MDPS: MARKOV DECISION PROCESSES

JULIA ACADEMY: POMDPS.JL

Decision Making Under Uncertainty

Definition: MDP. A Markov decision process (MDP) is a problem formulation that defines how an agent takes sequential actions from states in its environment, guided by *rewards*—using uncertainty in how it *transitions* from state to state.

• Formally, an MDP is defined by the following:

Table: MDP Problem Formulation: $(\mathcal{S}, \mathcal{A}, I, R)$	MDP Problem Formulation: $\langle S, A, \uparrow \rangle$	T, R,	γ
--	---	-------	----------

Variable	Description	POMDPs Interface
S	State space	POMDPs.states
\mathcal{A}	Action space	POMDPs.actions
$T(s' \mid s, a)$	Transition function	POMDPs.transition
R(s,a)	Reward function	POMDPs.reward
$\gamma \in [0,1]$	Discount factor	POMDPs.discount

Remember, an MDP is a *problem formulation* and *not an algorithm*. An MDP formulation enables the use of solution methods, i.e. algorithms.

MDP Example: Grid World

In the **Grid World** problem, an *agent* moves around a grid attempting to collect as much reward (green cells) as possible, avoiding negative rewards (red cells).

$M\,D\,P\colon$ State space

Definition: State space S.

A set of all possible *states* an agent can be in (discrete or continuous).

Grid World 10 0 Grid World example: 8 All possible (x, y)7 0 cells in a 10×10 grid 6 -(i.e., 100 discrete states) ```* 5 -State 4 (x, y) of (9, 7)3 -2 1 2 ŝ. 4 5 6 7 8 9 10

MDP : Action space

Definition: Action space \mathcal{A} .

A set of all possible *actions* an agent can take (discrete or continuous).

Grid World example:

The four (discrete) cardinal directions: [up, down, left, right]

Grid World Actions

MDP: TRANSITION FUNCTION

Definition: Transition function¹ T(s' | s, a).

Defines how the agent *transitions* from the current state s to the next state s' when taking action a. Returns a *probability distribution* over all possible next states s' given (s, a).

Grid World example:

Stochastic transitions (incorporates randomness/uncertainty). Action a = up from state s. 70% chance of transitioning correctly.

30% chance (10% \times 3) of transitioning incorrectly.²

¹Sometimes called the *transition model*.

 $^{^2\}mathrm{i.e.,}$ a different action is taken.

MDP: REWARD FUNCTION

Definition: Reward function¹ R(s, a).

A defines the reward an agent receives when taking action a from state s.

Grid World example: Two cells contain positive rewards and two cells contain negative rewards, all others are zero.

¹Sometimes called the *reward model*.

MDP: DISCOUNT FACTOR

Definition: Discount factor $\gamma \in [0, 1]$.

The **discount factor** controls how myopic (short-sighted) the agent is in its decision making (e.g., when $\gamma = 0$, the agent only cares about immediate rewards (myopic) and as $\gamma \to 1$, the agent takes in potential future information in its decision making process).

¹The sum of the discounted future rewards is called the utility U(s) or the value V(s) of a state.

QuickPOMDPs: GRID WORLD

```
using POMDPs, POMDPModelTools, OuickPOMDPs
struct State: x::Int: v::Int end # State definition
Genum Action UP DOWN LEFT RIGHT # Action definition
s = [[State(x,y) for x=1:10, y=1:10].... State(=1,=1)] # State=space
d = [UP, DOWN, LEFT, RIGHT] # Action-space
const_MOVEMENTS = Dict(UPasState(0.1), DOMNasState(0.-1), LEETasState(-1.0), RIGHTasState(1.0))
Base (stuState, s2)(State) = State(s1, x + s2, x, s1, x + s2, x) & Helper for applying actions
function T(s, a) # Transition function
    R(s) != 0 && return Deterministic(State(-1,-1))
    Na = length(4)
    next_states = Vector{State}(undef, N. + 1)
    probabilities = zeros(N. + 1)
    for (i, a') in enumerate(d)
        prob = (a' == a) ? 0.7 : (1 - 0.7) / (N_a - 1)
        destination = s + MOVEMENTS[a']
        next states[i+1] = destination
        if 1 < destination x < 10.88.1 < destination y < 10
            probabilities[i+1] += prob
    (next_states[1], probabilities[1]) = (s, 1 - sum(probabilities))
    return SparseCat(next_states, probabilities)
function R(s, a=missing) # Reward function
    if a me State(4.3)
       return -10
    elseif s -- State(4.6)
       return -5
    elseif s == State(9,3)
       return 10
    elseif s == State(8.8)
       return 3
    return 0
end
abstract type GridWorld <: MDP{State, Action} end
mdp = OuickMDP(GridWorld.
    states = 8.
    actions = A.
    transition T
    reward = R.
    discount = 0.95.
    isterninal = s-assestate(-1,-1));
```

- This code^a defines the entire *Grid World* problem using QuickPOMDPs.jl
 - Just a sneak-peek: we'll walk through this in detail in the Pluto notebooks

^aYes, this is self-contained—copy and paste it into a notebook or REPL!

$\mathrm{M}\,\mathrm{D}\,\mathrm{P}\ \mathrm{solvers}$

A number of ways to solve MDPs are implemented in the following packages.

Package	Online/Offline	State Spaces	Actions Spaces
DiscreteValueIteration.jl	Offline	Discrete	Discrete
LocalApproximationValueIteration.jl	Offline	Continuous	Discrete
GlobalApproximationValueIteration.jl	Offline	Continuous	Discrete
MCTS.jl*	Online	Continuous	Continuous

Table: MDP Solution Methods

* Monte Carlo Tree Search.

When defining your problem, the *type* of state and action space is very important!

REINFORCEMENT LEARNING SOLVERS

Certain problems are better suited in the *reinforcement learning* (RL) domain. Several RL solvers that adhere to the POMDPs.jl interface are implemented in the following packages.

Table: Reinforcement Learning Solution Methods

Package	State Spaces	Actions Spaces	Algorithms Implemented
TabularTDLearning.jl DeepQLearning.jl Crux.jl	Discrete Continuous Discrete/Continuous	Discrete Discrete Discrete/Continuous	Q-learning, SARSA, SARSA-λ DQN, Double DQN, Dueling DQN, Recurrent Q-learning DQN, REINFORCE, PPO, A2C, DDPG, TD3, SAC, Behavior Cloning, GAIL, AdVIL, AdRIL, SQIL, ASAF

When defining your problem, the type of state, action, and observation space is very important!