Improving Reliability

Typestate Pattern



] Typestates

* Leverage type system to encode state changes
* Implemented by creating a type for each state
" Use move semantics to invalidate a state
" Return next state from previous state

" Optionally drop the state
> Close file, connection dropped, etc

* Compile time enforcement of logic



] Example

struct BusTicket;
struct BoardedBusTicket;

impl BusTicket {

fn board(self) -> BoardedBusTicket {
BoardedBusTicket

}
}

let ticket = BusTicket;
let boarded = ticket.board();

ticket;board();



] Example

struct File<'a>(&'a str);
impl<'a> File<'a> {
fn read_bytes(&self) -> Vec<u8> {

}
fn delete(self) {

}
}

let file = File("data.txt");
let data = file.read_bytes();
file.delete();

Iét read_again = file.read_bytes();



] Recap

* Typestates leverage the compiler to enforce
logic

¢ Can be used for:
= Invalidating / consuming states
" Properly transitioning to another state

" Disallowing access to a missing resource



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

