

Shared Ownership Threads & Mutex

Shared Data w/Threading
 Threads execute non-deterministically

▪ Can read/write at random times
 Multiple threads can work with the same data

▪ Data can become corrupted easily
▸ Difficult to work with threads

Data Corruption

L = Thread-Local
S = Shared

Synchronization
 Data needs to be synchronized for safe access
 Common synchronization primitive is a Mutex

▪ Mutually Exclusive lock
 Uses atomic operations to ensure that data is
only accessed by one thread at a time
▪ Atomic operations are “all or nothing”
operations, enforced by the CPU
▸ Data stays consistent

Mutex
 Mutexes wrap data, making data mutually exclusive

▪ Only one thread can access at a time
▪ All other threads will wait until finished

 Mutexes cannot be shared among threads
▪ Wrap with a smart pointer (Arc)
▪ Share the Arc among threads

 Use parking_lot crate for a Mutex
▪ Better API & performance than stdlib

How Mutex Works: Locks

Example

Example

Recap
 Data access from threads must be synchronized

▪ Wrap data in a Mutex
▪ Use .lock() to acquire a lock
▪ Unlocking occurs when the lock is dropped

 Mutexes cannot be shared
▪ Wrap in Arc to share between threads

 Lock a minimum amount of time by performing
computations before taking a lock

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

