4 Two students plan to investigate **Equilibrium 4.1**, shown below.

$$CoCl_4^{2-}(aq) + 6H_2O(I) \rightleftharpoons [Co(H_2O)_6]^{2+}(aq) + 4Cl^-(aq)$$
 Equilibrium 4.1 blue pink

- (a) The students are supplied with the equilibrium mixture in **Equilibrium 4.1** at room temperature.
 - One student heats 20 cm³ of the mixture to 50 °C.
 - The other student heats 20 cm³ of the mixture to 90 °C.

The students use colorimetry to observe how the colour of the equilibrium mixture changes over time.

- The colorimeter is set up so that the greater the absorbance, the greater the concentration of [Co(H₂O)₆]²⁺.
- The initial absorbance is set to zero.
- The absorbance is recorded every 30 seconds.

The students plot the graph below from the results of the experiment.

Predict the sign of ΔH for the forward reaction in **Equilibrium 4.1**.

Use the graph and relevant chemical theory to answer the following. Include all reasoning:

- Explain the different initial rates at 50 °C and 90 °C.

.....

(b) The students investigate how addition of aqueous silver nitrate, AgNO₃(aq), affects the equilibrium position in **Equilibrium 4.1**.

The graph shows the changes in the equilibrium concentrations of $CoCl_4^{\ 2-}$, Cl^- and $[Co(H_2O)_6]^{2+}$ after addition of the $AgNO_3(aq)$.

The $AgNO_3(aq)$ is added at time = t_1 .

(i)	Explain why the Cl^- concentration drops sharply at time = t_1 .
	[1]
(ii)	Explain the changes in concentration of $CoCl_4^{2-}$, Cl^- and $[Co(H_2O)_6]^{2+}$ after time = t_1 . Refer to Equilibrium 4.1 in your answer.
	[3]

© OCR 2022 Turn over