Slices | Arrays & Slices

] Arrays

¢+ Contiguous memory region
* ALL elements have the same size
* Arrays are not dynamically sized
"= Size must be hard-coded
" Usually prefer Vector

* Useful when writing algorithms with a fixed buffer
size

" Networking, crypto, matrices

] Syntax

let numbers = [1, 2, 3];
let numbers: [u8; 3] = [1, 2, 3];

tot

Type Element Count

fn func(arr: [u8; 3]) {}
fn func(arr: &[u8]) {}
fn func(arr: &mut [u8]) {}

B Slices

* A borrowed view into an array
* Can be 1iterated upon
* Optionally mutable
* Indices bounded by the slice size
" Cannot go out of bounds of the initial slice

¢* Can create any number of subslices from an
existing slice

| Slices - View Into An Array

[char; 10]
Array 0 1 2 3 4 5 6 7 8 9

A B Cf Df Efl Ff G H I | J

Slice © 1 2 3
&[char]

B Slices & Vectors

* Borrowing a Vector as an argument to a function

that requires a slice will automatically obtain a
slice

* Always prefer to borrow a slice instead of a Vector

fn func(slice: &[u8]) {}

let numbers = vec![1, 2, 3];
func (&numbers) ;
let numbers: &[u8] = numbers.as_slice():

l Slicing With Ranges

let chars = vec!['A', 'B', 'C', 'D'];
let bc = &chars[1..=2];
let ab = &chars[0..2];

Vector Vector
®© 1 2 3 ®© 1 2 3
A B CI D Al Bl C D
© 1 O 1

Slice Slice

B Subslices

let chars = vec!['A',
let bcd = &chars[1..=3];
let cd = &bcd[1l..=2];

Vector
®© 1 2 3

A [|BLICID

© 1 2
Slice

lBl’ ICI, lDl];

Slice
0

B C D

Slice

] Recap

* Arrays must be statically initialized with
hard-coded lengths

* Slices are a way to access parts of an array

* Array-backed data structures like Vectors can
be sliced

¢ Slice lengths are always bound by the size of
the slice

* Subslices can be created from existing slices

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

