Fundamentals | Ownership



] Managing memory

* Programs must track memory
= If they fail to do so, a “leak” occurs

* Rust utilizes an “ownership” model to manage
memory

" The “owner” of memory 1is responsible for
cleaning up the memory

* Memory can either be “moved” or “borrowed”



]| Example - Move

enum Light {
Bright,
Dull,

}

fn display_light(light: Light) {
match light {
Light::Bright => println! ("bright"),
Light::Dull => println! ("dull"),

¥

fn main() {
let dull = Light::Dull;
display_light(dull);
display_light(dull);



]| Example - Borrow

enum Light {
Bright,
Dull,

}

fn display_light(light: &Light) {
match light {
Light::Bright => println! ("bright"),
Light::Dull => println!("dull"),

}

fn main() {
let dull = Light::Dullg
display_light(&dull);
display_light(&dull)



] Recap

* Memory must be managed in some way to prevent leaks

* Rust uses “ownership” to accomplish memory management
" The “owner” of data must clean up the memory
" This occurs automatically at the end of the scope

* Default behavior 1is to “move” memory to a new owner

" Use an ampersand (&) to allow code to “borrow?”
memory



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

