Numeric Primitives I Limits & Type
Conversion



] Many Numeric Types

* 8, 16, 32, 64, and 128 bit integers
"= Signed & unsigned
* 1size & usize
" Pointer sized numeric types
> usize used to index into arrays
" Depends on architecture: 16bit, 64bit, etc
* 32bit & 64bit floating point



I Min/Max: Unsigned Integer

Type

Max

us
ulo
u32
ue4s
ul2s8

OBNOBNOBNORNON N

255

65535

4294967295
184467440/7/3709551615
<BIG>



B Min/Max:

Signed Integer

Min
Type Max

. -128
18 177

-32768
32767

i32 -2147483648
2147483647

64 —2223372036854775808
9223372036854 775807

116

-<BIG>

1128 76>



B Literal Numeric Annotations

15u8;
-129163

999 _usize;
13_456_019u32;
17.7F32;



]l Type Safety

let whoops = 300u8;

: literal out of range for “u8’
——> src/bin/l.rs:17:18

17 let whoops = 300u8;

= note: #[deny(overflowing_literals)] on by default
= note: the literal "300u8’ does not fit into the type "u8’
whose range is '0..=255"



J Conversion

¢ Integers can be converted between types

" u8 will always fit into a ulé

> Lossless conversion

" ulé cannot fit into u8, but it can still be
converted

> Value will be a number in the range of the target
type
* Math operations require all operands to be the same
type
" Convert to the largest type needed



] Cast Syntax

let a
let b

15u8 as ulé6;
a as u8 + 20ulé as u8;



l Casting to less bits

* (Source value) - (Target max + 1)
" Repeat until the value fits in the type
* Alternatively: (Source value) modulus (Target max + 1)

* This happens automatically when using as to convert

Source Target
ulé —» us8
600ulé as u8 0..65535 0..255

600-256 = 344
344-256 = 88



]l Converting Floats To Integer

* Float to integer is a saturating conversion

" The value will be clamped to the minimum or
maximum of the target type

* Decimal points are truncated/dropped

800.5f32 as uS8

-300f32 as u8 Source Target
f32 —» u8 0..255
800.5f32 as 18 f32 —» i8 -128..127

-300f32 as 18



] Checked Casting

u8::try_from(300ulé6)



] Recap

* Numeric types can be cast using the as keyword

* Use TryFrom when you want to be sure the value
will properly fit

* Annotations can be used with numeric literals
to specify the type

"= Can use underscore (_) as a digit separator

* Compiler error to create a numeric Lliteral
outside of appropriate range



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

