Fundamentals | Advanced Memory



| Intermediate memory refresh

* ALL data has a memory address

* Addresses determine the location of data 1in
memory

* Offsets can be used to access adjacent
addresses

" Also called indexes/indices



B Stack

*

*

Data placed sequentially

Limited space

All variables stored on the stack
" Not all data

Very fast to work with

" Offsets to access



B Stack Visualization
L
3 7 9
Address

> HEE
' B8
: HEEE

©

0

Address




LEED

2

2

*

Data placed algorithmically

"= Slower than stack

Unlimited space (RAM/disk limits apply)
Uses pointers

" Pointers are a fixed size

" usize data type

Vectors & HashMaps stored on the heap

" ALl dynamically sized collections



]l Heap Visual w/Pointers on Stack

© 1 2 3 4 5 6

© 1 2 3 45 6 7 8 9 A B CDE F

00 CEEEEE0aE
10 OEE O
2 @3 OEEE

30 ﬂllllllllll

40 | e




] Example

struct Entry {
id: 132,
}

fn main() {
let data = Entry { id: 5 };
let data_ptr: Box<Entry> = Box::new(data);
let data_stack = xdata_ptr:;



B Sized Error

¢ return type cannot have an unboxed trait object
--> src/main.rs:1:16

1|
|
|

fn sample() -> Fn() {

note: for +information on “+dimpl Trait', see <https://doc.rust-’



] Recap

* Stack
"= Sequential memory addresses
" Used for variables
" Limited size
" Must know data size ahead of time
* Heap
"= Algorithmically calculated memory addresses
" Used for large amounts of data
" Unlimited size

"= Dynamically sized data/unknown sized data



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

