Shared Ownership | Smart Pointers



B Smart Pointers

* Allow multiple owners of data

* Reference counted - “Rc”

" Data deleted only when last owner 1s dropped

* Atomic reference counted - “Arc”

= Safe to use with multiple threads



use std::rc::Rc; let car = Rc::new(Vehicle {
vin: "123".to_owned(),

#[derive(Debug) ] })s

struct Vehicle {
vin: String, let left_door = Door {

} vehicle: Rc::clone(&car),

}s

#[derive(Debug) ] let right_door = Door {

struct Door { vehicle: Rc::clone(&car),
vehicle: Rc<Vehicle>, }s

}

drop(car);

pr'int'l.n! ("vehicle = {:?2}" - left_door.vehicle) 9

vehicle = Vehicle { vin: "123" }



] Recap

* Rc & Arc are used to share ownership

* Data 1s dropped once all owners are dropped

* Rc for single-threading
" Rc::clone to make a new reference

* Arc for multi-threading

= Arc::clone to make a new reference



	Slide 1
	Slide 3
	Slide 4
	Slide 5

