Working With Data | Result



J Result

* A data type that contains one of two types of data:
= “Successful” data
" “Error” data

* Used 1n scenarios where an action needs to be
taken, but has the possibility of failure

" Copying a file

"= Connecting to a website



B Definition

enum Result<T, E> {
0k(T),
Err(E)



] Example

fn get_sound(name: &str) -> Result<SoundData, String> {

if name == "alert" {
Ok (SoundData: :new("alert")),
} else {

Err("unable to find sound data".to_owned())

}
}

let sound = get_sound("alert");

match sound {
Ok(_) => println!("sound data located"),

Err(e) => println!("error: {:?}", e),



] Recap

* Result represents either success or failure

" Ok(variable_name)

> The operation was completed

" Err(variable_name)

> The operation failed

¢* Useful when working with functionality that can
potentially fail

* Use Result<T,E> when working with results



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

