
  

Fundamentals Custom Errors



  

Custom Error

 Functions may fail in more than one way
 Useful to communicate the failure reason
 Error enumeration

▪ Enumerations allow errors to be easily 
defined

▪ Can match on the enumeration to handle 
specific error conditions



  

Error Requirements

 Implement the Debug trait
▪ Displays error info in debug contexts

 Implement the Display trait
▪ Displays error info in user contexts

 Implement the Error trait
▪ Interop with code using dynamic errors



  

Manual Error Creation



  

Manual Error Creation



  

The ‘thiserror’ Crate



  

The ‘thiserror’ Crate



  

Usage



  

Error Conversion



  

Pro Tips: Do’s
 Prefer to use error enumerations over strings

▪ More concisely communicates the problem
▪ Can be used with match
▪ Strings are OK when prototyping, or if the problem domain 
isn’t fully understood
▸ Change to enumerations as soon as possible

 Keep errors specific
▪ Limit error enumerations to:

▸ Single modules
▸ Single functions

 Try to use match as much as possible



  

More Pro Tips: Don’ts

 Don’t put unrelated errors into a single 
enumeration
▪ As the problem domain expands, the 
enumeration will become unwieldy

▪ Changes to the enumeration will cascade 
across the entire codebase

▪ Unclear which errors can be generated by a 
function



  

Recap

 Custom error enumerations communicate exactly what went wrong 
in a function

 Errors require three trait implementations
▪ Debug (can be derived)
▪ std::error::Error (empty impl ok)
▪ Display (manual or crate)

 Use the thiserror crate to easily implement all required traits 
for errors

 Keep error enumerations module or function specific
▪ Don’t put too many variants in one error


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

