Fundamentals | Advanced Memory



| Intermediate memory refresh

* ALL data has a memory address

* Addresses determine the location of data 1in
memory

* Offsets can be used to access adjacent
addresses

" Also called indexes/indices



B Stack

*

*

Data placed sequentially

Limited space

All variables stored on the stack
" Not all data

Very fast to work with

" Offsets to access



B Stack Visualization
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Data placed algorithmically

"= Slower than stack

Unlimited space (RAM/disk limits apply)
Uses pointers

" Pointers are a fixed size

" usize data type

Vectors & HashMaps stored on the heap

" ALl dynamically sized collections



]l Heap Visual w/Pointers on Stack
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] Example

struct Entry {
id: 132,
}

fn main() {
let data = Entry { id: 5 };
let data_ptr: Box<Entry> = Box::new(data);
let data_stack = xdata_ptr:;



B Sized Error

¢ return type cannot have an unboxed trait object
--> src/main.rs:1:16

1|
|
|

fn sample() -> Fn() {

note: for +information on “+dimpl Trait', see <https://doc.rust-’



] Recap

* Stack
"= Sequential memory addresses
" Used for variables
" Limited size
" Must know data size ahead of time
* Heap
"= Algorithmically calculated memory addresses
" Used for large amounts of data
" Unlimited size

"= Dynamically sized data/unknown sized data
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