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Chapter 24 – Design of Experiments 
Improve Quality and you automatically improve productivity – W. Edwards Deming  

A designed experiment is one of best tools to improve quality and productivity at the same 

time! 

A design of experiments or DOE is a statistical method that allows you to study and quantify the 

relationship between the inputs (factors) and outputs (responses) of a process or product.   

The DOE tool is powerful in its ability to study multiple factors (inputs) simultaneously to 

determine their effect on the response (outputs).  

Used properly, a DOE can optimize processes, improve quality, lower costs and improve your 

operations. 

This chapter is laid out into sections leading you through the must know DOE topics, concepts 

and techniques.  

Section 1 is the basic terminology used within the world of DOE which include Factors (Inputs), 

Response (Outputs), Levels, Treatments, Error, Replication and Robustness. 

Section 2 is the basic process of how to plan, organize, execute and analyze a well-designed 

experiment.  The goal of this section is to help you identify the proper design to use for your 

experiment and the goal you’re trying to accomplish.  

Section 3 are the critical design principles that must be applied to a designed experiment which 

include blocking, replication, sample size, power, efficiency, interactions, confounding and 

resolution. 

Section 4 is the Full Factorial DOE with an example, and section 5 is the Fractional Factorial DOE.  

Section 6 is an introduction to the simplest of DOE’s which is the One Factor Experiment. Within 

this section we will also refresh ourselves with ANOVA, which is the most common analysis 

technique that is paired up with a DOE. 

Out of Scope for this Chapter 
This chapter is focused on the core concepts and common designs (full factorial, fractional 

factorial, etc) within DOE. 

I’ve excluded many of the more complex designs that can be used as these are out of scope of 

the CQE Certification. These include Plackett-Burman Designs, Orthogonal Arrays and Response 

surface Designs (Central Composite Designs, Box-Behnken Designs). 

Lastly, this chapter is focused on two-level designs. Designs of three levels, or mixed-level designs 

are out of scope.  
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DOE Terminology 
Before we jump into the concepts and techniques of DOE, it’s important to align on the 

terminology.  All of this terminology is centered around the idea of a process.  

The Process Is Where It Starts 

The process model is central to the idea of DOE.  Every process has 3 common features: inputs, 

the process and outputs.  

 

The inputs are also commonly referred to as Factors or Independent Variables.   

The outputs are also commonly called Responses or Dependent Variables. 

The process is the how we transform inputs into outputs. 

Let’s use the classic example of baking a cake to demonstrate how a process works, and then 

how we would design an experiment to bake the most delicious cake ever. 

Let’s start with the end in mind and talk about outputs which are also called response variables 

or dependent variables.  

 

Dependent Variables (Response) 

Outputs (response variables) represent the outcome of a process or experiment.  

These dependent variables (Responses) can be quality attributes, reliability attributes, 

dimensional/functional requirements, material requirements or continuous improvement 

metrics (yield, capacity, cycle time, etc).  

In the cake example, our major output of the process is taste – the cake should be delicious. 

There are other response outputs to consider and include how the cake looks visually, how 

much the cake costs, the time required to cook the cake, and the size of the final cake.  

Let’s jump to the other side of the process now and cover inputs. 

 

Independent Variables (Factors) 

When we say independent variables (x) we are talking about the inputs or factors associated 

with your process.   These inputs can be controllable or uncontrollable (noise).  
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In the cake example, controllable inputs include the raw materials (ingredients), the supplier of 

each ingredient, and the process inputs such as the temperature that we bake the cake at, or the 

baking time.  

Controllable inputs can be modified within the experiment or process.  

There are also factors associated with your process that are uncontrollable (noise) which can 

also have a major impact on your outputs.   

Oftentimes, the purpose of an experiment is to reduce the impact that the uncontrollable factors 

have on our output – this result would mean that process has been made robust to the 

uncontrollable factors. More on this later.  

Oftentimes uncontrollable factors are impossible to control in actual production, but can 

sometimes be controlled during an experiment to study their impact.  

In the example of baking a cake there are factors that will influence the outputs but that are 

uncontrollable. 

These uncontrollable factors include the altitude of the person baking the cake, or the ambient 

humidity of the environment of the person, or the type of oven being used 

(Convection/Conventional or Gas/Electrical, etc) or the location of the cake within the oven. 

These uncontrollable factors are sometimes cause nuisance factors or noise factors because 

they can cause problems.   

Later on, we will discuss how we can use techniques like blocking and randomization to minimize 

the variation created by these factors during an experiment.  

Let’s look at what our cake process looks like now with the inputs, process and outputs more 

clearly defined: 

 

Noticed I’ve excluded the uncontrollable factors and only listed the inputs, but it’s important to 

understand the uncontrollable factors so that you can design a robust process.  
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Levels 

A level refers to specific settings of a factor.   

For example, in the cake experiment, we could have 2 levels for the Egg Factor with one being a 

2-egg cake, and the other being a 3-egg cake. 

Or we could have 2 levels for the baking temperature, the high level at 400 degrees and the low 

level at 300 degrees.  

For the purposes of this chapter, we will be focused on 2-level experiments, where a high and 

low level will be defined for each factor which are commonly shown as + (high) and – (low).  

Treatment 
A treatment is a unique combination of factors and levels within an experiment.  

Let’s say we wanted to run a full factorial experiment that only analyzed 4 factors (baking 

temperature, baking time, eggs and sugar) at 2 levels each.   

We can define a “high” and “low” level for each factor.  

• Temperature levels might be 400° F and 350° F. 

• Time levels might be 20 minutes and 15 minutes. 

• Eggs levels might be 3 eggs and 2 eggs. 

• Sugar levels might be 2 cups and 1 cup. 

This experiment would have 16 unique treatments associated with it, all with a unique 

combination of levels for each factor. 

For example, Treatment 8 would be the unique combination of 400° F baking temperature, 15 

minutes baking time, 2 eggs and 1 cup of sugar.  
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Random Error 

Random error is the variation in your experimental results caused by both controllable and 

uncontrollable factors (noise) or simply the random variation in the response variable.  

In SPC, when we talk about normal, random, inherent variation, this is like the idea of random 

error. It is the expected, normal, random variation associated with your response variable.  

Blocking, replication and randomization are three tools that can be used to reduce or eliminate 

the random error which we will go over below. 

Note – an assumption within ANOVA is that this random error is normally distributed with a 

mean of zero.  Confirmation of this assumption during the analysis phase of a DOE is often 

required.  

Systematic Error 

There is another type of error that is systematic in nature, and is not related to the natural, 

random, inherent variation in your response variable. This error is not random in nature and 

affect all of your measurements in some way.  

If we go back to the analogy of the random, inherent process variation representing random 

error, then systematic error would be analogous with special cause variation. 

The classic example of systematic nature is measurement bias or measurement error. Human 

bias in the experiment can also be an example of systematic bias. 

Let’s say you execute an experiment and use a gage that it out of calibration. This unstable 

measurement system can introduce significant variation in your response variable.  

Systemic error also occurs if your process is not stable or in control. If your process is under the 

influence of special cause variation, then it may have higher than expected levels of variation in 

the response variable.  

Caution should be taken to eliminate systematic errors so that only the natural variation remains, 

because systemic errors can absolutely destroy the accuracy of your experimental results.  

Experimental Error  

If you were to run your DOE 10 times, you’d like get 10 different sets of results. Now hopefully, 

if you’ve done your job correctly, and you’ve eliminated systematic error, and reduced random 

error, then those results would be similar. 

And this is the idea of experimental error which is the variation in the response variable of 

virtually identical test conditions (replicates).  

If this error is too large, is has the power to wreck your experiment, leaving you conclusion-less.  

Reducing experimental error increases the accuracy of your conclusions about the effect of each 

factor.  
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Repetition and Replication 
Repetition and replication are fundamental principles within designed experiments, serving 

distinct yet interconnected roles in ensuring the validity of experimental results. 

They contribute to reducing random variability and enhancing the precision of the study results. 

Replication is the act of performing an experiment all over again – from start to finish, not 

simply remeasuring the response variable.   Each repetition of an experiment is called a replicate.  

The estimate of the effects of each factor within an experiment becomes more precise when we 

replicate an experiment.   

Replication provides the opportunity to assess the consistency of the treatment effect across 

different subjects or items.  

The first result of an experiment could be due to luck or chance or random variation in the 

response variable. As we replicate a result multiple times, our results become more precise.  

Replicating an experiment gives confidence that a result is repeatable and not simply the result 

of random variation. Replication also allows for enough samples and degrees of freedom to study 

interaction effects, etc.  

Replication also helps you better estimate the random error associated with your process. This 

helps during the ANOVA analysis phase.  

On the other hand, Repetition Involves applying the same treatment or condition to the same 

experimental unit multiple times.  

It pertains to the number of measurements or observations taken within a single experimental 

unit under the same conditions.  

Nested Design 
In a design experiment, "nested" refers to a situation where the levels of one factor are not 

interchangeable with or comparable to the levels of another factor.  

Nesting in a design experiment involves a hierarchical structure where the levels of one factor 

exist within the levels of another factor.  

It signifies a relationship where the subunits of one factor only exist within specific levels of 

another factor.  

For example, in manufacturing, components produced within specific machines.  
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Planning and Organizing a Designed Experiment 
They’re called Designed Experiments not Haphazard Experiments for a reason. 

You have to be intentional about how you design and organize your experiments . . . if you want 

to get statistically valid results that is.  

Oftentimes the biggest mistakes in DOE are due to poor planning, and thus importance of the 

planning phase cannot be understated. 

Below is a 7-step process to plan and execute a DOE.  

One last comment before we jump in: DOE is a team sport.  In all of the steps below I’m going to 

assume that you’re collaborating with the proper SME’s in your organization.  

Step 1 – Determining the Experiment Objectives 

The planning phase begins by determining the objective of the experiment. 

The objective of your experiment will dictate the most efficient design to use.  This will ensure 

that you’ve maximized the value for the effort you’re going to put in.  

There are 3 common “objectives” or situations where a DOE is the right tool: 

• Comparing Two Alternative Possibilities 

• Screening/Characterizing a Process 

• Modeling/Optimizing a Process 

A comparative DOE is used when you want to make a comparison of factors at multiple levels.  

Usually this is a single factor, but can also include multiple factors. 

An example of this would be a comparative experiment to study 2 different raw material vendors 

to determine the best one.  Depending on the number of factors included in the study this can 

either be a full or fractional factorial design.  

A screening/characterization design can be used to study your process as a whole to determine 

which factors are critical and which are not.  

This type of design is typically a fractional factorial design due to the large number of potentially 

critical factors associated with your product or process. We will cover this type of design below.    

A modeling/optimization design is meant study the critical factors associated with a product or 

process to create a model of this process and determine the optimal levels of each factor.   

This type of design is usually a full factorial design as you’ve already been able to narrow your 

process down to 2-4 critical factors.  

The optimization DOE can be used to hit a quality target, maximize yield, minimize variation, 

improve robustness, or optimize a process for various competing responses. 
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Step 2 – Identifying Critical Responses and their Appropriate Measurement System 

Step 2 and 3 in the DOE process is to study your product/process to understand all of the 

potential inputs and outputs that could be investigated. 

A process flow diagram can be useful here in defining your process. 

Once you know the purpose of your experiment, you must identify the critical response variables 

– outputs, that you want to measure. 

You must also be confident that your measurement system for that response variable is capable 

and stable, as any variation within your measurement system increases your systematic error 

and will affect the final analysis.  

You’d hate to get to the end of your experiment and find that your measurement system was 

introducing large amounts of variation on the response variable – which might render the 

experiment useless. 

From a quality perspective, many of the process outputs should have been defined during the 

product/process design phase.  These can include functional requirements, dimensional 

requirements, material requirements, etc.  

From the Continuous Improvement perspective, critical responses can include process yield, 

process capacity, process cycle time, etc. 

Step 3 – Identifying Factors to Study 

Once you’re clear on the critical responses (outputs) that you want to study – it’s time to identify 

the factors (inputs) that might influence your response variables.  

The idea of a screening design is meant to do just this – define critical and non-critical input 

factors for your responses.  

The other important consideration in this step is determining appropriate levels for each factor 

– the “Highs” and “Lows”. 

These highs and lows should be realistic and reasonable for your process, and should be allowed 

to vary to similar magnitudes.  

We wouldn’t try to bake a cake at 75° F or at 1,000° F.   

Nor would we want to test a very limited range of baking temperatures like 370° F and 375° F. A 

range this narrow might indicate that temperature isn’t a critical factor – which is simply 

incorrect.  

Getting input during this stage from your product/process SME’s is critical.  

Many processes have hundreds of possible factors – it’s important to focus your attention on 

only the critical few! This same comment goes for the response variables as well.  
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Step 4 – Choosing the Right Design 

This is the stage where you choose the proper design for your experiment. This should be based 

on the objective and the number of factors being studied. 

If step 3 identified 7 input factors to be studied - then you wouldn’t perform a full factorial 

design. 

Similarly, if step 3 identified only 2 factors, then you wouldn’t want to perform a fractional 

factorial design – you’d want to go straight to the full factorial. 

The other item to consider here are the interactions.  

If you’re simply attempting to identify the critical inputs in a screening design, then you’re likely 

not worried about the interaction effects – thus you should likely pick a fractional factorial 

design.  

As we will discuss below, when using a fractional factorial design, it’s possible to experience 

confounding results between the main effects and the interaction effects, thus we typically omit 

the interactions from a screening experiment.  

However, if you’re attempting to optimize or model your process, you’re going to want to 

understand the interaction effects between factors. In this case, the full factorial design is the 

one for you. 

Calculating the Number of Treatments for Two Level Designs 

This is a good time to explain how to calculate the number of treatments within a given design. 

In a full factorial experiment the number of treatments is calculated as the levels raised to 

factors or LF.  

𝐹𝑢𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝐷𝑒𝑠𝑖𝑔𝑛: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 𝐿𝑒𝑣𝑒𝑙𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑠 = 𝐿𝐹 = 2𝐹 

Since this chapter is focused on 2 level experiments, I’ve shown that in the equation above.  

In a fractional factorial experiment, the number of treatments is dependent on what fraction 

you want to use. The most common fractions are the half (½) fraction and the quarter (¼) 

fraction.  

𝑯𝒂𝒍𝒇 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝐷𝑒𝑠𝑖𝑔𝑛: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 =
𝐿𝑒𝑣𝑒𝑙𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑠

2
=

𝐿𝐹

2
=

2𝐹

2
= 2𝐹−1 

𝑸𝒖𝒂𝒓𝒕𝒆𝒓 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝐷𝑒𝑠𝑖𝑔𝑛: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 =
𝐿𝑒𝑣𝑒𝑙𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑠

4
=

𝐿𝐹

4
=

2𝐹

22
= 2𝐹−2 

Below is a table of the number of treatments in the various factorial design (Full, Half and 

Quarter) that are required for different number of factors.   
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If your experiment had 7 inputs, then to perform a full factorial experiment means you’d have 

to perform 128 treatments. Yikes. If you chose a quarter factorial design, you’d only have to run 

32 treatments, much better.  

 

 

Step 5 – Run the Experiment 

Ok, so once you’ve identified your inputs, outputs and the proper design, it’s time to execute the 

experiment.  

This is always considered the expensive part of the experiment – because it’s where the majority 

of your time and money will be consumed – so any mistakes in this phase will be costly. 

This is why it’s important to have invested the right amount of time, thought and energy into the 

planning phase, to avoid mistakes here. 

One key thing to keep in mind is to collect data in a way that minimizes the chance for error.  A 

check sheet can be a powerful tool here.  

If human bias is a concern – attempt to design a “blind” study where the levels associated with 

each treatment are not known to the humans doing the data collection. 

Lastly, make sure to run the experiment in the proper order – perhaps in a completely 

randomized fashion. More on this later! 

Step 6 – Analyze the Results 

There are a handful of ways to analyze the results of a DOE.  With a simple one factor 

experiment at two levels you can simply perform a t-test (hypothesis test). 

With a more complex experiment, ANOVA is the preferred method, which we will review 

below. 

In today’s world software packages exist to both create and analyze DOE’s, so much of the heavy 

lifting is done for you. However, you still must understand the common concepts and tools within 

DOE to ensure you’re maximizing your results. 
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Step 7 – Make Decisions, Iterate and Plan your Next Experiment 

Once you’ve analyzed your results it’s time to act. Use this new-found knowledge to improve 

your process.  

Or, if the goal of your first experiment was to screen out the critical factors (screening design), 

you can use this new knowledge to start planning another DOE! 

In fact, it’s worth noting that often the best DOE approach is the iterative approach. 

A lot of the best experiments starts with a screening design (fractional factorial) to determine 

the critical factors, then an optimization design (full factorial) to optimize your process/product.  

It is usually better to perform 2 or 3 smaller experiments that all build off of each other - than 1 

large experiment.  

When experiments are planned in an iterative way, the knowledge gained from the first 

experiment can be used to change and improve subsequent experiments, allowing the 

knowledge to compound over time. 

This can include replicating prior results. 

This is like the PDCA cycle – which is an in iterative cycle of learning, experimentation and 

implementation.  

Design Principles 
Below are some of the most important design principles associated with DOE that should be 

considered when planning your overall design plan.  

Proper Sample Size & Power for a DOE 

Remember, the most common analysis tool used with DOE is ANOVA Analysis which is a type of 

hypothesis test where we’re looking for differences in sample mean values for different factors 

and their interactions. 

So, it’s important to refresh ourselves on the types of risks associated with a hypothesis test. 

There are two types of errors in hypothesis testing.  

The first error, alpha risk, is the risk that the null hypothesis should not have been rejected and it 

was, this is known as a type I error.  

The second error, beta risk, is when the null hypothesis should have been rejected and it wasn't, 

this is known as a type II error.  

The probability of a type II error is governed by the beta risk (β), and it is analogous to the 

concept of consumers risk in the world of acceptance sampling.  

Power = 1 – Beta Risk 
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Power is the probability of correctly rejecting the null hypothesis (H0) when it is actually false. 

Remember that we're only interested in the power of a hypothesis test when the null hypothesis 

is in fact false, which is when the various levels associated with our factor cause a statistically 

significant shift in the sample mean of our response.  

When performing a DOE, we want to have higher power, which means lower beta risk.  

How do we improve the power of our DOE?   ---   Increase your sample size! 

Remember that within ANOVA we’re analyzing sample means. 

If you think back to the inferential statistics section, we learned that the variance of the sample 

mean distribution is a combination of the population variance and the sample size.   

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝑉(�̅�) =  𝜎�̅�
2 =  

𝜎2

𝑛
 

Increasing your sample size reduces the variability in your sample statistic distribution which 

improves your ability to discern between the null and alternative hypothesis when the null 

hypothesis is false – thus increasing power. 

This is where replication adds value to a DOE in that it increases your sample size and reduces 

beta risk and increases the power.   

Additional samples also reduce the alpha risk as well.  In general, more samples help you make 

the right conclusion. 

A Balanced Design 

A balanced design is one where all the treatments have the same number of observations or 

replications.  

Randomizing the Order of a Design 

The order of a design refers to the chronological sequence in which you execute the various 

treatments within your design. 

In general, the best designs are ordered randomly, in order to minimize the impact of 

uncontrollable factors.  

Randomizing the order of a design ensures that the variation associated with the uncontrollable 

factors does not introduce any bias in the results. 

Randomization can also apply to the way you allocate raw materials and other items to an 

experiment to ensure that any potential sources of variation are spread evenly across the design.  

A design whose order of treatments is determined at random is considered a completely 

randomized design. 
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Blocking in DOE 

Blocking is another method you can use to reduce the impact of uncontrollable factors on your 

experiment.  

For example, let’s say you knew that altitude was an uncontrollable factor in the cake baking 

experiment. 

You could “block” for that factor by performing your experiment at the same altitude, thus 

eliminating the variation associated with that factor. 

Or you could create two blocks, one block of experiments performed at sea level and one block 

of experiments performed in Denver (mile high).  

Blocking lets you minimize the variation of an otherwise uncontrollable factor by carrying out 

your experiment at a single setting of that uncontrollable factor.  

Blocking helps reduce the experimental error associated with our experiment, which increases 

the accuracy of the final ANOVA Analysis of the various factors and interactions.  

There’s a common saying in DOE – Block what you can, randomize what you can’t. 

A design where blocking has been used is called a blocked design.  

If you combined a random order with blocking, you’ll describe your design as a completely 

randomized block design.  

 

 

An Efficient Design 

An efficient design is one that includes the minimal number of runs to accomplish the 

objective.  

In this way, you’re maximizing the value associated with the time, effort and cost invested. 

This is where being clear about your objective can save you time and effort. Why perform a full 

factorial when a fractional experiment will get you what you need? 
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Interactions Between Factors 

When an experiment has multiple factors, often two input factors can “interact” in a way where 

they simultaneously influence the response variable.  

Two factors are said to have an interaction when the response variable changes when both 

factors are varied simultaneously.  

Below are some examples of what interactions look like between two factors (A & B).   

 

The far-right image is the best example.  

When Factor B is at the high setting, the response variable increases when Factor A moves from 

low to high. 

When Factor B is at the Low setting though, the response variable decreases when Factor A 

moves from low to high. 

Do you see how Factor B interacts with Factor A to affect the response? 

Interactions can be fully analyzed in a full factorial experiment where all possible combinations 

of levels and factors are studied.  

Remember if you do want to study the interaction effects, then replication (more samples), 

might be needed to ensure there will be enough degrees of freedom to analyze the effects of all 

possible interactions.   

Oftentimes in a fractional factorial experiment the interactions will be confounding with the 

main effects of a given factor and thus cannot be examined. More on this below. 

The last comment worth making about interactions is that this is where DOE’s often add the 

most value.  Interactions cannot be observed when performing an OFAT (One Factor at a Time) 

experiment, and can only be observed during a DOE.  
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Confounding Results 

Factors can be described as Confounding when the effect on the response variable cannot be 

separated into causal relationships for each factor. 

Two factors are confounding when their effects are indistinguishably combined to affect the 

response variable.  

Confounding can often be the result of poor planning in the design phase, when factors are varied 

in similar ways such that the change in the response variable cannot be attributed to a single 

factor. 

Confounding often occurs when dealing with the interactions of a fractional factorial design 

where only a limited number of runs are executed. This is why the interactions are often ignored 

during a fractional factorial study. 

 

 

There are 3 different instances of confounding results within this experiment. Take the color 

purple, notice how Factor C, and the Interaction between A and B have the same experimental 

design (+ - - + - - +). 

And also notice how the results (Good and Bad) are always good when  Factor C is high (+) and 

always bad when Factor C is low (-), but that comment is also true for the interaction between A 

and B? 

This design was planned poorly (for illustration purposes      ), and now our results are 

confounding. 

That is, we can’t distinguish or separate the effects on taste into a causal relationship with each 

factor. 

To reduce the amount of confounding results, we can add additional treatment groups to our 

experiment and improve the resolution of our design. 
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The Resolution of your Designed Experiment 

Resolution in the context of designed experiments, particularly in fractional factorial designs, 

refers to the degree to which interactions between factors are confounded or aliased with one 

another.  

Resolution is denoted by a numerical value (e.g., Resolution III, Resolution IV) and is typically 

designated by Roman numerals.  Different types of resolution include: 

Resolution III designs: These designs confound main effects with two-factor interactions, 

meaning they don’t allow for the estimation of two-factor interactions without ambiguity. 

They're suitable for screening experiments where identifying which main effects are significant 

is the primary goal. 

Resolution IV designs: These designs confound main effects with three-factor interactions, 

allowing for the estimation of main effects without ambiguity. However, two-factor interactions 

remain confounded. They're used for more detailed investigations following a screening 

experiment and can estimate a wider range of interactions. 

Higher Resolutions: There are higher resolution designs (such as V and above), which further 

reduce the confounding of interactions.  

Resolution V designs, for instance, confound up to four-factor interactions but provide greater 

precision in estimating main effects and lower-order interactions. 

The choice of resolution in a designed experiment depends on the goals, resources, and the level 

of detail required to address the research questions.  

Higher resolutions offer more detailed information but often require more runs, making them 

more resource-intensive. 

Designers balance the trade-off between precision in estimating effects and the number of 

experimental runs needed.  

Lower resolution designs, while more efficient in terms of runs, might sacrifice precision in 

estimating interactions.  

 

 

 

 

 

 



BB Master Class 
Ch. 24 –Design of Experiments    17 | P a g e  

One Factor Experiments  
A completely randomized design in experimental design (DOE) involves randomly assigning 

treatments to experimental units without any pre-defined structure. 

Essentially, you’re using the concept or randomization when determining the sequence of your 

experiment. 

This method ensures randomness and minimizes bias, allowing for the analysis of treatment 

effects while assuming the independence of observations.  

 

It's a straightforward design, ideal for studying a single factor offering simplicity and statistical 

validity in comparing treatment effects. 

A completely randomized, blocked design in experimental design (DOE) is essentially any design 

that involves the usages of randomization, and blocking to reduce or eliminate error in an 

experiment to increase the validity of the results of the experiment. 

This style of design normally includes a single factor that is being studied, along with multiple 

blocking factors. These blocking factors can be varies from high to low, to measure the impact of 

those blocking factors. 
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Latin Squares 
A Latin Square Design is a unique DOE that you can use when you have a single factor, that you 

want to vary at multiple levels, and you also have 2 blocking factors.  

The key assumption in Latin squares is that there is no interaction between the primary factor 

that you want to study, and the two blocking factors that are also included in the experiment. 

For example, if we wished to study octane gas (factor) across 4 levels (87, 89, 91 and 93 octane).  

We could create a 4x4 Latin square, where we also include two blocking factors (brand of vehicle 

and mileage of vehicle).  

Another key factor about the Latin square, is that the number of levels associated with your 

primary factor (4x), must be mirrored by the number of levels in your blocking factors. 

 

And if you wanted to only study 3 levels of the single factor (octane gas), you would have to 

switch to a 3x3 latin square and reduce the number of levels of your blocking factor to 3 levels. 
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Full-Factorial Design of Experiments 
Alright, on to one of the most fundamental and common designs within DOE – the full factorial 

design.  

I’ll start this with a brief explanation of the details of a full factorial design, then we will jump into 

an example of a 3-factor design at 2 levels.  

A full factorial experiment is one in which every combination of factors and levels is included 

within the experiment. 

The full factorial experiment is a good design if you’re attempting to model or optimize your 

process, and when you’re looking to analyze both the main effects of each factor along with any 

possible interactions between factors.  

Remember, in this design, all combinations of factors at the various levels are included in the 

experiment. So, the more factors you pick, the more experiments you have to run.    

 

If you have 6 factors, you’ll end up running 64 different treatment groups, if you have 9 factors, 

you’re running 512 treatments.  

Example of a Full Factorial Experiment 

Let’s use an example to demonstrate how we would construct a full factorial design, and discuss 

how you can graphically and computationally calculate the main effects and interaction effects.  

Here’s the experiment: 

You manage a process where you know that 3 factors (temperature, pressure and time) influence 

the response variable (yield) associated with the process, and you want to maximize the yield. 

Recall that we’re planning a 2-level experiment, where a high and low level will be defined for 

each factor which are commonly shown as + (high) and – (low).  

You might also see these high and low levels defined as +1 or -1. 
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Below is a design matrix for this 3-factor, 2 level design, where you can see how the design 

requires 8 treatments to capture all of the unique combination of the levels of each factor.  

Treatment #1, is the experiment where all factors will be set at “high”, and treatment 8 is the 

experiment where all factors will be set at “low”. 

 

One way you visually represent these 8 treatments is with a cube showing the different high and 

low conditions for the 3 factors.  

 

The 8 corners of this cube represent the 8 treatments, each of which is a unique combination of 

the high and low levels for each of the 3 factors (A, B & C). 

In discussion with our subject matter experts, we want to try to following high and low levels for 

each factor: 

Factor High Low 

Temperature 270° F 240° F 
Pressure 400psi 300psi 
Time 45 sec 30 sec 

Let’s execute our experiment and see what kind of results we get, then we can review the 

computational and graphical methods for analyzing these results. 
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Let’s start by calculating and graphing the main effects, then move on and calculate the 

interactions between factors. 

Calculating and Graphing the Main Effects  

Like we discussed above, ANOVA Analysis tool is a great to determine if the levels of each factor 

have a statistically significant effect on the response variable.  

You can also use a graphical method and computational method to determine the effect of each 

factor on the response variable. 

Let’s start with the graphical method by looking at the main effects plots. 

 

The main effects plots will help you visualize the effect of each factor at each level (high and 

low). 

This graph shows the average response value (Yield in our case) at the two levels for each factor, 

and how the response changes as you move from low to high. 

For temperature, treatments 1 – 4 would be averaged for the high value, and treatment 5-8 

would be averaged for the low value. 

For pressure, treatments 1, 2, 5 & 6 would be averaged for the high value, and treatment 3,4, 7 

& 8 would be averaged for the low value. 
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Make sense? 

There’s also a computational method to calculate the estimated effect of each factor at the two 

levels. 

This computational method is simply the difference in the average value at the high level minus 

the average value at the low level, which is exactly what we graphed above in the main effect 

plots: 

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑬𝒇𝒇𝒆𝒄𝒕 = 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒂𝒕 𝑯𝒊𝒈𝒉 − 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒂𝒕 𝑳𝒐𝒘 

Let’s use our experimental data to calculate the estimated effect on the yield for each factor. 

𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑴𝒂𝒊𝒏 𝑬𝒇𝒇𝒆𝒄𝒕 =
83 + 75 + 87 + 95

4
−

85 + 52 + 89 + 78

4
= 6.5 

𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑴𝒂𝒊𝒏 𝑬𝒇𝒇𝒆𝒄𝒕 =
83 + 75 + 95 + 52

4
−

87 + 95 + 89 + 79

4
= −11 

𝑻𝒊𝒎𝒆 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑴𝒂𝒊𝒏 𝑬𝒇𝒇𝒆𝒄𝒕 =
83 + 87 + 95 + 89

4
−

75 + 95 + 52 + 78

4
= 13.5 

Based on this data we can see that Time has the biggest effect on the yield, and that a longer 

time value could potentially increase the yield by 13.5 points.  

Pressure has a strong negative effect on yield where the low setting yielded 11% better results 

than the high setting. 

Temperature had the smallest effect on yield, with a high temperature resulting in 6.5% more 

yield than the low temperature. 

Before we make any conclusions however, we should check out the interactions between the 

factors. 
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Calculating and Graphing the Interaction Effects  

Let’s go back to our original design matrix to understand how we calculate a “high” or “low” 

level for each interaction effect. 

 

The high and low value for each factor is combined to determine if the interaction level is a high 

or low. 

This is easiest when you imagine the + as a +1, and the – as a -1. Then you’re simply multiplying 

the two values together. 

So, when temperature and pressure are both at high (+), the interaction is also at a high (+1 * 

+1 = +1). When Temperature is at a high (+), but time is at a low (-), the resulting interaction is 

at a low (1 * -1 = -1). 

Once we have the high and low values for each interaction, we can calculate the estimated effect 

for that interaction in the same way we did above for the main effect. 

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑬𝒇𝒇𝒆𝒄𝒕 = 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒂𝒕 𝑯𝒊𝒈𝒉 − 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒂𝒕 𝑳𝒐𝒘 

Let’s calculate the interaction effect between our 3 factors: 

𝑻𝒆𝒎𝒑. & 𝑷𝒓𝒆𝒔𝒔. 𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝑬𝒇𝒇𝒆𝒄𝒕 =
83 + 75 + 89 + 78

4
−

87 + 95 + 95 + 52

4
= −1 

𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 & 𝑻𝒊𝒎𝒆 𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝑬𝒇𝒇𝒆𝒄𝒕 =
83 + 95 + 95 + 78

4
−

75 + 87 + 52 + 89

4
= 12 

𝑻𝒆𝒎𝒑.  & 𝑻𝒊𝒎𝒆 𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝑬𝒇𝒇𝒆𝒄𝒕 =
83 + 87 + 52 + 78

4
−

75 + 95 + 95 + 89

4
= −13.5 

So, you’ll notice that there are some strong interaction effects here, especially related to time.  

Let’s see what these interactions look like in an interaction effects plot: 
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Within this example, we’ve only analyzed the first order interactions – which are the single 

combinations of interactions between each main factor (Pressure and Time, etc).  

We are going to ignore the second order interactions, which in this situation would be the 

combination of all 3 factors combined (Temperature X Pressure X Time).  

In this scenario, with 3 factors, there is only a single second order interaction. However, when 

you have more than 3 factors, the number of second order interactions grows, along with third 

and fourth order interaction effects.  

At the end of this experiment, it looks like the most favorable combination of factors is 

treatment 4, which maximizes the yield, and reduces the overall time associated with the 

process, which also impacts the capacity & throughput of the process.  

To confirm this result, replication can be used to ensure that the results are consistent over 

time, and ANOVA analysis can be used to ensure the results are statistically significant.  

As you can see, a full factorial DOE can be very powerful, however if the number of factors 

involved in the DOE grows the effort required to conduct the experiment grows exponentially 

with the number of required treatments.  

For example, if you had a process with 9 possibly critical variables, a full factorial DOE would 

require 512 treatments. yikes.  

To combat this issue, statisticians have developed the factorial DOE to allow only us to execute 

only a portion of the treatments and still make reasonable conclusions.  
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Fractional Factorial Design of Experiments 
As the name implies, a fractional factorial experiment is an experiment where only a fraction of 

the possible treatments are conducted. 

Let’s review the info from above to see the benefit of a fractional experiment.  

In a full factorial experiment the number of treatments is calculated as the levels raised to 

factors or LF.  

𝐹𝑢𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝐷𝑒𝑠𝑖𝑔𝑛: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 = 𝐿𝑒𝑣𝑒𝑙𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑠 = 𝐿𝐹 = 2𝐹 

In a fractional factorial experiment, the number of treatments is dependent on what fraction 

you want to use.  

The most common fractions are the half (½) fraction and the quarter (¼) fraction.  

𝑯𝒂𝒍𝒇 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝐷𝑒𝑠𝑖𝑔𝑛: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 =
𝐿𝑒𝑣𝑒𝑙𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑠

2
=

𝐿𝐹

2
=

2𝐹

2
= 2𝐹−1 

𝑸𝒖𝒂𝒓𝒕𝒆𝒓 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝐷𝑒𝑠𝑖𝑔𝑛: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 =
𝐿𝑒𝑣𝑒𝑙𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑠

4
=

𝐿𝐹

4
=

2𝐹

22
= 2𝐹−2 

Below is a table of the number of treatments in the various factorial design (Full, Half and 

Quarter) that are required for different number of factors.   

If your experiment had 7 inputs, then to perform a full factorial experiment means you’d have 

to perform 128 treatments. Yikes. If you chose a quarter factorial design, you’d only have to run 

32 treatments, much better.  

 

Let’s take an example where we had 4 factors, however we could only afford to run 10 

experimental runs (treatments). 

We would have to limit ourselves to a half factorial experiment, where we’d end up running 8 

treatments (experimental runs).  
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This means we’d be running a half factor experiment, so let’s look at what a possible design 

matrix would look like in this example.   

 

 

What I’ve shown below is the full factorial experiment on the left, and I’ve highlighted in red the 

treatments that we could exclude from the fractional factorial design. 

Remember, when executing a fractional factorial study, you must be aware of the possibility of 

confounding between main effects and the interaction effects. 

Below are the first order interactions between these 4 factors, where I’ve highlighted the 

confounding situations between the main effects and the interactions.  

For example, the interaction between factor A and B (AB) is confounding with the main effect 

of factor C, and the main effect of factor A is confounded with the interaction between B & C.  



BB Master Class 
Ch. 24 –Design of Experiments    27 | P a g e  

 

 

Recall that the fractional design is a good choice when you’re attempting to screen out the critical 

factors from non-critical factors, and thus the interaction effects are less important. 

You’ll often hear these fractional designs called “main effects designs” because they only seek 

to assess the main effects of each factor and not the interactions. 

The analysis of the main effects within a fractional factorial design is the same as a full factorial 

design, it can be done both graphically or computationally. 

 

 

 

 

 

 

 

 


