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Abstract 

A methodology for rational pricing of catastrophe insurance is described. The methodology has two components: 
a solvency- and stability-based pricing framework, and an engine to quantify the loss variability that drives 
solvency and stability. Generalization to account for contagious effects of catastrophes and multiple occurrence 
of peril is presented in detail. 
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Catastrophes due to natural or man-made causes have three characteristics that distinguish 
them from other events of property and casualty losses. They occur infrequently and 
unpredictably, but can exact high costs due to their large footprint. For insurers, the large 
loss and footprint represent a good market opportunity, on the one hand, but great risk on 
the other. However, infrequent occurrence drives volatility, which is exacerbated by the 
absence of norms or precedence; catastrophes do not happen often enough to establish a 
track record in the actuarial sense. 

Pricing of catastrophe insurance must take these unique characteristics into account. In 
this article, we describe how capacity-based pricing models are used as the starting point 
for a rational approach to pricing. A key element of the solvency and stability model is the 
loss exceedance probability. The loss exceedance probability of a portfolio determines the 
capacity inherent in the portfolio, and capacity is a commodity that drives the pricing 
structure along with other economic considerations such as profit, investment return, and 
market condition. Quantification of the exceedance probability involves knowing the 
correlation between any two losses, or the covariance loss matrix. This matrix is difficult 
to quantify for most insurance applications, but modern computerized techniques such as 
IRAS 1 have become available for that purpose. IRAS can also be used to compute the loss 
exceedance probability of a portfolio for complex scenarios, including multi-occurrence 
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of various perils such as earthquakes, hurricanes and floods, which then becomes the 
foundation for premium determination and risk management. 

Details of the methodology are presented in the following sections along with illustra- 
tions. 

1. Solvency, stability and pricing 

One can go into great detail in discussing the financial operation of an insurance business 
(e.g., see Pentikainen et al., 1989), such as losses on policies, unallocated loss adjustment 
expenses, inflation, taxes, operating expenses, commission, reinsurance costs, etc. on the 
debit side, premium income and investment income from the credit side, the competitive 
environment, capital markets, overall books of business, and regulatory and geographic 
constraints. However, we shall focus on the fundamentals, because a basic model of the 
insurance business suffices for the present purpose. 

Succinctly stated, the goal of the insurance business is to maximize its return on capital 
while maintaining survival and stability (see also the excellent exposition by Stone, 1973). 
Survival (or solvency) is usually expressed in terms of probability. If probability of ruin 
per year is defined as 1 - probability of survival per year = P~, then probability of 
survival equals 1 - P1. For example, Pz could be 1 in 100,000. Thus, probability of ruin 
per year is 1 in 100,000, and the probability of survival per year is 0.99999. For stability, 
the probability that the combined loss and expense ratio in any year will exceed its target 
by Xpercentage points (e.g., 4%) must be less than P2, e.g., 1 in 100. I fL  denotes loss, 
E the expenses, P the premium income, and C the capital, these constraints can be 
expressed as, 

Pr[(L + E) ----- (P + C)] < Px (1) 

and 

Pr[(L + E ) / P  - target --> X] < P2 (2) 

The insolvency probability, P1, and the stability parameters P2 and X are set formally or 
implicitly by management. For large insurance companies stability rather than survival is 
likely to be at issue when a new commitment is being considered. 

The profit objective can be expressed as max[P-  (L + E)] if other economic and 
political considerations (such as investment income from capital) are ignored for simplic- 
ity. However, a more common practice is to set a target rate of return in the form of a 
combined loss and expense ratio (e.g., a ratio of 0.96 means a 4% target rate of return; if 
the expense ratio is 0.36, then the maximum target loss ratio is 0.60). 

Any solvency-stability constraint set (PI, Pc, X ) corresponds to a maximum portfolio 
loss exceedaneeprobability (LEP). A LEP is depicted in figure 1, and a point on the curve 
defines the probability corresponding to a loss threshold, i.e., the probability that the 
dollar loss to the portfolio due to some combination of events is equal to or greater than 
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Figure 1. Loss exceedance probability, acceptable loss and probability of ruin. 
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the threshold. Assuming that the capital structure of the company is such that the maxi- 
mum loss it can sustain is d o, then the probability of ruin is Po, as indicated in the figure. 
Alternately, if the acceptable probability of ruin is Po, then the maximum loss sustainable 
is do. 

However, if the company reserve can cover a loss higher than do, say d:, as indicated in 
the figure, the leeway between the maximum LEP and the actual defines the capacity. An 
insurance company with a given capital structure can enhance its stability or lower its 
insolvency probability by swapping out less attractive policies in the portfolio. Alternately, 
excess capacity can be traded for income just like a commodity; less attractive policies 
can be swapped in return for higher premiums, as depicted in figure 2. 

Capacity can also be discussed in terms of stability. For that purpose, the loss prob- 
ability density function given in figure 3 is more illustrative than the exceedance prob- 
ability even though they contain the same information. 2 With reference to the figure, 
variability in the loss estimate corresponds to the girth of the bell curve, which depends 
on probability moments such as the standard deviation, ~, etc.: The wider the girth, the 
higher the probability that the loss will exceed income. Hence, girth portends variability 
and destability. Of the two cases denoted by curves A and B in the figure, portfolio B is 
less attractive because, for a given income level, denoted by point/ ,  the probability of 
negative income (i.e., the area under the density curve beyond/) is higher for B than for 
A. Alternately, B can be made acceptable if the premium income is increased sufficiently 
so that the probability of negative income is now the same as for A. 
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Figure 2. Using excess capital (dl - dO) to accommodate less attractive portfolios in exchange for higher 
premium income. Acceptable probability of ruin is not exceeded. 

Although the girth of the bell curve depends on tr and higher (probability) moments, tr 
is often used as the measure of the girth for simplicity. In fact, the ratio of tr/~t, where p 
is the mean loss, is called the exposure ratio and has been identified as the major measure 
of stability (see Stone, 1973). 
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Figure 3. Comparison of two portfolios. B is more unstable than A because its probability of negative income 
is higher. 
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Finally, for a given portfolio, the capital structure can be adjusted either in part or in 
whole, as depicted in figure 4, to realize risk pass-through while income is maintained at 
the same level. We shall show how the IRAS computation engine makes these and other 
management decisions possible by providing a rational, integrated framework in which the 
exposure ratio, probability density function, or loss exceedance probability for treaties, 
policies, and portfolios are computed and studied. 

2. Event loss uncertainty matrix 

Several sources of uncertainties are involved in loss estimation, including event occurrence 
uncertainty, uncertainty in the hazard given an event has occurred, building performance 
(asset damage) uncertainty given a hazard, and incomplete knowledge of the portfolio in 
general. All contribute to the variability in the loss distribution, and all are considered in 
IRAS. We shall use event uncertainty to illustrate how IRAS is used to support rational 
pricing. Hence, although only event uncertainty is referenced explicitly, it is understood 
that losses computed in IRAS include the effects of the other uncertainties by default. 

The end result of an IRAS application is an event loss uncertainty matrix such as 
depicted in table 1. The matrix gives the mean annual loss due to any event of interest, 
and, more importantly, the standard deviation of the loss. The latter is a measure of the 
variability in the loss estimate, but both are important in pricing. 

The events include basic events and compound events, and the distinction is made 
solely for clarity of presentation. First, a list of all reasonable events (earthquakes, hur- 
ricanes, tornadoes, floods, etc.) that may affect the book of business is made in column 1. 
Each peril is assumed to have an annual probability of occurrence, column 2; each such 
occurrence is considered a basic event. Note that no reference is made to occurrences of 
other perils (or reoccurrence of the same peril within the year), and damage due to the 
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Figure 4. Capital restructuring to enhance survivability and stability. 
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Table 1. Sam de event loss uncertainty matrix 

Event Annual probability Mean annual loss Standard deviation ~r 
(1) (2) (3) (4) 

Total Mean annual loss = Standard deviation= 

event is computed independently of  other damages. Compound events are combinations of  
the basic events, i.e., more than one event occurs within the year and their losses are 
compounded. We shall see that compound events or multi-occurrences of  peril are im- 
portant to the variability in loss estimates. 

Column 3 as presented in the table is symbolic only. Entries in column 3 denote loss 
from any insurance contract, be it primary, quota share, surplus share, etc., or facultatives 
at the policy or portfolio level. In fact, any loss computed in IRAS can be entered; the 
methodology remains the same. The loss can also be ground-up loss, gross loss (before 
reinsurance) or net loss. Column 4 contains the standard deviations associated with the 
mean losses in column 3; they constitute the product o f  the extended IRAS methodology. 

The event loss uncertainty matrix then contains all the information on loss that is 
required to compute the LEP. We show how the matrix is developed for basic (singly- 
occurring) events and compound (multiply-occurring) events. Multi-occurrences of  the 
same or different kinds of  peril within a given time span are less probable than single 
occurrences of  the perils. Nevertheless, multi-occurrences are o f  interest because the 
losses can be much higher, in the worst case, they may be the cause of  ruin. 

When the number of  basic events is small, combination logic can be used to exhaust all 
permutations of  multi-occurrences, and the corresponding exceedance probabilities com- 
puted exactly. As the number of  events increases, combination explosion rules out analytic 
calculation, and numerical methods must be used. We show how stochastic stimulation 
techniques can give a more accurate estimate of  the exceedance probability (and, hence, 
expected loss) at the expense of  computation time, when such accuracy is required. We 
also show that a simple assumption regarding the correlation of  events significantly 
reduces the simulation time, so that the simulation approach offers an attractive compro- 
mise between accuracy and expediency. 

3. Loss exceedance probability (LEP) 

Consider three probable events such as A, B and C defined below. 

P(A) = 0.05; P(A) = (1.0 - 0.05) = 0.95; L(A) = 30 

P(B) = 0.10; P(B) = (1.0 - 0.10) = 0.90; L(B) = 20 

P(C) = 0.15; P((7) = (1.0 - 0.15) = 0.85; L(C) = 10 

(3) 
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Each event has an annual probability of occurrence associated with it, denoted by P(A), 
P(B), etc. Following common convention, P(E) denotes the probability that the event E 
does not occur. Hence, P(~) = 1 - P(E). The amount of loss that an event will incur, or 
the single-event loss 3, will be denoted by L(.). Note that the same assets may be affected 
by more than one event, or the different events may involve distinct groups of assets. That 
is not an important point because the assumption is made here that all assets will have 
been repaired before the next event, if any, occurs. Cumulative damage, i.e., amplification 
of damage due to preexisting damaged conditions of the asset, is not considered in this 
discussion. In other words, the effect of multi-occurrence on loss is caused exclusively by 
the addition of the single-event losses based on pristine asset condition in each case. 

The sample data are collected in table 2 below. From these basic data, it is easy to 
compute the probabilities and losses associated with multiple events. For three events A, 
B and C, there are a total of eight combinations of multiple events, as shown in table 3, 
where, following convention, ABC stands for the occurrences of  event A and B, but not C, 
and so on. For example, consider the first row. If  as denoted by ABC all three events occur, 
the total loss is 30 + 20 + 10 = $60, and the probability of this compound event 4 is, 

assuming the events are independent, P(A) *P(B) *P(C) = 0.05"0.10"0.15 = 0.00075. En- 
tries in the other rows are obtained in similar fashion. The process can be visualized most 
clearly in the form of a Venn diagram such as shown in figure 5. The loss and probability 
associated with the eight compound events are as noted in the figure. 

The expected loss for each compound event is computed according to the formula 
(event loss)*(event probability), and shown as column 4. The total expected loss is then 
the sum of the cotumn, or $5 in this case. 

It is interesting to note that the same total expected loss can be obtained directly from 
table 2. As is done for table 3, for each of the events A, B and C shown in table 2, we 
multiply the loss column by the probability column to obtain the expected loss, which is 
then appended to the table. The complete new table is shown as table 2a, and the total 
expected loss is $5, the same as obtained previously by considering all possible combi- 
nations of the three events A, B and C in table 3. Hence, the total expected loss computed 
based seemingly on merely individual events in table 2a includes the contribution of all 
multi-events! That this must be so also becomes clear when reference is made to the Venn 
diagram introduced previously in figure 5. For example, consider the circle that denotes all 
events involving A. Each of the two double-overlap portions of  the circle is the sum of two 
parts: 

$50 $30 $20 

0.00425 0.00425 0.00425 

$4O $3O $10 
0.00675 0.00675 0.00675 

where the first part can be allocated to A and the second part to B and C for the first and 
second line, respectively. Similarly, the triple-overlap portion can be broken into: 
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Table 2. Sample data for three events 

Event Loss (in $) Probability 
(1) (2) (3) 

A 30 0.05 

B 20 0.10 

C 10 0.15 

$60 $30 $20 $10 _ _ - - _ _ + - - + _ _  

0.00075 0.00075 0.00075 0.00075 " 

The three parts go to A, B and C, respectively. Summing all parts that revert to A, we have: 

$30 $30 $30 $30 - - + - - + - - + - -  

0.03825 0.00425 0.00675 0.00075 ' 

or $30 / 0.05, which is also the loss due to event A multiplied by the probability of event 
A. Other pieces in the diagram can be decomposed and allocated in similar fashion, and 
the operation of table 3 is shown to be equivalent to that of table 2a. 

Hence, if one is interested only in the total expected loss from all combinations of 
multi-events and if constituent data such as probabilities and losses from the basic events 
are available, the simple operations illustrated in table 2a suffice. In other words, the effect 
of multi-occurrences is already included in table 2 (or 2a), and there is no need to go to 
the expanded table 3. However, table 3 contains detailed information that is not available 
in table 2 per se, but is important in loss estimates. In particular, if one is interested in the 
LEP which gives the probability of the loss exceeding a certain level, such information 
can be readily extracted from table 3 but not from table 2 per se. With reference to table 
3, column 2 shows there are seven loss levels ($0, 10, 20, 30, 40, 50 and 60). Their 
corresponding exceedance probabilities can be constructed from column 3 as follows. 
Only one compound event ABC can attain the highest loss level of $60, with a probability 
of 0.00075. Next, we see that two compound events can exceed a loss level of $50, viz, 
ABC and ABC; hence, the composite probability for that loss level is 0.00075 + 0.00425. 

Table 3. The expected loss based on combination of events 

Event Loss (in $) Probability Expected loss 
(1) (2) (3) (4) = (2) x (3) 

ABC 60 0.05 x 0.10 x 0.15 = 0 .00075 0.0450 

ABC 50 0.05 x 0.10 x 0.85 = 0 .00425 0.2125 

ABC 40 0.05 x 0.90 x 0.15 = 0 .00675 0.2700 

ABC 30 0.05 x 0.90 x 0.85 = 0 .03825 1.1475 

74BC 30 0.95 x 0.10 x 0.15 = 0 .01425 0.4275 

ABe" 20 0.95 x 0.10 x 0.85 = 0 .08075 1.6150 

ABC 10 0.95 x 0.90 x 0.15 = 0 .12825 1.2825 

ABC 0 0.95 x 0.90 X 0.85 = 0 .72675 0.0000 

Total 1.00000 5 .0000 
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Figure 5. Venn diagram for example. 

This process is continued for other levels of loss, and the result is plotted in figure 6. The 
exceedance probability curve is monotonically decreasing, starting with 1 for a loss of 
zero and approaching zero as the loss level increases. 

To reiterate, we see that, as opposed to the total expected loss, the exceedance prob- 
ability curve cannot be obtained directly from table 2, but only through its expanded 
counterpart, table 3, because all possible loss levels from various combinations of events 
are directly available from the expanded table. 

When generalized to N events, the basic table will have N entries, but the expanded 
table will have 2 N entries. Hence, the size of the tables can become large very quickly as 
N increases. For this and other reasons, numerical methods are favored. In subsequent 

Table 2a. Expected loss based on annual rates of  events 

Event Loss (in $) Probability Expected Loss (in $) 
(1) (2) (3) (4) = (2) × (3) 

A 30 0.05 1.5 
B 20 0.10 2.0 
C 10 0.15 1.5 
Total 5.0 
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Figure 6. Exceeding probability for various loss levels. 

sections, we describe current IRAS methodology in relation to multi-occurrences of  
perils, and how stochastic simulation is used to compute the expected losses under those 
circumstances. 

4. Loss exceedance probability from stochastic simulation 

LEPs that consider the effects o f  multi-occurrences of  perils are difficult to obtain ana- 
lytically except for the simplest cases involving a few events. Even then, the portfolio 
structure presents complications which are likely to rule out analytic procedures. This 
suggests that numerical methods be used. We now describe some results obtained with 
stochastic simulation techniques. 
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The probability of exceedance for any loss x can be computed by integrating the 
probability density function for loss from x to oo. The probability density function for loss 
can be estimated by simulation as follows: 

• For each event generate a random number between 0-1. If the generated random 
number is smaller than the probability of the event, the event will occur. Repeat for all 
events of interest to identify the events that are "occurring" from those that are not. 

• Find the total loss of all occurring events. 
• Increment the counter of the total loss by one, representing another round of event 

on-off selection, and repeat the first two steps. 
• Repeat the above steps a large number of  times (>1000). 
• Divide the loss counters from all simulations by the total number of simulations to get 

an estimate of the probability density function. 

We illustrate the procedure with an example which consists of five events as given in table 
4. Figure 7 compares the exact probability of exceedance (solid line) with that obtained 
using simulations (dotted lines). It is seen also that the accuracy of the probability of 
exceedance obtained by simulation increases as the number of simulations increases. At 
1000 simulations the simulated probability of exceedance is close to the exact value. The 
curve marked with single-occurrence denotes the probability of exceedance that would 
have been obtained if the effects of  multi-occurrence are ignored. 5 Note that neglecting 
the effects of  multi-occurrence can lead to significant error in the LEE 

5. Capaci ty-based pricing 

Assume for the moment that pricing is based solely on the rate of return on capital, i.e., 
without regard to survival and stability constraints. The corresponding premium, called 
the economic premium, is simply the loss ratio: 

P - ( 4 )  
(1 - r )  

or 

Table 4. Data for example 

Event number Loss ($) Probability 

1 60 0.1 
2 50 0.2 
3 40 0.2 
4 30 0.3 
5 20 0.2 
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Figure 7. Probability of exceeding for example. 

Z 

e - ( l  - r - e )  ( 5 )  

where i, is the long-term annual loss expectation and E is the expected expense incurred 
by underwriting the risk, r the underwriting profit ratio, and e the expense ratio. For 
instance, for a risk with average $100 per year in loss, an expense ratio of  35%, and a 
required profit ratio of  5%, the economic premium based on (5) is 100/ 
(1 - 0.35 - 0.05) = $167. 

However, in an uncertain insurance environment, a portfolio of  a given size and expected 
return that is within the stability and survival constraints is worth more than a portfolio of  
identical size having the same expected return that is not within the constraints, everything 
else being the same. A portfolio with substantial excess capacity is even more valuable. 
Survivability and stability are positively priced commodities, and risks that generate ca- 
pacity are more valuable to an insurer than capacity consumers (see Stone, 1973). 

Hence, i f  the two classes of  risk are available only at their economic premiums, insurers 
would show a distinct preference for the capacity generators, which will then be bid below 
the economic premium. Conversely, capacity risks will be underwritten above their eco- 
nomic premiums. Hence, pricing must be based on capacity effect as well as the expected 
loss, and a first effort may be as follows: 

P - 1 - r - e - d (6) 

where d is the differential based on capacity (stability) considerations. 
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Equation 6 is the basis for capacity/stability-based pricing. The magnitude of d in any 
specific case will depend on the exposure ratio of  the risk, the size of the risk, the size and 
composition of the portfolio, the constraints observed by the insuring company, and 
competitive factors relating to the capacity and exposure of  the insurance industry as a 
whole. Generally speaking, d could be negative for those risks which add substantial 
capacity to the portfolio, while d is likely to be highly positive for most of the capacity 
risks. The greater the uncertainty of  the risk characteristics, the greater would be the 
additional differential. 

Capacity-based pricing formulae currently in use include: 6 

• Standard Deviation Principle P = E(L) + eL0-(L) 
• Variance Principle: P = E(L) + [30-2(L) 

where e~ and [3 are parameters, E(L) is the expected loss, o-(1,) the standard deviation of the 

loss. 
The inclusion of the parameters a (or [3) in the capacity-based formulae denotes the 

insurer's reluctance to take on the risk measured by 0-(L) (or 0 -2 (L)). For this reason, the 
product et0-(L) (or [3(r2(L)) is also called the risk load, in the sense that it is the extra cost 
associated with the assumed risk. 

For instance, Kreps (1990) has shown that 

yz (2SC + 0-) 
et - (7) 

1 + y ( S '  + S) 

where S and S' are the standard deviations of  the expected loss for the existing and new 
book, respectively, C the correlation of the new contract with the existing book, z the level 
of stability required, and y the yield rate in the capital markets. When C = 1, and S > > 
0-, (7) reduces to c~ = yz/(1 + y) and the risk load is independent of~r. Meyers (1994) has 
derived a formula for risk load that is of the form: 

R = h{0-2(L) + 2 ~ Cov(~,L)} (8) 
i=1 

where x i are theexpected losses of existing policies in the portfolio, and Cov(.,.) denotes 
the covariance. X is called the risk load multiplier, and is a function of the marginal rate 
of  return and marginal cost of  capital. 

We use an illustration to show how IRAS can be used to support capacity-based pricing. 
Consider the following table as an example of  an existing book of business. Event A1 is 
associated with fault A, B1 with fault B and so on. 7 The events are assumed independent 
for now. 

Event A1 is assumed to have an annual probability Pi of  0.1 or 10%. If  it occurs, it will 
incur a net loss x i of 3.0. Hence, the mean annual loss E[xJ, where E[.] is the expectation 
operation, is then pi*x~ = 3.0"0.1 = 0.3. The variance of the loss for this case is 0.81. 8 
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Entries in the other rows of the table have similar meanings, and no further elaboration is 
needed. 

Hence, the sum of the mean annual loss from the six events is 1.40, and the sum of the 
variance is 3.025. 9 For uncorrelated events, the variance of the book is the sum of the 
variances of  the contracts in the book. Hence, the standard deviation for the book is 

= 1.74, and the cofficient of variation for the book, cv, is 1.74/1.4 = 1.24. 
Suppose two new contracts, X1 and Y1, are added to the book, and that they are affected 

by faults X and Y which are uncorrelated with faults A-F, i.e., their losses are not 
correlated with the A, B, .., F events. Data for the new contracts are given in table 6. The 
sum of the mean losses for the new contracts is 0.45, the sum of their variances is 2.1375, 
the standard deviation is 1.46, and the cv is 1.46/0.45 = 3.24. Hence, a book consisting 
of only these two contracts has low stability. 

We examine how adding the new contracts will affect the book of business. The new 
book, denoted by New Book 1, is given by table 7. New Book 1 has a total mean loss of 

1.85 and a sum of variance of 5.1625. The cv is then V5.1625/1.85 = 1.23, which is much 
smaller than that of  the two contracts X1 and Y1 by themselves (viz., 3.24), and even 
smaller than that of the original book (viz., 1.24). Hence, adding contracts which are 
independent of  existing contracts in a book can decrease the volatility o f  the book even if 
the new contracts are themselves more volatile. 

Suppose the contracts added are not independent, and indeed the losses are affected by 
an event on fault D. To denote this dependency, we denote X1 by D2 and Y1 by D3, and 
the new book by New Book 2. Hence, data for New Book 2 are as given in table 8. An 
event on fault D will thus lead to losses in rows D1, D2, and D3. The impact of  this 
correlation is that the variance of the book is increased by 2* 1.09" 1.31 = 2.86 for corre- 
lation between D1 and D2, by 2* 1.09"0.65 = 1.42 for D1 and D3, and by 2"1.31"0.65 = 
1.70 for D2 and D3. l° The variance of the New Book 2 is 5.1625 + 2.86 + 1.42 + 1.70 

= 11.14, and the cv is V'l 1.14/1.85 = 1.80. While still lower compared with that of the 
new contracts (3.24), the volatility of New Book 2 is higher than the original book (1.24) 
and New Book 1 (1.23). Hence, adding contracts which are correlated with existing 
contracts in an book increases the volatility o f  the book. 

Table 5. Sample book of business 

Annual Mean annual Variance 

Event, i probability, Pi Net loss, x i loss, E[xi] E[xi 2] = cr2[xi] ~r[xi] 
(1) (2) (3) (4) (5) (6) (7) 

A1 0.~0 3.0 0.30 0.900 0.81 0.90 
B1 0.20 1.5 0.30 0.450 0.36 0.60 
C1 0.30 0.5 0.15 0.075 0.0525 0.23 
D1 0.05 5.0 0.25 1.250 1.1875 1.09 
E1 0.10 2.5 0.25 0.625 0.5625 0.75 
F1 0.30 0.5 0.15 0.075 0.0525 0.23 
Total 1.40 3.375 3.025 1.74 
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Table 6. Data for sample new contracts 

Mean annual Standard 
Event Annual probability Net loss loss Variance deviation, 
(1) (2) (3) (4) (6) (5) 

)(1 0.05 6.0 0.30 1.71 1.31 
YI 0.05 3.0 0.15 0.4275 0.65 
Total 0.45 2. l 375 1.46 

The quantitative impact of  correlation depends on the degree of  correlation and the 
standard deviations of  the events involved. For instance, a cursory look at column 7 of  
New Book 2 above indicates that the destabilizing impact will be smaller if the new 
contracts are correlated with F1 instead of  D1 since the standard deviation of  F1 is only 
0.23/1.09 or 21% of  D1. A smaller degree of  correlation, represented by the value of  the 
correlation coefficient, has a similar effect. In the present context, the coefficient has a 
maximum value of  1 and a minimum value of  0. The latter case corresponds to the 
independent events examined in New Book 1. 

6. Summary 

Catastrophe risk is very different from other more common and less devastating risks such 
as auto and fire. Losses from catastrophes are large, highly unpredictable, and contagious. 
Furthermore, the uncertainty associated with the occurrence of  catastrophes is large be- 
cause they do not happen very often; the actuarial database from which cause/effect 
information may be gathered is small. For earthquakes, the time scale is of  the order of  
hundreds of  years, and even when loss data could be recorded as in recent events, the data 
are fragmentary and uncertain. More important, such loss experiences are unlikely to be 
representative of  modem society due to constant changes in the built environment, tech- 
nology, business infrastructure, asset valuation and demographic distribution. 

Table 7. New Book 1. 

Annual Mean annual Variance 
Event, i probability, [3 i Net loss, x, loss, E[A-i] E[xi 2] =O'2[Xi] ff  [Xi] 
( 1 ) (2) (3) (4) (5) (6) (7) 

A1 0.10 3.0 0,30 0.900 0.81 0.90 
B1 0.20 1.5 0.30 0.450 0.36 0.60 
C1 0.30 0.5 0.15 0.075 0.0525 0.23 
D1 0.05 5.0 0.25 1.250 1.1875 1.09 
E1 0.10 2.5 0.25 0.625 0.5625 0.75 
F t  0.30 0.5 0. l 5 0.075 0.0525 0.23 
X1 0.05 6.0 0.30 1.8 1.71 1.31 
Y1 0.05 3.0 0.15 0.45 0.4275 0.65 
Total 1.85 5.625 5.1625 2.27 
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Table 8. New Book 2 

Annual Mean annual Variance 
Event, i probability, Pi Net loss, x i loss, E[xi] E[xi 2] =o'2[xi] ¢r[xi] 
(l) (2) (3) (4) (5) (6) (7) 

A1 0.10 3.0 0.30 0.900 0.81 0.90 
B1 0.20 1.5 0.30 0.450 0.36 0.60 
C1 0.30 0.5 0.15 0.075 0.0525 0.23 
D1 0.05 5.0 0.25 1.250 1.1875 1.09 
E1 0.10 2.5 0.25 0.625 0.5625 0.75 
F1 0.30 0.5 0.15 0.075 0.0525 0.23 
D2 0.05 6.0 0.30 1.8 1.71 1.31 
D3 0.05 3.0 0.15 0.45 0.4275 0.65 

Because the effects o f  catastrophes are felt by a much larger region than, say, isolated 
auto accidents or fires, geographic diversifications takes on new scale and meaning. ~ 
Domino effects in catastrophes are also prominent. A damaged asset will in turn enhance 
the damage to another asset, either directly, such as when debris from a collapsed building 
creates havoc on its neighbors (called collocation or collateral damage), or indirectly, such 
as when loss of  power exacerbates communication functions and recovery efforts (called 
functional or dependency damage). Losses from catastrophe are said to be spatially and 
functionally correlated. 

A rational approach for pricing that takes these unique characteristics into account has 
been described. Capacity-based pricing models are used as a starting point; the models 
account for the important interaction between catastrophe loss, survival and stability. A 
key pricing parameter in these models is the exposure ratio, viz., the ratio of  the standard 
deviation of  the loss to the mean loss. The exposure ratio of  the risk (policy) being 
contemplated denotes its destabilizing potential, and the aggregate ratio indicates whether 
the risk is a capacity generator (stabilizing) or a capacity consumer (destabilizing). Hence, 
capacity is a commodity and should be recognized in the pricing structure along with 
economic considerations such as profit, investment return, market condition, and 
regulatory/political constraints. It is shown how computerized loss estimation systems 
such as IRAS can be used to quantify the exposure ratio of  each policy, the aggregate 
exposure ratio of  a portfolio, and the loss exceedance probability for credible scenarios. 

Paramount in any rational pricing paradigm is the accounting of  the contagious effects 
of  catastrophes and the effects due to multiple occurrence of  peril. Quantification of  
contagious effects requires knowing the correlation relation between any two losses, or the 
covariance matrix. This matrix is difficult to quantify for most applications except by 
simulation techniques such as IRAS. Losses due to multi-occurrences of  the same or 
different kinds of  peril can be much larger than that due to a single peril, and these 
"excess" losses are important to solvency even though they have very small probability of  
occurring. We have shown how they can be quantified using the IRAS framework. In 
short, all quantitative information on potential losses needed for rational pricing is pro- 
vided. 
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In summary ,  I R A S  can  b e  v i e w e d  as the  eng ine  tha t  powers  the  p r i c ing  vehic le .  Quan-  

t i ta t ive e s t ima tes  o f  losses  and  the i r  var iab i l i ty  cons t i tu te  the  "dr ive  t ra in" .  The  I R A S  

f inance  modu le ,  de ta i l s  o f  w h i c h  wil l  be  de fe r red  to ano the r  art icle,  is the  " t r a n s m i s s i o n "  

tha t  conver t s  loss  i n f o r m a t i o n  at  the  treaty,  po l icy  or  por t fo l io  level  and  m a n a g e m e n t  

p re fe rences  into a p r i c ing  structure.  

The  s ame  I R A S  f r a m e w o r k  can  be  u sed  for  m a n y  e l emen t s  o f  i n su rance  p l a n n i n g  o the r  

than  pr ic ing.  For  example ,  t rea ty  sc reen ing  and  re insurance  s t ra tegy can  be  addressed,  as 

is obv ious  f r o m  the  p rev ious  d iscuss ion .  
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Notes 

I. Investment and Insurance Risk Assessment System, an application software by Risk Management Solutions, 
Inc. 

2. Recall that the relation between LEP and density function is LEP(L) = |[-p(x)dx,  wherep(x) denotes the 
loss probability density function and L the loss level of interest. 

3. In IRAS terminology, this loss can be the maximum loss, the mean loss, etc., given that the event occurs. 
The uncertainty in loss is caused by uncertainties in hazards such as attenuated ground shock and building 
performance. We denote it simply as loss; the uncertainty hereinafter is caused by uncertainty of the event, 
and the probability of exceedance is caused by the probability of occurrence of the event. 

4. To eliminate confusion, we shall henceforth refer to events that occur singly as the basic events, and events 
that occur together as compound events. 

5, When the effects of multi-occurrence are ignored, the LEP can be derived readily by using the range 
probability, i.e., the probability that the loss is within certain ranges. Details are not included herein as they 
are not germane to the discussion. 

6. The formulae have been greatly simplified as they do not include the many other factors that enter into 
pricing. This is done to highlight the role of IRAS. 

7, Faults stand for some source of hazards, which can be hurricanes, floods, etc. 
8. The variance of x, denoted by Var[x] is Var[x] - E[x 2] - E[x]*E[x], and the standard deviation cr is related 

to the variance by o-[x]*<r[x] = Var[x]. 
9. In general, not equal t o  •E[. '¢i  2] - (~E[xi]) 2 or L.415. 

10. When two losses are correlated, the increment in variance is given by 2pijCrg¢ j. where p,j is the correlation 
coefficient, t~ i the standard deviation of event i, and trj that of event j. The correlation coefficient has been 
assumed to be 1, the maximum value possible, for simplicity. 

11. For example, consider the impact of the Northridge earthquake on small, local insurance companies whose 
portfolios are mainly in the Sourthern California area. 
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