

Parallel Execution Threads

Thread Basics
 A thread uses serial execution

▪ Each line of code is executed one at a time
 Multicore CPUs can have multiple threads

▪ Threads still executes serially
▪ Each thread can execute different tasks

▸ Better CPU utilization
 Threads are isolated from one another

▪ Require additional work to communicate
▸ Should communicate infrequently for performance
reasons

Working With Threads
 Threads are “spawned” (created)

▪ Threads can spawn threads
▪ Use the “main” thread for spawning in most cases

▸ fn main() is the main thread
 Code is no longer executed line-by-line with threads

▪ Requires careful planning
 When a thread completes work, it should be “joined”
back into the main thread
▪ Ensures that the thread has completed

Thread Execution

Thread Lifetime

Thread Memory
 Threads have “thread-local” memory

▪ Owned by the thread
▪ Only accessible in the thread

 Data can be copied or moved into threads
▪ Can be done when thread created
▪ Becomes thread-local

Thread Memory

Spawning a Thread

Recap
 Threads are non-deterministic

▪ Execution order will vary each time the
program runs

 Ending the main thread will terminate all
spawned threads
▪ Join on the main thread to wait for threads
to complete

 Each thread has it’s own chunk of memory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

