

Declarative Macros Overview

Declarative Macros
 A form of metaprogramming (code that writes code)
 Hygienic:

▪ Unable to emit invalid code
▪ Data cannot “leak” in to (or out of) a macro

▸ Macros cannot capture information like closures
▸ All names / bindings / variables must be provided
by the caller

 Uses macro-specific pattern matching to emit code
 Invoked using an exclamation point: macro_name!()

Invoking a Macro

Valid Positions
 Macros can only be used in specific parts of
Rust code:
▪ Expressions & Statements
▪ Patterns
▪ Types
▪ Items & Associated Items
▪ macro_rules transcribers
▪ External blocks

Expression & Statement Position

Pattern Position

Type Position

Item Position

Associated Item Position

macro_rules Transcribers

Recap
 Macros are a form of metaprogramming
 Invoked using an exclamation point (!)

▪ Invocation can be done with parentheses (),
curly braces {}, or square braces []

 Are valid in many (but not all) positions
 Macros can invoke other macros, including
recursive invocation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

