Crate I rand



} rand

* Widely used random number generation crate
* Supports both simple & advanced configuration
* Features:

" Picking values from a collection

= Seeding

" Cryptographically secure generators

" Uniform & weighted distributions



]l Basic Usage - Prelude

* Imports common traits and types for working
with rand

use rand::prelude::*;



]l Basic Usage

let number: u8 = random();
let yes_no: bool = random();



]l Basic Usage

let mut rng = thread_rng();
let number = rng.gen_range(0..10)3

let letters = ['a', 'b', 'c'];
let letter = letters.iter().choose(&nut rng);

let mut letters = letters:
letters.shuffle(&mnut rng):;



] Seeding

* Seeding i1s not cryptographically secure!

use rand::prelude::*;
use rand_pcg: :Pcg64;
use rand_seeder: :Seeder;

let rng = Pcgb64::seed_from_u64(10);
let rng: Pcg64 = Seeder::from(''seed value').make_rng()



B Distributions

use rand::distributions::{Distribution, Uniform};
use rand: :prelude: :*;

let range = Uniform::from(5..500);
let mut rng = thread_rng();
range.sample (&mnut rng) ;

[dependencies]
rand = "x"
rand_distr = "x"



] Recap

* rand crate provides random number generation

* thread_rng uses thread-local RNG and can be called
multiple times, or cached

" Cryptographically secure
* Import the rand prelude for convenience

* The choose function will choose a random item from an
iterator

* The sample function will sample a random number from
a distribution



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

