

Ownership Lifetimes

Ownership Review
 Data in Rust programs have an owner

▪ Owner is responsible for cleaning up data
▸ Memory management

▪ Only one owner (by default)
▪ Functions, closures, structs, enums, and scopes are
owners

 Data can be transferred (moved) from one owner to another
▪ Function calls, variable reassignment, and closures

 Possible to “borrow” data from an owner
▪ Owner still responsible for clean up

Ownership Review - Example

Lifetimes
 A way to inform the compiler that borrowed data
will be valid at a specific point in time

 Needed for:
▪ Storing borrowed data in structs or enums
▪ Returning borrowed data from functions

 All data has a lifetime
▪ Most cases are elided

Lifetime Syntax - struct

 Convention uses 'a, 'b, 'c
 'static is reserved

▪ 'static data stays in memory until the
program terminates

Lifetime Example - struct

Lifetime Syntax - function

Solidifying understanding
 Lifetime annotations indicate that there exists
some owned data that:
▪ “Lives at least as long” as the borrowed data
▪ “Outlives or outlasts” the scope of a borrow
▪ “Exists longer than” the scope of a borrow

 Structures utilizing borrowed data must:
▪ Always be created after the owner was created
▪ Always be destroyed before the owner is destroyed

Recap

 Lifetimes allow:
▪ Borrowed data in a structure
▪ Returning references from functions

 Lifetimes are the mechanism that tracks how long
a piece of data resides in memory

 Lifetimes are usually elided, but can be
specified manually

 Lifetimes will be checked by the compiler

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

