Crate | tracing



I tracing

* The tracing crate generates structured diagnostics of
your code

* Features 1include:
" Log levels
" Async support
" Spans
" Proc macro helpers

* tracing is a framework, so additional crates are
needed for extra features



] Instrumenting a Function

#[tracing: :1nstrument]
fn do stuff() {



] Adding Logs

use tracing::{info, debug}:

#[tracing::instrument(skip(n))]
fn test(s: &str, n: usize) {

info! ("testing");

debug! (n, "this is a debug msg");
¥

2022-08-13T18:01:21.203761Z INFO test{s="sample'}:
crate_lecture_tracing: testing
2022-08-13T18:01:21.203800Z DEBUG test{s="sample'}:
crate_lecture_tracing: this is a debug msg n=10



] Spans

* A span represents a period of time

* Anything logged during a span will also contain
the span information

* Example usage:
" Associating IP addresses with logs

= Showing the current stage 1in a multi-staged
processing pipeline

" Logging user names when resources are
accessed



]l Creating a Span

use tracing::{Level, span};

#[tracing: :instrument]
fn example() {

let _span = span! (Level::DEBUG,

.entered()
test('"'msg", 10);

"showing example')

}

#[tracing: :instrument(skip(n))]

fn test(s: &str, n: usize) {

info! ("testing");

debug! (n, "this is a debug msg');



] Output

2022-08-13T18:11:43.453682Z INFO example:
showing example:test{s=""msg"}: crate_lectu
re_tracing: testing
2022-08-13T18:11:43.453722Z DEBUG example:
showing example:test{s=""msg"}: crate_lectu
re_tracing: this 1is a debug msg n=10



B Subscriber

* By default, tracing does not log anything

* A subscriber 1is used to determine how logging
should occur

* Subscribers can be customized so only relevant
items are logged

* Subscribers should only be used in application
code

" Never use 1n Llibrary code



B fmt subscriber

* Basic terminal logger

* cargo add tracing_subscriber

fn main() {
let subscriber = tracing_subscriber::fmt()
-with_max_level(Level: :TRACE)
cAnit() s



B EnvFilter

* Allows configuring logs using environment
variables

* cargo add tracing_subscriber -F env-filter

fn main() {
use tracing_subscriber::{EnvFilter, fmt, prelude::*}:

tracing_subscriber::registry()
-with(fmt::layer())
-with(EnvFilter::from_env('""MYAPP_LOG"))
Anit();



] Recap

*

*

tracing is a logging instrumentation framework
By default, all function parameters are logged using

#[tracing: :instrument]

" To skip parameters, use
#[tracing: :instrument(skip(name))]

spans are periods of time that will be associated
with log events

subscribers determine how events should be logged
" Only use a subscriber 1in application code

EnvFilter allows configuring logs at runtime



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

