Parallel Execution | Threads

B Thread Bas+ics

* A thread uses serial execution
" Each line of code is executed one at a time
* Multicore CPUs can have multiple threads
" Threads still executes serially
" Each thread can execute different tasks
> Better CPU utilization
* Threads are isolated from one another

" Require additional work to communicate

> Should communicate infrequently for performance
reasons

l Working With Threads

* Threads are “spawned” (created)
" Threads can spawn threads

" Use the “main” thread for spawning in most cases

> fn main() is the main thread
¢ Code 1is no longer executed line-by-line with threads
" Requires careful planning

* When a thread completes work, it should be “joined”
back 1nto the main thread

" Ensures that the thread has completed

B Thread Execution

println! ("1"); println! ("A");
println! ("2"); println! ("B");
println! ("3"); println! ("C");
123 ABC
123ABC
ABC123
1 A2B3C
12ABCS3

B Thread Lifetime

Main

Join(A)
Waiting(A)
Join Complete

End Program

i Data lost

| Thread Memory

* Threads have “thread-local” memory
" Owned by the thread
" Only accessible 1n the thread

* Data can be copied or moved into threads
= Can be done when thread created

* Becomes thread-local

| Thread Memory

]l Spawning a Thread

use std::thread;
let handle = thread::spawn(move || {

})s
handle.join()

JoinHandle<type>

] Recap

* Threads are non-deterministic

" Execution order will vary each time the
program runs

* Ending the main thread will terminate all
spawned threads

= Join on the main thread to wait for threads
to complete

* Each thread has 1t’s own chunk of memory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

