

Interior Mutability Cell & RefCell

Interior Mutability
 Mutable data is sometimes problematic

▪ Compiler errors, ownership issues, etc.
 Possible to create permanently mutable memory

▪ Less restrictive than compiler
▸ Trade-offs in implementation & performance

Cell
 Permanently mutable memory location

▪ Can always be mutated, even if the containing
structure is immutable

 Accessing Cell data always results in a move or copy
 Data should be copy-able

▪ #[derive(Clone, Copy)]
▪ Inefficient for large data types

▸ Limit to numbers and booleans
 Prefer mut

Example

RefCell
 Permanently mutable memory location

▪ Can always be mutated, even if the containing
structure is immutable

 Accessing RefCell data always results in a borrow
▪ Efficient data access (compared to Cell)
▪ Borrow checked at runtime

▸ Will panic at runtime if rules are broken
▸ Only one mutable borrow at a time

 Prefer &mut
 Not thread-safe

Example - Borrow

Example - Mutation

Example - Mutation

Example – Checked Borrow

Recap
 Cell & RefCell allow permanent mutation

▪ Cell returns owned data
▪ RefCell returns borrowed data

 RefCell borrowing can panic at runtime
▪ try_borrow and try_borrow_mut are non-panicking
versions

 Prefer to use mut and &mut
▪ Use Cell & RefCell only when it’s not possible to
express intentions otherwise

 Not thread-safe

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

