Ownership | Lifetimes

] Ownership Review

* Data in Rust programs have an owner

" Owner 1s responsible for cleaning up data

> Memory management
"= Only one owner (by default)

" Functions, closures, structs, enums, and scopes are
owners

* Data can be transferred (moved) from one owner to another
" Function calls, variable reassignment, and closures
* Possible to “borrow” data from an owner

" Owner still responsible for clean up

] Ownership Review - Example

#[derive(Debug)]
enum FrozenItem {
fn place_item(IceCube,
freezer: &mut Freezer, }
item: FrozenItem _
) { #[derive(Debug)]
freezer.contents.push(item); struct Freezer {
} contents: Vec<FrozenItem>,
}

fn main() {
let mut freezer = Freezer { contents: vec![] };
let cube = FrozenItem::IceCube;
place_+item(&mnut freezer, cube);

B Lifetimes

* A way to inform the compiler that borrowed data
will be valid at a specific point in time

* Needed for:
= Storing borrowed data 1n structs or enums

" Returning borrowed data from functions

* AlL data has a lifetime

* Most cases are elided

]l Lifetime Syntax - struct

struct Name<'a> {
field: &'a DataType,

* Convention uses 'a, 'b, 'c
* 'static is reserved

= 'static data stays 1n memory until the
program terminates

]l Lifetime Example - struct

enum Part {
fn main() {

Bolt,) _
Panel let line = AssemblylLine {
} ’ parts: vec![Part::Bolt, Part::Panel],
b3
struct RobotArm<'a> { {
£: &'a Part let arm = RobotArm {
pare: 8 Tare part: &line.parts[0],
; b3
}

struct AssemblyLine {
parts: Vec<Part>, }

}

]l Lifetime Syntax - function

fn name<'a>(arg: &'a DataType) -> &'a DataType {}

] Solidifying understanding

* Lifetime annotations indicate that there exists
some owned data that:

" “Lives at least as long” as the borrowed data
= “Qutlives or outlasts” the scope of a borrow
"= “Exists longer than” the scope of a borrow

* Structures utilizing borrowed data must:
= Always be created after the owner was created

" Always be destroyed before the owner 1is destroyed

] Recap

* Lifetimes allow:
" Borrowed data in a structure
" Returning references from functions

* Lifetimes are the mechanism that tracks how long
a piece of data resides in memory

¢ Lifetimes are usually elided, but can be
specified manually

* Lifetimes will be checked by the compiler

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

