Shared Ownership | Threads & Mutex

]l Shared Data w/Threading

* Threads execute non-deterministically
" Can read/write at random times
* Multiple threads can work with the same data

"= Data can become corrupted easily
> Difficult to work with threads

Il Data Corruption

S....I...
g0

v 880080888
L._‘ 20es = @

S.—....l..l -
<“YOO0O 20

Thread-Local
Shared

—
S =

] Synchronization

* Data needs to be synchronized for safe access
¢ Common synchronization primitive is a Mutex
= Mutually Exclusive lock

* Uses atomic operations to ensure that data 1s
only accessed by one thread at a time

= Atomic operations are “all or nothing?”
operations, enforced by the CPU

> Data stays consistent

J Mutex

* Mutexes wrap data, making data mutually exclusive
" Only one thread can access at a time
= ALl other threads will wait until finished

* Mutexes cannot be shared among threads

" Wrap with a smart pointer (Arc)
= Share the Arc among threads
* Use parking_lot crate for a Mutex

" Better API & performance than stdlib

B How Mutex Works: Locks
Thread

Lock
Try Lock
Wait
Unlock Lock

Unlock

] Example

use parking_lot: :Mutex;

Arc<Mutex<Counter>>
use std::sync::Arc;

use std::thread:

struct Counter(usize);

let counter = Counter(0):
let shared_counter = Arc::new(Mutex::new(counter)):

let thread_1_counter = Arc::clone(&shared_counter):
let thread_2_counter = shared_counter.clone():

] Example

let thread_1 = thread::spawn(move || {

let mut counter = thread_1_counter.lock():
counter.0 += 13

1)3

let thread_2 = thread::spawn(move || {

let mut counter = thread_2_counter.lock():
counter.0 += 1;

1)

thread_1.jo1in().and_then(|_| thread_2.join());
println! ("{}", shared_counter.lock().0):

] Recap

* Data access from threads must be synchronized
" Wrap data 1n a Mutex
" Use .lock() to acquire a lock
" Unlocking occurs when the lock 1s dropped
* Mutexes cannot be shared
" Wrap in Arc to share between threads

* Lock a minimum amount of time by performing
computations before taking a lock

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

