Threading | Deadlocks

l Deadlock

* A deadlock 1s a situation where locks are waiting
on one another

" Threads become “stuck” and are unable to
continue

* Deadlocks can occur when:
= Using multiple locks
" Recursing while taking a lock

" Locking the same lock twice

] Recursive Deadlock Example

use parking_lot::Mutex;

fn recurse(
data: Rc<Mutex<u32>>,
remaining: usize,
) => usize {
let mut locked = data.lock():
match remaining {
rem if rem == 0 => 0,
rem => recurse(Rc::clone(&data), rem - 1),

D Fix Deadlock - ReentrantMutex

use parking_lot::ReentrantMutex;

fn recurse(
data: Rc<ReentrantMutex<u32>>,
remaining: usize,
) => usize {
let mut locked = data.lock():
match remaining {
rem if rem == 0 => 0,
rem => recurse(Rc::clone(&data), rem - 1),

]| Threaded Deadlock Example

type ArcAccount = Arc<Mutex<Account>>;

struct Account {
balance: 1164,

}

fn transfer(from: ArcAccount, to: ArcAccount, amount: i64) {
let mut from = from.lock();

let mut to = to.lock();

from.balance —-= amount; let :1 = :hread:;sp:gg(move] {
to.balance += amount; o ransfer(a, b,)3
)
} let t2 = thread::spawn(move || {

transfer(b, a, 800);
})s

]| Fix Deadlock - Retry On Failure

fn transfer(from: ArcAccount, to: ArcAccount, amount: 164) {
loop {
1if let Some(mut from) = from.try_lock() {
1if let Some(mut to) = to.try_lock() {

from.balance -= amount;
to.balance += amount;
return;

}
}

thread: :sleep(Duration::from_millis(2));

B Thread Contention / Backoff

use backoff::ExponentialBackoff;

fn transfer(from: ArcAccount, to: ArcAccount, amount: 164) {
let op = || {
if let Some(mut from) = from.try_lock() {
if let Some(mut to) = to.try_lock() {
from.balance -= amount;
to.balance += amount:
return Ok(())3

¥
¥
Err(0)?
}s
let backoff = ExponentialBackoff::default():
backoff::retry(backoff, op):

] Recap

* Deadlocks are permanently stuck locks

* ReentrantMutex allows multiple locks from the same
thread

* Use for recursive functions

" Anytime you need to lock the same lock more than
once

* try_lock() can prevent deadlocks

" Drop all locks used in function and try again after
a short period

> Use the backoff crate for optimal performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

