> 2MSL Wait

Active closer

(client)

Passive closer

(Server)

Data transfer in Established State

Active close

FIN_WAIT_1



2
M

S
L

ti
m

e
r

closed

Passive close

CLOSE_WAIT

FIN_WAIT_2

TIME_WAIT

LAST_ACK

CLOSED

➢ TCP in FIN_WAIT_2 state when Recvs FIN from peer,

enters into TIME_WAIT state where it starts the 2 MSL

timer

➢ IF LAST ACK is lost , passive opener

RTO timer times out, it resends

FIN, SEQ = 1200 again

➢ Reception of FIN on active opener which is in 2MSL

wait triggers retransmission of ACK = 1201 and 2MSL

timer is reset

➢ This cycle repeats , this is done to ensure the connection

is shutdown from both ends

➢ It is the active closer which undergo TIME_WAIT state,

Passive closer do not

➢ Servers listen on well known port numbers, eg HTTP

Servers on port # 80. If it is the server which did active

close, then servers would go in TIME_WAIT state.

➢ If server which is in TIME_WAIT state, abruptly

terminated and restarted, OS assigns it the same port

number which it was using before. Since connection is

still in 2MSL wait, error flashed : Address already in use

➢ To recover, you should wait for 2MSL time to restart the

Server again successfully.

If client is abruptly terminated and

restarted, OS assigns a new random

port number to client for new

connection. The previous

instantiation of TCP connection is

still in 2MSL wait time.

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Connection Management -> 2MSL Wait

More about 2 MSL wait time

➢ The TIME_WAIT state is also called the 2MSL wait state.

➢ MSL – Maximum Segment Lifetime

➢ MSL is the maximum amount of time any segment can exist in the network before being discarded

➢ It s value is commonly set to 30s, 1 min or 2 min.

➢ Given the MSL value for an implementation, the rule is: When TCP performs an active close and sends the final ACK, that

connection must stay in the TIME_WAIT state for twice the MSL. This lets TCP resend the final ACK in case it is lost

➢ The final ACK is resent not because the TCP retransmits ACKs (they do not consume sequence numbers and are not

retransmitted by TCP), but because the other side will retransmit its FIN (which does consume a sequence number).

➢ Indeed, TCP will always retransmit FINs until it receives a final ACK

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP

TCP

Timeout

and

Retransmission

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission

➢ The TCP protocol provides a reliable data delivery service between two applications using an

underlying network layer (IP) that may lose, duplicate, or reorder packets

➢ In order to provide reliable delivery, TCP resends data it believes has been lost. But how TCP would know the data

segments it had sent has been lost ?

➢ Simple ! TCP sets the timer when it sends data segments and expects an ACK from receiver for this data segment before the

timer expires.

> If ACK arrives before timer goes off, TCP believes the segment has been successfully delivered

> If Timer goes off and ACK has not arrived yet, TCP assumes segment has been lost and it retransmits the same segment

➢ The Time interval of the timer is called Retransmission timeout (RTO)

➢ Illustration . . .

Transport

TCP

Network Layer

(IP) Best effort delivery, Out of order, can get lost, duplicate

Reliable delivery

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission

Sender Receiver







TCP starts the RTO

timer when segment

is sent out

Before RTO timer

expiry, TCP recvs

the ACK, RTO

timer is cancelled

If the ACK had not

recvd and RTO timer

is expired, TCP

retransmit the same

segment



http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission

➢ Question is :

➢ What should be the appropriate value of RTO ?

➢ RTO cannot be fixed because networks are every very dynamic, keep changing over time

➢ Intermediate routers routing TCP segments may be slow or fast or congested for some reason

➢ Thus RTO value needs to be computed by TCP sender dynamically during the course of its operation, keep

updating it constantly as per the network latency and depending on various factors

➢ Too large RTO, TCP performance is compromised

➢ Too less RTO, false retransmission

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission

Sender Receiver







➢ Too long RTO !

➢ Network Under-Utilization

TCP sits idle, do not

Use Network Capacity

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission

Sender Receiver





➢ Too short RTO !

➢ Unnecessary retransmission

➢ Network Congestion

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> TCP Actions When Segment Loss Occurs

➢ In this Section of the course we will discuss the retransmission mechanism of TCP which is of two types :

➢ Timer based Retransmission

➢ Fast retransmission

➢ When TCP sender detects that some segments it had sent has been lost, a choice need to be made by TCP sender whether

➢ It has to send more new fresh segments , Or

➢ It needs to retransmit lost segments

➢ Other Questions arises when TCP sender detects segments lost are :

➢ Does it has to change segment size for retransmitted segments

➢ How many segments to retransmit

➢ How RTO is updated to adopt to new network state

Not only just retransmission, In-fact TCP sender has to perform various task to adopt to the Congested

Network – Remember loss of segments is the indication of Congested Network to TCP

On Segment Lost

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission - > Exponential backoff

Sender Receiver









RTO = t

RTO = 2t

RTO = 4t

➢ Doubling the RTO for every consecutive

retransmission is called exponential back-

off

➢ Default number of retries TCP sender does

to send a segment is 3

➢ Exponential back-off prevents

retransmissions from being sent too quickly

and further adding to network congestion

Exponential back-off

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Setting the correct RTO value

➢ As stated earlier, TCP sender keeps updating the RTO value for a connection dynamically depending on the network

state

➢ RTT – Round-trip time

➢ It is the time interval measured when segment is sent, and its ACK is received by the TCP sender

➢ RTO is measured from sample set of RTTs measured for some previous TCP segments sent by the TCP sender

➢ For Example RTO can be calculated from RTTs of previous 10 segments delivered to the TCP receiver

➢ The RTO is estimated for each TCP connection separately

➢ RTO tends to be high for congested network, tends to be lesser for fast networks

Setting the correct RTO value

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Setting the correct RTO value

➢ RTTs can bounce up and down, so we want to aim for an average RTT value for the connection.

➢ This average should respond to consistent movement up or down in the RTT, without overreacting to a few very slow or fast

acknowledgments.

➢ To allow this to happen, the RTT calculation uses a smoothing formula:

➢ RTO = Average of RTTs of last ‘n’ segments sent by TCP sender

➢ RTO is set to 1s when TCP connection just starts and it do not have any historical RTTs sample to compute RTO

New RTT = (x * Old RTT) + ((1-x) * Newest RTT Measurement)

Where x – smoothing factor between 0 and 1

Higher value of x closer to 1 :

provide better smoothing and avoiding sudden changes as a result of one very

fast or very slow RTT measurement. Conversely, this also slows down how quickly

TCP reacts to more aggressive changes in RTT

Lower value of x closer to 0 :

make the TCP to respond more aggressively to changes in measured RTT, but

can cause overreaction when RTTs fluctuate wildly

Measured RTT of them most recent segmentAverage RTT of previous

N segments

Computed RTT of most

Recent Segment

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Setting the correct RTO value -> Retransmission Ambiguity Problem

Retransmission Ambiguity Problem

TCP

Sender

1 TCP

Receiver


3

2

4

➢ 2 is the ACK triggered by 1

➢ TCP sender has no way to determine

whether the ACK 4 is :

➢ same as 2

➢ RTT1 = T4 – T1

➢ New ACK triggered by packet 3

➢ RTT2 = T4 – T3

➢ The computed RTT would impact the RTO

value of the TCP connection

➢ There is no way TCP sender can make a

decision whether to choose RTT1 or RTT2 as

RTT for segment 1

➢ This is Ambiguity !

➢ Solution : Karn’s Algorithm

T1

T3

T4

Root Cause :

False retransmission because of

Delayed ACK !

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Setting the correct RTO value -> Karns Algorithm

Karns Algorithm

➢ TCP’s solution to Retransmission Ambiguity Problem is based on the use of a technique called Karn’s algorithm, after

its inventor, Phil Karn

➢ Karn’s Algorithms has two parts :

➢ Ignore measured RTT for retransmitted segments for RTO evaluation

➢ Because measured RTT for retransmitted segments would skew the RTO incorrectly, throw away the unreliable data

➢ This solves the problem of retransmission ambiguity

➢ But at the same time, this will prevent sending TCP to take corrective measures to segment losses which is potentially due

to network congestion breaking the main strength of TCP – Adoptive transmission

➢ Use back-off RTO for retransmitted segments and do not consider their measured RTT for RTO evaluation

➢ subsequent retransmission timers are double the previous

➢ The back-off factor is not reset until there is a successful data transmit that does not require a retransmission

➢ Best to understand with the help of example ! ☺

➢ Advice : Read the above statements again after going through the example !

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Karns Algorithm example

➢ Refer to Separate Doc

Mastering TCP -> Timeout and Retransmission -> Setting the correct RTO value -> Karns Algorithm

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Karns Algorithm Analysis

In our Example, Karns Algorithms performed these three major tasks :

➢ Every-time the Segment was retransmitted, RTO was doubled of the previous
➢ Segment with SEQ = 150 was retransmitted 2 times with RTO of 4s and 8s respectively

➢ This exponentially slows down TCP from further congesting the already congested network

➢ RTT measurement of retransmitted segments was not used for RTO evaluation
➢ When TCP Sender recvd ACK 200, it did not consider the RTT of segment with SEQ = 150 for RTO evaluation

➢ When TCP sender is able to send TCP segments without having to retransmit it, inflated RTO value was restored to

original. RTT of this segment was considered for RTO evaluation
➢ RTO was updated from 8s back to 2s straightaway

➢ Successful transmission of Segment with SEQ = 200 in first attempt is an indication of network recovery, so it helps TCP Sender to restore its rate

of sending data to recvr, Network Must not left under-utilized

Mastering TCP -> Timeout and Retransmission -> Setting the correct RTO value -> Karns Algorithm

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ We learnt how TCP depends on Timer to detect that segment has been lost and re-trigger the lost segment

➢ But, Timer based re-transmission often leads to under utilization of network capacity

➢ Sender has to sit idle waiting until RTO timer expires, segment many have lost long before

➢ Therefore, Now we shall discuss another strategy in which TCP sender do not have to depend on Timer for

segment loss detection and retransmission called – Fast Retransmit

➢ It is called Fast Retransmit because TCP sender almost immediately detect the segment loss and retransmit it instantly.

This is much more efficient than Timer based retransmission scheme

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit

Fast Retransmission

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit

➢ End Goal is same : Retransmit the lost segment, only difference is in the methodology of how to detect that segment has

been lost

➢ In Fast Retransmit, TCP sender triggers segment retransmission based on feedback from receiver rather than relying on

Retransmission timer expiry, hence segment loss repair is even quicker

➢ A typical TCP implementation implements both FAST retransmit and timer based retransmission strategy

➢ Let us start with the discussion with what does TCP receiver do when it receives segments out of order

Fast Retransmission

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit ->out of order reception of segments

TCP

Sender

TCP

Receiver

1-
100

1-
100

101-
200

H 301-
400

401-
500

Assumption

Segment size = 100B

➢ TCP Recvr Do not like Holes in its recv buffer

➢ TCP recvr accepts the out of order bytes but,

➢ TCP recvr sends an ACK in order to fill the Holes

first before demanding new fresh segments



What Should TCP

sender do when it

recvs this ACK ? Will

it send DS 201 ?

TCP Sender

retransmist the

segment 201 only when

it recvs 3 ACK 201 !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit ->out of order reception of segments

TCP

Sender

TCP

Receiver

1-
100

1-
100

101-
200

H 301-
400

401-
500

Assumption

Segment size = 100B

1-
100

101-
200

H 301-
400

401-
500

501-
600

601-
700

701-
800



1

2

3

1-
100

101-
200

201-
300

301-
400

401-
500

501-
600

601-
700

701-
800

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit ->out of order reception of segments

TCP

Sender

TCP

Receiver

Assumption

Segment size = 100B



1

2

3

1-
100

101-
200

201-
300

301-
400

401-
500

501-
600

601-
700

701-
800

➢ Every time the TCP Receiver recvs out of order segments, it

triggers the same ACK to fill the first hole immediately

➢ TCP sender sees the same ACK again and again, therefore they

are called duplicate ACK (ACK = 201)

➢ This make TCP sender conclude that segments are being recvd

by TCP receiver out of order or probably some are even lost

➢ Duplicate ACK tells the Sender the Ist hole in Receiver buffer

➢ When TCP sender Receives the 3 consecutive duplicate ACK

with same ACK#, Sender retransmit the segment

➢ Duplicate threshold (dupthresh) = 3

➢ One Problem here – Using dupACKs TCP sender can

repair only one hole in TCP recvr’s buffer at a time

➢ One more Example !

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit ->Multiple Holes Repair

TCP

Sender

TCP

Receiver

Assumption

Segment size = 100B 


1-
100

1-
100

101-
200

H1 301-
400

H2

1-
100

101-
200

H1 301-
400

H2 501-
600

601-
700

701-
800

1-
100

101-
200

201-
300

301-
400

H2 501-
600

601-
700

701-
800

Hole

Repaired

1-
100

101-
200

201-
300

301-
400

H2 501-
600

601-
700

701-
800

801-
900

901-
1000

1-
100

101-
200

201-
300

301-
400

401-
500

501-
600

601-
700

701-
800

801-
900

901-
1000

Hole

Repaired

➢ Holes are repaired one by one

➢ TCP recvr has to send 3 dupACK

to repair each hole

➢ Is there anyway to repair all holes in one go ?

➢ Yes – Selective ACKs !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit -> Redundant Retransmissions

➢ We observed , dupACK enable TCP to fast retransmit the lost segments !

➢ This is Great Optimization

➢ But this Optimization comes at the cost !!

➢ I have intentionally not shown the penalty paid by TCP to implement fast retransmit through dupACK

in previous example – to simplify the example

➢ Let us discuss the disadvantage of fast-retransmit-through-dupACK –

Redundant Retransmissions

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit ->Redundant retransmissions

TCP

Sender

TCP

Receiver

1-
100

1-
100

101-
200

H1 301-
400

401-
500

Assumption

Segment size = 100B





Case 1

Case 2

➢ Both the cases are identical to TCP Sender

➢ ACK 201 tells TCP senders that recvr has recvd bytes

upto seq no 200 only, beyond that TCP sender do not

know any thing about rest of the bytes [202--500], byte

201th is definitely not recvd by Receiver

➢ In case 1, Segment no 301 and 401 are unnecessary

transmitted

➢ In case 2, Segment no 401 is unnecessarily retransmitted

➢ In general, dupACK triggers retransmission of lost

segment instantly (Advantage), but also triggers

retransmission of already transmitted unlost

segment (Disadvantage) – Solution – Again

SACKs!!

1-
100

101-
200

H1 H2 401-
500

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit -> Summary

Timer based Retransmission Fast Retransmission

Segments is retransmitted when Retransmission timer

expires

Segments is retransmitted instantly When Sender

receives 3 dupACK

Result in Sender to sit idle for some time Instant retransmission of lost/OOO segments

Network Under Utilization Network optimal utilization

No redundant retransmission of Segments dupACK leads to redundant retransmission of

segments, Network bandwidth wastage, contribution to

congestion etc.

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit -> Select Acknowledgements

TCP

Sender

TCP

Receiver

Assumption

Segment size = 100B




1-
100

1-
100

101-
200

H1 301-
400

H2 501-
600

601-
700

701-
800

1-
100

101-
200

201-
300

301-
400

401-
500

501-
600

601-
700

701-
800

Holes

Repaired

Hole

Repaired

➢ Recvr sends SACK when it have multiple holes in its recv buffer

➢ SACK specify the multiple holes in the form of L,U

➢ TCP Sender process all L,U pairs in SACK, and retransmit the

segments accordingly

➢ No need of duplicate ACKs !

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit ->Select Acknowledgements

TCP

Sender

TCP

Receiver

1-
100

1-
100

201-
300

1-
100

201-
300

401-
500

Assumption

Segment size = 100B

SACK are Acknowledgements which have the provision of specifying

multiple holes in the form of integer pairs

TCP sender come to know there are two holes in Recipient's holes,

So it immediately triggers segments to fill up the holes. This is called

Selective Retransmission

Fast

Retransmit

Begins

1-
100

101-
200

201-
300

301-
400

401-
500

Fast

Retransmit

Phase Ends

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Timeout and Retransmission -> Fast Re-Transmit ->Select Acknowledgements

TCP

Sender

TCP

Receiver

Assumption

Segment size = 100B

Fast

Retransmit

Begins

Fast

Retransmit

Phase Ends

➢ Sack blocks : Pair of 32 bit integers representing the hole

These are specified in options part of TCP hdr

➢ A SACK can contain 3 Or 4 SACK blocks

➢ SACK enabled receiver can repair its 3 or 4 holes per RTT as

compared to non-SACK enabled receiver which can repair

only one hole per RTT

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP

TCP

Data Flow

And

Window Management

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management

Questions Answered in this section :

➢ What should be the Segment size ?

➢ How many segments a TCP sender is allowed to send to Receiver in one go ?

➢ How many Segments can receiver receive in its receiving buffer ?

➢ How TCP sender knows the capacity of TCP receiver to receive and process segments ?

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management

➢ In this section, we shall explore the Sliding Window Mechanism used by TCP which is used to achieve:

➢ Reliable data delivery

➢ Congestion and flow control

➢ Managing the rate at which data is sent so that it does not overwhelm the device that is receiving it Or network

➢ Remember TCP connection is a duplex communication, therefore both the parties are both senders and receivers

➢ In Diagram, the Sending Process A has a circular buffer which is called a send window. Similarly, Receiving process B also

has a circular buffer which is called a recv window

➢ Since Sending process A is also a receiving process B for byte stream flowing from B to A, Process A also maintains a recv

window and process B also maintains a send window (Not shown in the diagram)

➢ Thus both processes A and B has both

➢ Send Window

➢ Recv Window

➢ Send Window of A is paired up with recv window of B

➢ Recv Window of A is paired up with Send Window of B

➢ The Send window of one device is the recv window of other and vice versa

A B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Bytes Not sent Recvr not ready to recv it
Not Sent But Receiver

is ready to recv it

Bytes sent but not

yet acknowledged

Bytes sent and

acknowledged

Mastering TCP -> TCP Data Flow and Window Management -> Send & Recv Window

➢ TCP is a sliding Window Protocol, meaning it manages its flow control, congestion control, reliable data delivery by

managing its send/recv windows

➢ TCP Send Window (4 Categories)

➢ We can take the snapshot of the TCP send Window at any point of time, and classify the bytes in 4 categories as per the diagram below. Remember TCP

is byte oriented protocol, it keeps track of data flow at byte level not segment level

➢ At any given point of time, We can classify the bytes of data in Send Window of TCP sender into four categories

➢ TCP Recv Window (3 Categories)

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43… …

Not yet recvd, Sender is not permitted to send
Not yet Recvd, Sender is permitted to

send

Recvd And

Acknowledged

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43… …

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Bytes Not sent Recvr not ready to recv it
Not Sent But Receiver

is ready to recv it

Bytes sent but not

yet acknowledged

Bytes sent and

acknowledged

Mastering TCP -> TCP Data Flow and Window Management -> Send & Recv Window

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43… …

Not yet recvd, Sender is not permitted to send
Not yet Recvd, Sender is permitted to

send

Recvd And

Acknowledged

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43… …

Send Window

Recv Window

Send Window Size = 6B

Usable Window Size = 3B

Send Window Size – Total Number of Bytes Which sender can send (sent +

not sent but ready to sent)

Usable Window Size – Total no of bytes which sender has not sent but ready

to sent and can send at any time

Recv Window Size = 6B

Note : If the recvr ever happen to recv bytes which falls outside the recv

window, Recvr will silently discard them

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Cumulative Acknowledgement

➢ TCP Acknowledgement Number is the mechanism which TCP recvr uses to tell the TCP sender how many bytes it has

received, and what it expect next

➢ TCP receiver DO NOT send ACK for every segment or byte of data it receives – Highly inefficient

➢ Acknowledging every byte by Receiver will trigger too many ACK segments, if this happens then TCP hdr overhead

(useless data) consumes more network bandwidth and resources than TCP payload (useful data)

➢ When TCP receiver recvs too many segments in quick succession , it acknowledges all of them by single ACK

TCP

Sender
TCP

Receiver • Of-course, TCP cannot delay the

cumulative ACK segments indefinitely

otherwise it will trigger unnecessary

retransmission

• Cumulative ACKs(also called Delayed ACKs)

Causes less traffic

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Cumulative Acknowledgement

TCP

Sender
TCP

Receiver


As soon as TCP sends an ACK to ack

the highest Seq no it has recvd, TCP

starts the delayed ACK timer. As long

as this timer is running, TCP do not

send any fresh ACK

TCP recvs two more data segments,

but it do not immediately send ACK

for these as delayed ACK timer is in

progress.



Delayed ACK timer expires, TCP

sends one cumulative ACK to

acknowledge all the segments it has

recvd when Delayed ACK timer was

running. After sending this ACK, TCP

again restarts the ACK delayed timer



http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ The TCP receiver advertise the size of its recv window in every ACK that it sends to the TCP sender

➢ TCP sender having recvd this advertisement sets the size of its send window to the value advertised by recvr

➢ By definition, Send Window determines the no of bytes the TCP sender can send in one go

➢ Thus , TCP receiver controls the size of TCP sender’s Send window, this controls the rate at which the TCP sender can

send the data to Receiver – This is called Window based flow control

➢ Overwhelming/congested TCP Receiver tends to reduce its recv window size and advertise reduced size of its recv window

in ACK to TCP Sender, thus, mitigating the congestion

➢ Both Peers Advertise the size of their respective TCP Recv Window to other during TCP connection establishment phase

- three way handshake

➢ TCP hdr format ->

➢ Window Size = 16 bit

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Active opener

(client)

Passive

opener

(Server)

1

2

3
1

SYN – want to initiate a TCP connection

Advertise the recv Window Size = 65535,

Since network Or peer’s state/capacity is not known

2
SYN + ACK

Also Advertise the recv window Size = 65535

3
ACK – handshake complete

WS is advertised in all TCP segments

3-way

Handshake

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Window Advertisement

Both Parties knows the capacity at which

the other end can process data

We will see scenarios when TCP receiver

would like to choose to advertise a smaller WS,

and then choose to advertise it back to larger value

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Window Advertisement

1

2

Feel Congested, not

able to process the data

at this rate, it reduce its

recv window size

3

Sender Will reduce its Send

Window size to 50000,

meaning sender will not send

segments whose total size is

more than 60k bytes size

4
TCP Sender shrinks Or expands its send

window size depending On window size

advertisement in the most recent recvd TCP

segment

A B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Sliding Window Rules

➢ Now, we shall do one example which illustrates the role of send window and recv window in keeping track of bytes

sent and recvd between TCP peers

➢ Sliding Window Rules :

➢ Whenever the pure ACK is received, send window of recipient of ACK slides

Sliding Window Rules

1 2 3 4 5 6 7 8 9 10 11 12

1

2

S R

Send Window of S

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Sliding Window Rules

➢ Now, we shall do one example which illustrates the role of send window and recv window in keeping track of bytes

sent and recvd between TCP peers

➢ Sliding Window Rules :

➢ Whenever the pure ACK is received, send window of recipient of ACK slides

➢ Whenever the Data segment is received, recv window of recipient of data segment slides

Sliding Window Rules

S R

1 2 3 4 5 6 7 8 9 10 11 12

Recv Window of R

1 2 3 4 5 6 7 8 9 10 11 12

Send Window of S

2

Whenever there are

No outstanding DS

or ACK in the network, SW = RW

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Sliding Window Rules

➢ Now, we shall do one example which illustrates the role of send window and recv window in keeping track of bytes

sent and recvd between TCP peers

➢ Sliding Window Rules :

➢ Whenever the pure ACK is received, send window of recipient of ACK slides

➢ Whenever the Data segment is received, recv window of recipient of data segment slides

➢ Whenever the Data segment combined with ACK is recvd, recv and send window of recipient slides

➢ Note : Windows Slides whenever there is reception of Data Segment or ACK, TCP Sender Windows (send or

reecv) do not slides when TCP SENDS any type of segment be it data segment or ACK or Both

➢ Warning : Its time for you to take a pen and notebook and practice the example in parallel with me, else you will get

lost !! The example is a bit complicated, yet easy once if you get it right

Sliding Window Rules

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

➢ Now our Client and Server has established the connection and are ready to exchange TCP data

➢ Problem Statement

➢ Let us suppose client and server wants to carry out following data exchange

➢ Client send 140B data request to Server

➢ Server replies in two installments – 80B reply and 280B reply

➢ We shall see how send and recv windows on either ends are adjusted/slides as the data exchange happen

between client and server as per the above scheme

➢ Let us Start . . .

Window Management Example

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

1

2

3

Client Server

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

Initial Setup

Three-Way

Handshake

Our Example Starts from here

Next Slide shows the state Of Send

and Recv Window Of Client and

Server after successful handshake

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

Initial Setup

1 360

241 441

SW : 360B

RW : 200B

Client Window States

241 441

1 360

SW : 200B

RW : 360B

Notice The correspondence between

Send and Recv Windows between

Client And Server !

UNA

NXT

NXT

UNA

NXT

NXT

Server Window States

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

Phase 1

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 360

241 441

SW : 360B

RW : 200B

Client Window States

241 441

1 360

SW : 200B

RW : 360B

UNA

NXT

NXT

UNA

NXT

NXT

Server Window States

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 360

241 441

SW : 360B

RW : 200B

Client Window States

241 441

1 360

SW : 200B

RW : 360B

UNA

NXT

NXT

UNA

NXT

NXT

Server Window States

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360

241 441

SW : 360B

RW : 200B

Client Window States

241 441

1 360

SW : 200B

RW : 360B

UNA NXT

NXT

UNA

NXT

NXT

Server Window States

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360

241 441

SW : 360B

RW : 200B

Client Window States

241 441

SW : 200B

UNA NXT

NXT

UNA

NXT

Server Window States

1 141 360 500

NXT

RW : 360B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360

241 441

SW : 360B

RW : 200B

Client Window States

241 441

SW : 200B

UNA NXT

NXT

UNA

NXT

Server Window States

1 141 360 500

NXT

RW : 360B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360

241 441

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA NXT

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 441

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

Phase 2

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

Suppose : Appln on TCP Server generates 280 B of data to be sent to client at this moment

NXT

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA
NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA
NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA
NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA
NXT

Server Window States

1 141 360 500

NXT

RW : 360B

Note : At this point the TCP Server’s send Window is completely exhausted. TCP Server

Cannot sent any data to client unless its send window make some room !

NXT

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

Phase 3

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA
NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Reminder : Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441

SW : 200B

UNA

NXT

UNA
NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Reminder : Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441 641

SW : 200B

UNA

NXT

UNA

NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Reminder : Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441 641

SW : 200B

UNA

NXT

UNA

NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Reminder : Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 641

SW : 360B

RW : 200B

Client Window States

241 321 441 600.. 641

SW : 200B

UNA

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Reminder : Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 601… 641… ..800

SW : 360B

RW : 200B

Client Window States

241 321 441 601… 641

SW : 200B

UNA

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Reminder : Appln on TCP Server sends only 120B of data, pending data = 280 – 120 = 160B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 601… 641… ..800

SW : 360B

RW : 200B

Client Window States

241 321 441 601... 641

SW : 200B

UNA

NXT

UNA NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 601… 641… ..800

SW : 360B

RW : 200B

Client Window States

241 321 441 601... 641… …800

SW : 200B

UNA

NXT

UNA

NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

1 140 141.. 360 500

241 321 441 521 601… 641… ..800

SW : 360B

RW : 200B

Client Window States

241 321 441 601… 641… …800

SW : 200B

UNA

NXT

UNA

NXT

Server Window States

1 141 360 500

NXT

RW : 360B

NXT

Note : No Segments are in transit, no pending data or pending ACK, All windows are

synchronized

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Window Management Example

Observations

1. Reception of Data Segment Causes Recv Window to Slide

2. Reception of ACK causes Send window to slide

3. Reception of Data Segment + ACK causes Recv and Send Window to Slide

4. Sending of Data Segment updates Next pointer of send window

5. Sending of ACK updates nothing on Sender’s Send Or Recv Window

6. When there is no data segment or ACK in transit, no pending Data segment Or ACK, Send and Recv windows are clones on two sides

Send Window Of Sender = Recv Window Of receiver

Recv Window Of Sender = Send Window of receiver

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Problem of Tinygrams

TCP Tinygrams

➢ TCP Tinygrams are TCP data segments carrying application payload of considerable small sizes as compared to the TCP overhead

(TCP hdr size)

➢ TCP Default header size is 20B (without option field)

➢ If TCP payload is mere 2-5 bytes being carried by TCP packets, then such packets are terms as TCP tinygrams

➢ If TCP pushes too many tinygrams into the network, then much of the network bandwidth and recourses are wasted by useless TCP

overhead data rather than by TCP useful application data (payload)

➢ Application on TCP sender may generate very small chunks of application data in quick succession, forcing underlying TCP to send too

many tinygrams into the network

A
B

Over head PL

Soln : Nagle Algorithm : Avoid TCP Sender to send tinygrams into the network, unless there is no choice !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Nagle’s Algorithm

Nagle’s Algorithm

application

TCP Sender

80B

TCP has been configured to avoid send data

Segments of size less than t = 100B

TCP do not send 80B immediately, and wait for :

1. Either application sends more data

2. Or all outstanding data segments have been

Acknowledged (Nagle Algorithm)

Client Server

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Nagle’s Algorithm

Nagle’s Algorithm

application

TCP Sender

80B

TCP has been configured to not to send data

Segments of size less than t = 100B

TCP do not send 80B immediately, and wait for :

1. Either application sends more data

2. Or all outstanding data segments have been

Acknowledged (Nagle Algorithm)

40B

Client Server

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Nagle’s Algorithm

Nagle’s Algorithm

application

TCP Sender

80B

TCP has been configured to not to send data

Segments of size less than t = 100B

TCP do not send 80B immediately, and wait for :

1. Either application sends more data

2. Or all outstanding data segments have been

Acknowledged (Nagle Algorithm)

Client Server

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Nagle’s Algorithm

Nagle’s Algorithm

➢ Benefits :

➢ Avoid injecting too many tinygrams in the network for efficiency

➢ Tinygrams are sent only when all outstanding segments have been removed from network ensuring tinygrams

to not contribute to Network congestion/under-utilization

➢ The beauty of the algorithm is self-clocking : the faster the ACK comes back, the faster the data is sent

➢ This is the trade-off the Nagle algorithm makes: fewer and larger packets are used, but the delay is higher

➢ For a given amount of bidirectional data exchange between client and Server :

➢ With Nagle Algorithm : No of segments (data + ACK) exchanged = n

➢ Without Nagle Algorithm : No of segments (data + ACK) exchanged = m

➢ n < m

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Nagle’s Algorithm

Nagle’s Algorithm

Disabled

Nagle’s Algorithm

Enabled

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Nagle’s Algorithm ->Transient Deadlock

➢ A transient Deadlock is formed when we combine the Delayed ACK and Nagle’s Algorithm together

➢ A transient Deadlock – Each side waiting for the other

Client Server

30B

Appln provide less data to TCP,

Nagle algorithm makes TCP to wait

Until ACK for 2 is recvd

2

1

3

4

Delayed ACK

Timer

5

No More outstanding Data, Deadlock is broken

Small size segments can be sent now

DeadLock Zone

Each side waiting for the other !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Blank

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> TCP Window Resizing

TCP Window Resizing

➢ TCP is adoptive protocol, meaning it responds to network or recipient state dynamically

➢ TCP peers slow down the rate of data exchange if Network is busy or peers are slow consumers

➢ TCP controls the rate of data exchange byb resizing the send and recv windows

➢ Smaller size send and recv windows – Lesser the rate of data exchange

➢ Bigger size send and recv windows – Faster the rate of data exchange

➢ As stated earlier, the two entities which influences the rate of communication between TCP peers are :

TCP rate of

Communication

Recipient capability Network Capacity

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Problem Statement – Slow Receivers

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Slow Receivers

10mb/sec 10mb/sec 10mb/sec

A
B

Can process

Upto 8mb/sec

Pkt drops !

➢ B will drop the extra segments, causing A to retrigger retransmission, endless cycle . . .

➢ Slowness of B would ultimately lead to congestion in the network

➢ Solution : B should have a mechanism to tell A to slow down and send at slower rate

➢ Real World Scenario :

Remember Machine B could be TCP server entertaining 10s of TCP clients at the same time, B may not be able to

process the segments from each client instantly and may drop if clients overwhelms Server B

Sending Data

At 10 mb/sec

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Slow Receivers

10mb/sec 10mb/sec 10mb/sec

A
B

Can process

Upto 8mb/sec

Pkt drops !

➢ Let us understand How Congestion because of slow TCP receiver can be avoided using window size reduction with

the help of an example

➢ Let us assume

➢ TCP Receiver (the server) is busy and it momentarily it cannot process the data being received from TCP sender

Sending Data

At 10 mb/sec

Problem Statement – Slow Receivers

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> TCP Window Re-Sizing

TCP Window ReSizing

A
B

360

U

Seq# 1, 140B1
D P U

40 100 360

D P U

40 100 260

Window Shrinks by moving the

Right edge to left

D D U

40 100 360

TCP B removes pending bytes from

recv buffer

ACK# 141, WS = 260B2

360

260

WS = 360B3

360

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Client A

Send win

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> TCP Window Re-Sizing Example

Server B

Recv win

360 360

36040 100

U

D P U

26040 100

D P U

Shrink by

100 bytes by

Moving right edge

To left

D

140 260

26040 100

D P U

D S

140 180

S

140 220

80

18040 100

D P P

260

Shrink by

180 bytes by

Moving right edge

To left
18040 100

D P P

80

18040 100

D P P

80

D D

140 180 80

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Client A

Send win

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Window Size Reduction

Server B

Recv win

18040 100

D P P

80
D D

140 180 80

D D S

140 180 80

18040 100

D P P P

80

 RECV WS finally shrinks to zero

Note :
➢ Shrinking of TCP sender’s Window happen when TCP receiver advertise

the reduced RECV WND Size in Segments

➢ Shrinking happen when TCP Receiver is slower than TCP sender in terms

of Data processing – i.e. TCP recvr cannot remove bytes of data from

its recv buffer with the rate at-least as good as the rate TCP sender is

sending the data with

➢ If TCP recvr continues to be slow, inevitably the state will reach when data flow

completely ceases

➢ In this Example, We Consider the Unidirectional flow of data from A to B, however, same mechanism equally

applies for the stream flow from B to A and is independent

➢ Conclusion : By Adjusting the RECV Window Size, Receiver can provide feedback to sender to slow(or fast) the

rate of sending the data

D D D

140 180 80

Client A, at this

point of time

has 0 SND

WND, it will

stop sending

any TCP data

to receiver now

No More Data Flow From A

to B, However Data flow from

B to A can still happen (TCP

Data flows on either side are

independent)

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Client A

Send win

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Window Size Reduction

Server B

Recv win

18040 100

D P P

80
D D

140 180 80

D D S

140 180 80

18040 100

D P P P

80

D D D

140 180 80

Client A, at this

point of time

has 0 SND

WND, it will

stop sending

any TCP data

to receiver now

No More Data Flow From A

to B, However Data flow from

B to A can still happen (TCP

Data flows on either side are

independent)

 RECV WS finally shrinks to zero

Q. Data flow cannot resume until A’s SND WS grows again.

Would Data flow from A to B ever restores ?

Q. How it will be restored ?

Solution : Window Opening ACK Segments

What Next !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Client A

Send win

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Probe Segments

Server B

Recv win

18040 100

D P P P

80

D D D

140 180 80

Window

Reopening

➢ This Situation continues until the TCP Server removes some

Pending bytes P from recv buffer and deliver to application

➢ Once some new room is created in recv buffer, Server Can

enlarge or expand its recv window

➢ Server than generates a new pure ACK advertising a new size of

its recv window

ACK, ACK # 401, WS = <new recv

window size>

This new ACK is informally called Window Opening

ACK

➢ Having Received this WOACK, TCP client reopens its send

window by sliding the right edge to the right by the same

amount and resume transmitting segments honoring the new

send window size

➢ Communication is Resume from TCP Client to TCP Server

once again

180140

D D P P

80 100

80 100

D

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Client A

Send win

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Probe Segments

Server B

Recv win

18040 100

D P P P

80

D D D

140 180 80

Window

Reopening

➢ But What if the WOACK (7) is lost !

➢ Remember TCP do not Acknowledge pure ACK segments, if

they are lost they are lost forever.

➢ TCP is not reliable wrt to ACKs

➢ Deadlock !

➢ TCP B have no idea that WOACK has been lost, it believes

TCP Sender has no data to sent

➢ TCP A would continue to have send window size = 0

➢ Solution : Probe Segments

180140

D D P P

80 100D D D

140 180 80

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Client A

Send win

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Probe Segments

Server B

Recv win ➢ The timer to send probe segments is called persist timer whose initial

value is set to 1 RTO. Subsequent probe segments are sent as per

exponential back off. TCP never gives up sending probe segments.

➢ Once Client Window Size reduced to Zero, it start sending Probe

Segments periodically to the TCP server. Probe Segments are also

called TCP ZeroWindowProbe Segments

➢ The purpose of the probe segments is to ask the status of

of recv window

➢ Probe Segments contains 1 byte of APP data, meaning they are

indistinguishable from regular data segments and hence TCP applies

its retransmission policies to ZeroWindowProbe Segments i.e.

retransmit them if they are lost (RTO time out Or dupack)

➢ TCP server replies probe segments with the pure ACK specifying

current recv window size. These ACK are called TCP

ZeroWindowProbeACK

➢ 7 and 9 and probe segments, and 10 is WOACK

➢ But one problem !!

➢ If Server reopens its recv wnd by a very small size (say 5B), it will

lead to transmission of data segments (C->S) of very small sizes

which is inefficient (Network underutilization)

➢ This problem is called Silly Window Syndrome which we

discuss next, and discuss the solution

100

100

Normal

Communication

Resumes

1 RTO

2 RTO

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Silly Window Syndrome

Silly Window Syndrome

➢ Silly Window Syndrome (SWS) is a situation When there is an exchange of small sized TCP data segments (Tinygrams) on a

TCP connection

➢ This leads to Network under-utilization because useful data shipped per RTT is very less as compared to header overhead

Analogy : Parceling a Bday gift worth $100, whereas cost of parceling is $1000 !!

➢ SWS can occur by defective TCP Sender Or TCP receiver

Silly Window Syndrome

Application is sending less

bytes per message

TCP Sender do not

Wait to accumulate enough

application data and

send immediately

Soln : Nagle Algorithm

Slow Receiver, Advertising small sized

RECV window to Sender

Soln : SWS Avoidance Rules

Sender Receiver
application

TCP Sender

5B

Eth Hdr IP Hdr TCP Hdr App data(5B)

Size of Hdrs >> App data

Let us Discuss Rules to avoid SWS problem

By Sender or ReceiverSWS by TCP Sender

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Silly Window Syndrome

Silly Window Syndrome Avoidance Rules

TCP Sender Rules

(Send Segment when at-least one of the below

condition are true)

TCP Receiver Rules

(Do not Advertise the increased size of RECV

Window until)

A full-size (MSS bytes) segment can be sent. Usable Recv Window Size > = MSS Or

Usable Recv Window Size > = ½ size of Receiver's buffer

space

Whichever is smaller

TCP can send at least one-half of the maximum-size

window that the other end has ever advertised on this

connection

Send a segment immediately if there is no outstanding ACK

i.e. all prev segments sent has been ACKd (Nagle

Algorithm)

Last Choice : send whatever TCP sender have if Nagle

algorithm is disabled for this connection

Now, Let us Practice

the SWS avoidance

with the help of example,

But before that we

Need to understand

Window Shrinkage

Avoidance (WSA)

➢ SWS Avoidance rules encourage TCP to stop data flow completely rather than exchanging data in TCP Tinygrams

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Silly Window Syndrome -> WSA

Silly Window Syndrome -> Window Shrinkage Avoidance

➢ We shall go through real example where we shall witness sender and receiver exercising SWS rules

➢ But before that we need to cover the last topic of SWS – Window Shrinkage Avoidance

➢ WSA is done by TCP receiver only on its RECV Window (since TCP sender’s send window = TCP Receiver’s recv window

size =, effect of WSA also impact TCP sender’s send window)

➢ WSA is enforced when TCP recvr’s recv window usable size (empty space) reduced to less than MSS

or ½ of original recv buffer size

➢ Here reduced means decreased from higher value to lower value, WSA is not enforced when recv window usable size is

incremented

➢ Purpose of WSA is to prevent the right edge of TCP receiver’s recv window to move to left

➢ I understand, Example is required !!

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Silly Window Syndrome -> WSA

Silly Window Syndrome ->

Window Shrinkage Avoidance ->

Example

Client A

Send win

Server B

Recv win

1535 1535

1460 75

1460B 75

S

P

1460B 75

S

> Right Edge of the Window is

moved left because recvr advertised

Zero window size. This is called Window

Shrinking. WSA aims to avoid this.

> Left edge of the window moves towards

right as usual because 1460 data has been

acknowledged

1460 75

P

1460B 75

S

➢ Right Edge of the Window do not

moved left Window is not Shrinked.

➢ Left edge of the window moves towards

right as usual because 1460 data has been

Acknowledged

➢ Sender now applies Sender’s SWS

avoidance algorithm to send next data segment

Let MSS = 1460 B

Rcvr Applies SWS avoidance

Rcvr Applies WSA

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Silly Window Syndrome -> WSA

Silly Window Syndrome ->

Window Shrinkage Avoidance ->

Example

Client A

Send win

Server B

Recv win

1535 1535

1460 75

1460B 75

S

P

1460B 75

S

Conclusion :

➢ Whenever the Recvr zero window

advertisement causes Sender’s send

window to shrink, TCP recvr applies

WSA over SWS

1460 75

P

1460B 75

S

Let MSS = 1460 B

Rcvr Applies SWS avoidance

Rcvr Applies WSA

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Silly Window Syndrome

Silly Window Syndrome Avoidance in Action

➢ Now we shall go through real world example where we have collected segments for unidirectional

communication between client (Sender) and Server (Receiver)

➢ Needless to mention, we take unidirectional communication to understand the concept, whereas all

concept applies to the data flows in either direction

➢ Instead of Arrow based Diagram, we will use a table this time

➢ This example will illustrate :

➢ Handshake

➢ SWS avoidance

➢ WSA

➢ Zero window Advertisement

➢ ZeroWindowProbe Segments

➢ ZeroWindowProbeACK Segments

➢ Window Opening ACK Segments

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> TCP Data Flow and Window Management -> Flow Control -> Silly Window Syndrome

Silly Window Syndrome Avoidance in Action -> Example

➢ Refer to Excel Sheet Doc

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP

TCP

Congestion Control

Time for TCP Sender To take responsibility

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ We learnt : Window Based Flow Control is triggered by overwhelming TCP Receiver (by reducing the window size) which

is finding it difficult to process the bytes at the rate at which the sender is sending it

➢ But, What, if TCP receiver is not slow, but it is the network in the middle between Sender and Receiver which is slow. In

this case, TCP receiver would not reduce its recv window size because it cannot find :

➢ Whether TCP sender itself is sending bytes at low rate

➢ TCP sender is not slow but Network is congested and dropping the segments making Sender appear slow

➢ To cope-up with the slow network (slow routers, slow links, less memory etc), TCP uses its Congestion Control

Procedures which we shall discuss in this section. CCP is triggered by sender without any assistance/feedback from TCP

receiver like in case of flow control

Mastering TCP -> Congestion Control

10mb/sec 8mb/sec 5mb/sec

5mb/sec 5mb/sec 5mb/sec

B do not know if

A is sending data

at 10mb/sec or 5

mb/sec

A

A

B

B

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ Goal : TCP Sender must slow down when it has reason to believe the network is about to be congested

TCP Sender must speed up when it has reason to believe the network is recovered

➢ Challenge :

➢ The challenge is to determine exactly when and how TCP should slow down, and when it can speed up again

Flow control Deals with Slow Receivers, and is driven by Receivers

Congestion Control Deals with slow Networks, and is driven by TCP Sender

What is Congestion ?

The situation when a router or other network entities is forced to discard data because it cannot

handle the arriving traffic rate, is called Congestion.

Congestion can cause the performance of a network to be reduced so badly that it becomes unusable

TCP implements Congestion Control Procedures to deal with slow/congested networks

Without CCP, slow network would drop packet only to trigger TCP Sender to retransmit lost

segments – making the situation even worse. CCP enable TCP Sender to adopt itself to ever changing dynamic

Network state

Mastering TCP -> Congestion Control

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

➢ There is no explicit signaling mechanism to detect the existence of congestion in the network

(Recall But in flow control there was signaling mechanism)

➢ Slow-down routers would not send any feedback to TCP sender to report the existence of congestion

➢ Instead, TCP sender has to be self-sufficient to detect the situation of congestion. It has no help

from middle-men network entities

➢ CCP can be roughly divided into three parts

➢ 1. TCP sender somehow detect that congestion is about to happen

➢ 2. TCP Sender slow down the rate of sending segments, and determine how slow

➢ 3. TCP sender somehow should be able to detect that network congestion state is improved, and it can increase

the rate of sending data, and also determine how fast

Mastering TCP -> Congestion Control

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Congestion Window

TCP Sender Must inject packet in the network at the rate at which network can handle, or Receiver can handle, whichever is less

> Receiver’s RECV window restrict the sender from injecting the packets at the rate recvr cannot handle

> But how to restrict the sender from injecting the packets at the rate Network can handle – We need an additional

restriction on TCP sender’s send window, and that restriction is additional window – Congestion Window

W = min (cwnd, awnd)
cwnd – size of congestion window

awnd – size of recvr’s advertised window

> Congestion Window is the measure of Network capacity

> using the above relation, TCP sender is allowed to send W more bytes into the network

Note : We have already seen awnd is variable and keep on changing during the course of communication

likewise, cwnd is also a variable and keep on changing depending on traffic-carrying capacity of the network

Thus, values of W, cwnd, awnd have to be dynamically updated by the TCP sender during the course of TCP connection

We shall see the W, cwnd, awnd collaboratively work with the help of example shortly

Mastering TCP -> Congestion Control

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Algorithms

Congestion Control Algorithms

➢ TCP Congestion Control Procedures involves two algorithms :

Congestion Control Algorithms

Slow Start
Congestion

Avoidance

➢ Executed when Connection is established afresh

➢ For new fresh Connection, TCP sender do not know the

appropriate value of cwnd, therefore cwnd = 1MSS

➢ Remember, cwnd is the estimate of network capacity

➢ Goal : Determine the accurate value cwnd,

which allow sender to send data at the throttle

rate

➢ Mechanics : TCP Sender starts injecting packet in the

network, starting at a lower rate, and increasing the rate

exponentially and keep on increasing Until Certain

conditions C are met

➢ Executed Immediately after slow start has finished

➢ By this time, appropriate value of cwnd has been

determined

➢ TCP continue to inject more packet increasing the rate

linearly until packet loss is detected again

1 2 4 8 16 32 64 65 66 67 68 69 70

Slow start congestion avoidance

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Slow Start Algorithm

Slow Start Algorithm

Goal : To determine the maximum rate at which the TCP sender can inject the segments into the network without experiencing

packet loss.

Slow Start Algorithm is triggered on TCP sender side When :

1. New Connection has just established

2. Retransmission timeout (RTO) for a data segment happen (pkt loss)

3. When TCP sender do not send any data and stay idle for some time

To begin with, Initial value of cwnd is set to 1MSS in above three cases. Therefore no of Bytes Sender can send in the first

data-segment is W :

W = min (cwnd = 1, awnd)

Let us See Slow start Algorithm in Action . . .

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Slow Start Algorithm

Slow Start Algorithm in Action
Sender

A
Rcvr B

Let, all units are in MSS for simplicity

Initial Cwnd = 1

MSS = 1460B

awnd = 10

SND W = min(cwnd, awnd)

3-way handshake done

1

2

Cwnd =1

SND = 1

Cwnd =2

SND = 2
2

3

4

8

Cwnd =4

SND = 4

Cwnd =8

SND = 8

16
Cwnd =16

SND = 10

Cwnd =16

SND = 10

26

Thus, per RTT, cwnd is doubled. This

is called Multiplicative increase

RTT-> 0 1 2 3 4 5 6 7 8

2

 3

 4

 5

 6

 7

 8

 9

 1

0
W

 i
n

 M
S

S
 →

SND W = 10 and become

Stable here

W = 10

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Slow Start Algorithm

Slow Start Algorithm

Points to Remember :

1. cwnd is doubled per good ACK only. Good ACK is the ACK whose ack# is the largest ever recvd by TCP sender

2. if awnd is very large (2 ^ 16), then cwnd keeps on doubling per good ACK received. A stage is reached when cwnd shall be

so large that Sender would experience a packet loss.

3. Now Some Questions :

Q. For How long the Slow Start Algorithm Executed by TCP Sender ?

Q. When Would TCP sender switch from Slow Start to Congestion Avoidance Phase (Or Vice Versa) ?

Q. What TCP sender Would do if it experience a segment loss in slow start phase Or Congestion Avoidance Phase ?

Let us find answer to these Questions step by step …

But before that, Let us take the graphical example of slow start algorithm in Action !

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Slow Start Algorithm Graph

Graph of Slow Start Algorithm

1

1

6

 3
2

 6

4

 7
0

1
0
0

1

2
8

1
4
0

 -- packet loss due to RTO



C
w

n
d

(
in

 M
S

S
)

 →

Time ->

Reason for pkt

loss

cwnd ssthrash explanation

RTO times out reset to 1 Max (cwnd/2,

2*MSS)

Restart slow-start

algorithm

awnd = 200

ssthrash = 200
Slow Start Threshold

cwnd >= awnd

B

ssthrash = 64



ssthrash = 16

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Slow Start Flowshart

Slow Start Flowchart

Trigger Slow-Start

Cwnd = 1 ssthrash = awnd

If cwnd <

ssthrash

Switch to

Congestion

Avoidance Phase

N

Y

Is Segment

Lost Occur

(due to RTO)

Y

ssthrash = Max (cwnd/2, 2*MSS)

Cwnd = 1

N

cwnd = cwnd * 2

Ssthrash no change

Continue

with

Slow-Start
Restart

Slow-Start

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Congestion Avoidance Algorithm

Congestion Avoidance

➢ TCP is always in a constant try to send as maximum as possible the data bytes into the network while respecting :

➢ The network traffic carrying capacity and

➢ receiver's capability

➢ In CA phase, TCP Sender keep probing the network for any additional bandwidth/capacity if it has to offer to the connection,

but, like slow-start, TCP do not probe network as aggressively in CA phase

Congestion Avoidance:

Cwnd (and hence SND window) is increased

linearly by 1MSS for each successfully recvd

Good ACK.

This is called Additive increase

Slow Start:

Cwnd (and hence SND Window)

was increased exponentially

for each successfully recvd good ACK

This was called Multiplicative increase

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Congestion Avoidance Example

Sender

A

Rcvr

B

Let, all units are in MSS for simplicity

Cwnd = ssthrash = 10

MSS = 1460B

awnd = Infinite

3-way handshake done

20

Cwnd = 10

SND = 10

Cwnd = 11

SND = 11

31

43

Cwnd = 12

SND = 12

Cwnd is incremented linearly by

1MSS for each successfully recvd

Good ACK

This is called Additive increase

RTT-> 0 1 2 3 4 5 6 7 8

1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

W
 i
n

 M
S

S
 →

Congestion Avoidance

In Action

Cwnd = 13

SND = 13

Cwnd = 14

SND = 14

When TCP Sender Receives Individual

ACKs in quick succession, it treats them

As one single good ACK, and increase cwnd

By 1 unit only.

(same applies to slow start algorithm)

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Sender

A

Rcvr

B
3-way handshake done

20

Cwnd = 10

SND = 10

Cwnd = 11

SND = 11

31

43

Cwnd = 12

SND = 12

RTT-> 0 1 2 3 4 5 6 7 8

1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

W
 i
n

 M
S

S
 →

Congestion Avoidance

In Action

Cwnd = 13

SND = 13

Cwnd = 14

SND = 14

➢Since, Sender is receiving ACK

without any packet loss, it Keeps

increasing its cwnd by 1MSS, and

Hence linearly increasing the rate of

Sending segments into network Until

network gives up (pkt is lost)

➢ When TCP Sender detects the

packet loss in congestion avoidance

phase, it triggers congestion control

selection procedure, coming up

Next …

Mastering TCP -> Congestion Control -> Congestion Avoidance Example

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Congestion Control Algorithm Selection

Congestion Control Algorithm Selection

➢ Now that we have learnt two CCP : Slow-Start and Congestion Avoidance, Let us try to put them both together

➢ The two Algorithms are mutually exclusive , i.e. exactly one of them is in execution at a any given point of time, the two never

runs simultaneously

➢How TCP Decides which algorithm it should execute :

Slow start or Congestion Avoidance, and when ?

➢ Remember, we talked about ssthrash – the final value of cwnd/2 when slow start exits due to RTO timeout (segment loss).

The value of ssthrash determines which algorithm to execute next : slow start or congestion avoidance.

➢ Initial Value of ssthrash when Connection starts is set to awnd

➢ Let us try to visualize the slow-start and congestion Avoidance algorithm put together once again . . .

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Congestion Control Algorithm Selection

Slow Start and Congestion Avoidance – Put together

1

6

4

 7

0

1

0
0

1
2
8

1

4
0

 -- packet loss due to RTO



S
N

D
 W

 (
 i
n

 M
S

S
)

 →

Time ->

Reason for pkt

loss

cwnd ssthrash explanation

RTO times out reset to 1 max(cwnd/2,

2*MSS)

Restart slow-start

algorithm



awnd = 200

Ssthrash = 200 cwnd = awnd
B

B is a point where network capacity is higher than recipient capacity,

TCP sender now should not send data at the rate which receiver cannot

process, therefore cwnd has to respect awnd

Slow start

Triggers even here

if RTO happens

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Need for Fast Recovery

Need for Fast Recovery

1

6

4

 7

0

1

0
0

1
2
8

1

4
0



Time ->



awnd = 200

Ssthrash = 200 cwnd = awnd

B

1. Every time RTO happens, TCP has to start from beginning -> Network Underutilization

2. We have assumed, pkt loss is detected by TCP sender due to RTO and not due

to reception of dupACKs.

3. TCP triggers a different procedure called fast recovery if packet loss is detected by

TCP Sender due to dupACK instead of RTO

Slow start

Triggers even here

if RTO happens

C
w

n
d

(
in

 M
S

S
)

 →

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Fast Recovery

Fast Recovery

➢ Fast Recovery is the process by virtue of which TCP sender avoids restarting from the very beginning (cwnd = 1), instead it choose to slow down the rate of data

to almost half when pkt loss Is detected.

➢ Whenever packet loss is detected, cwnd and ssthrash variables both are updated by TCP sender. How these values are updated depends on how the TCP

sender detects the packet loss – Due to RTO Or reception of 3 dupACKs

➢ TCP sender triggers different procedures if it detects segment loss because of

➢ RTO time out

➢ 3 dupACK

TCP Sender

Detects a Segment Loss

RTO

(running In Slow-Start

Or CA)

3 dupACK

recvd (In CA

Phase only)

Restart from

beginning

(cwnd = 1)

Slow down to half

(cwnd = cwnd/2 + 3)

Fast Recovery

Fast Retransmission

 Fast Recovery Goal : This prevents TCP to start from the beginning every time

segment loss occurs , hence improves Network Utilization

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Fast Recovery Updates

Fast Recovery – Window

Variables Updates

 -- packet loss due to RTO

Reason for pkt

loss

cwnd ssthrash explanation

RTO times out reset to 1 max(cwnd/2,

2*MSS)

Restart slow-start

algorithm

 -- packet loss due to 3 dupACK

Reason for pkt loss cwnd ssthrash explanation

3 dupACK recvd = cwnd/2 + 3

When good ACK is recvd

then cwnd = ssthrash

= cwnd / 2 Fast retransmit + Fast Recovery

Sender

A

Rcvr

B

Cwnd = 10

SND = 10

Cwnd = 8

SND = 8

Ssthrash = 5

Cwnd = 5

SND = 5

Ssthrash = 5

Fast

Retransmission

Fast Recovery

Table 1

Table 2

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Fast Recovery Graph
1

6
4

7
0

8

0

1

0
0

1

2
8

1

4
0

1
6
0

 -- packet loss due to 3 dupACK

Time ->

Reason for pkt loss cwnd ssthrash explanation

3 dupACK recvd = cwnd/2 + 3

When good ACK is recvd,

cwnd = ssthrash

= cwnd / 2 Fast retransmit + Fast

Recovery



awnd = 200

ssthrash = 64 cwnd = awnd

B

Slow start

Triggers even here

if RTO happens

FR triggers if 3

dupACK are recvd

Fast Recovery Graph

S
N

D
 W

 (
 i
n

 M
S

S
)

 →



F
as

t
R

e
co

ve
ry

F
as

t
R

e
co

ve
ry

Cwnd = 70

Ssthrash = 70

Cwnd = 80

Ssthrash = 80

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> Congestion Control Complete Flowchart

Congestion Control Complete Flowchart

Trigger Slow-Start

Cwnd = 1 ssthrash = awnd

If cwnd <

ssthrash

Congestion

Avoidance Phase

N

Y

Is Segment

Lost Occur

(RTO Or 3

dupACK)

Y

ssthrash = Max (cwnd/2, 2*MSS)

Cwnd = 1

N

cwnd = cwnd * 2

Ssthrash no change

Continue

with

Slow-Start

Restart

Slow-Start

Is Segment

Lost Occur

Continue

Cwnd += 1 N

Y

Is RTO ?

Y

N
3 dupACK, update

Cwnd, ssthrash as per FR

http://www.csepracticals.com/

Juniper Business Use Only

Visit : www.csepracticals.com

Owned by : CSEPracticals

Mastering TCP -> Congestion Control -> TCP graph

TCP Graph in General

➢ So, how does a TCP graph showing rate of sending data Vs Time looks like in General in a typical network

➢ It would look somewhat like a zig-zag graph

http://www.csepracticals.com/

