Prerequisite
Asynchronous Code Primer



What is Asynchronous Code?

Asynchronous (async) 1is a programming method
that allows code execution to be paused

While paused, other async code can run

* Paused code can be resumed from where it left
off and continue executing

"= Pausing is usually done when waiting on
external resources

> Network

> Database



Async vs Threads

Async code only ever executes serially
" Threads can truly execute 1n parallel

Async code can wait on a large amount of data
sources

* Threads can only wait on one data source

Use async when there are many external data sources

Use threads when there i1s heavy computation



Futures

Container type that encapsulates code to be executed
at a future time

No code within the Future is initially run
"= Lazy execution
Futures are ran on an Executor

* Execution of a Future can be paused by using .await

> The Executor will then run other Futures until
they complete or also .await



I Driving a Future

lT Execut\[’rl:

1 CEUER >




1 Async Functions

async fn life() -> u32 {
42

}

#[tokio::main]
pub async fn main() {
let future = life()s
let value = future.await;

let value: u32 = life().await;



| Example

async fn connect() -> Result<Connection, ConnectionError> {
Ok (Connection)

async fn get_credentials(conn: &Connection)
-> Result<Credentials, CredentialError>
Ok(Credentials)
async fn generate_session(conn: &Connection, creds: &Credentials)

-> Result<Session, SessionError>

Ok (Session)



| Example

#[tokio::main]
pub async fn main() -> Result<(), ApiError> {
let conn = connect().await?;
let creds = get_credentials(&conn).await?;
let session = generate_session(&conn, &creds).await?;

Ok (())



Recap

Asynchronous code can be paused and resumed
" Great when waiting on external data sources
Async code 1s ran by an Executor

"= Executors can be created using a macro on the
main function

The async keyword 1s used to create an
asynchronous function

Use .await to pause execution while waiting for
external data



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

