Slices | Slice Patterns

J Use Case

* Read the first few bytes to determine header
information

* Take different actions based on the data
using match

* Get the first or last elements of a slice
* No need for bounds checking on slices

" Compiler ensures access are always within
bounds

] Example

let chars = vec!['A', 'B', 'C', 'D'];
match chars.as_slice() {

first, .., last] => (),

'single] => (),

1 => (),

}

let chars = vec!['A', 'B', 'C', 'D'];
match chars.as_slice() {

one, two, ..] => (),

(.., last] => (),

(1 => (),

]l Overlapping Patterns

* Patterns easily overlap.

* Minimize number of match arms to avoid bugs

match slice {
[first, ..] => (),
..y Llast] => (),
] => (),

}

Second arm always 1ignored

]l Prevent Overlapping Patterns

* Match the largest patterns first, followed by
smaller patterns

match slice { match slice {
[1 => (), [a, b, ¢, d, ..] => (),
[a,] => (), [a, by, ¢, ..] => (),
[a, by, ..] => (), [a, b, ..] => (),
[a, by, ¢, ..] => (), [a, «.] => (),
[a, b, ¢, d, ..] => (), [1 => (),

} }

First two arms cover all cases, All arms can be matched

remaining will be 1ignored

} Guards

let nums = vec![7, 8, 9];
match nums.as_slice() {
[first @ 1..=3, rest @ ..] => {

}s

[single] 1if single == &5 || single == &6 => ()
[a, b] => (),

[..1 => (),

[1 => (),

] Recap

* Slices can be matched on specific patterns
" These patterns can include match guards

* Match on largest patterns first, followed by
smaller patterns

= Smaller patterns tend to be greedy

* Minimize the number of match arms to avoid bugs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

