Type Conversion | From/Into



] From/Into

* Rust has a robust type system
" More reliable & maintainable code

" Cumbersome to work with similar & wrapper types

> Usually requires extra repeated code
* Traits can be used to easily convert between types:

" From

> Convert from one type to another

= Into

> Convert one type 1into another type



B Traits: From/Into

* From:

" Associated method on a type

> TypeName: : from()

= Implementing From automatically implements
Into

¢ Into:

= self method on a type
» variable.into()



| From/Into Example

let owned = String::from("slice');

let owned: String = "slice".into();

fn to_owned(slice: &str) -> String {
slice.into()

}



] Implementing From

enum Status {
Broken(u8),
Working,

}

impl From<u8> for Status {
fn from(code: u8) -> Self {
match code {
® => Status::Working,
c => Status::Broken(code),



B Using From/Into Implementation

fn legacy_interface() -> u8 {
5

}

let status: Status = legacy_-interface().into();
let status = Status::from(legacy_dinterface());



| Pro Tips

* From/Into cannot fail
* Almost always want to implement From for errors
* Prefer implementing From instead of Into

= Into 1s automatically implemented with From

¢+ Use .into() when:

" Obvious what resulting type will be
* Use Type::from() when:
= Important to know the resulting type



] Question Mark Operator

struct Job; impl From<u8> for JobError {
fn from(code: u8) -> Self {
enum JobError { match code {
Expired, 1 => Self::Expired,
Missing, 2 => Self::Missing,
Other (u8), c => Self::0ther(c),
¥ }
}
}
fn execute_job(job: Job) -> Result<(), JobError> {
Err(2)?

}



] Recap

* From/Into allow conversion between types
" The conversion cannot fail
* Prefer implementing From over Into

= Into gets implemented automatically when
From is implemented

* The Question Mark operator will automatically
use a From implementation to convert errors



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

