Shared Functionality | Generic Structures



B Generic Structures

* Store data of any type within a structure

" Trait bounds restrict the type of data the
structure can utilize

> Also known as “generic constraints”
* Useful when making your own data collections
* Reduces technical debt as program expands

" New data types can utilize generic structures
and be easily integrated into the program



l Conceptual Example

* Generic structure for template rendering
" Template Source Paths
"= Variable substitution data
" Generic render target
> File
> Terminal
> Image

> Bytes



] Syntax

struct Name<T: Traitl + Trait2, U: Trait3> {
fieldl: T,
field2: U,

struct Name<T, U>

where
T: Traitl + Trait2,
U: Trait3,

fieldl: T,
field2: U,



] Example - Definition

trait Seat {
fn show(&self);

¥
struct Ticket<T: Seat> {

location: T,

}



]l Example - Types of seating

#[derive(Clone, Copy)] #[derive(Clone, Copy)]

enum ConcertSeat { enum AirlineSeat {
FrontRow, BusinessClass,
MidSection(u32), Economy,
Back(u32), FirstClass,

} }

impl Seat for ConcertSeat { impl Seat for AirlineSeat {
fn show(&self) { - fn show(&self) { -
} }



]| Example - Usage with single type

trait Seat {
fn show(&self);

I
struct Ticket<T: Seat> {

location: T,

}

fn ticket_info(ticket: Ticket<AirlineSeat>) {
ticket.location.show();

}

let airline = Ticket { location: AirlineSeat::FirstClass };
ticket_info(airline);



] Example - Usage with generic type

trait Seat {
fn show(&self);

I

struct Ticket<T: Seat> {
location: T,

}

fn ticket_info<T: Seat>(ticket: Ticket<T>) {
ticket.location.show():;

}

let airline = Ticket { location: AirlineSeat::FirstClass };
let concert = Ticket { location: ConcertSeat::FrontRow };
ticket_info(airline);

ticket_info(concert);



B Details

struct Ticket<T: Seat> {
location: T,

fn ticket_info<T: Seat>(ticket: Ticket<T>) {
ticket.location.show();

let airline = Ticket { location: AirlineSeat::FirstClass };
let concert = Ticket { location: ConcertSeat::FrontRow };
ticket_info(airline);

ticket_info(concert);



B Details - Behind the scenes

struct AirlineTicket {
location: AirlineSeat,

}

struct ConcertTicket {
location: ConcertSeat,

}

fn airline_ticket_info(ticket: AirlineTicket) {
ticket.location.show():

}

fn concert_ticket_info(ticket: ConcertTicket) {
ticket.location.show():

}



]l Details - Heterogeneous vector

let airline = Ticket { location: AirlineSeat::FirstClass };
let concert = Ticket { location: ConcertSeat::FrontRow };
ticket_info(airline);

ticket_info(concert);

let tickets = vec![airline, concert];

¢ mismatched types
-—> src/main.rs:89:33

89 | let tickets = vec![airline, concert];

|
= note: expected type 'Ticket<AirlineSeat>’
found struct ‘Ticket<ConcertSeat>’



] Recap

* Generic structures allow storage of arbitrary
types

" May be any type or constrained by traits

¢ Cannot mix generic structures in a single
collection

" Generic structures expand to structures of a
specific type

* Two different syntaxes



]l Recap - Syntax

struct Name<T: Traitl + Trait2, U: Trait3> {
fieldl: T,
field2: U,

struct Name<T, U>

where
T: Traitl + Trait2,
U: Trait3,

field1l: T,
field2: U,



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

