
MDPs: Markov Decision Processes

JULIA ACADEMY: POMDPS.JL

Decision Making Under Uncertainty

8/24



9/24

What is an MDP?
Definition: MDP. A Markov decision process (MDP) is a problem formulation
that defines how an agent takes sequential actions from states in its environment,
guided by rewards—using uncertainty in how it transitions from state to state.

• Formally, an MDP is defined by the following:

Table: MDP Problem Formulation: 〈S, A, T, R, γ〉

Variable Description POMDPs Interface

S State space POMDPs.states

A Action space POMDPs.actions

T (s′ | s, a) Transition function POMDPs.transition

R(s, a) Reward function POMDPs.reward

γ ∈ [0, 1] Discount factor POMDPs.discount

Remember, an MDP is a problem formulation and not an algorithm.
An MDP formulation enables the use of solution methods, i.e. algorithms.



10/24

MDP Example: Grid World
In the Grid World problem, an agent moves around a grid attempting to collect
as much reward (green cells) as possible, avoiding negative rewards (red cells).

Agent’s current position
(i.e., state)



11/24

MDP: State space
Definition: State space S.
A set of all possible states an agent can be in (discrete or continuous).

Grid World example:
All possible (x, y)

cells in a 10 × 10 grid
(i.e., 100 discrete states)

State
(x, y) of (9, 7)



12/24

MDP: Action space
Definition: Action space A.
A set of all possible actions an agent can take (discrete or continuous).

Grid World example:
The four (discrete)
cardinal directions:
[up, down, left, right]

Take action down

in state (9, 4)



13/24

MDP: Transition function

Definition: Transition function1 T (s′ | s, a).
Defines how the agent transitions from the current state s to the next state s′ when taking action a.
Returns a probability distribution over all possible next states s′ given (s, a).

0.7

0.1

0.1

0.1↑
a

s
Grid World example:

Stochastic transitions (incorporates randomness/uncertainty).
Action a = up from state s.

70% chance of transitioning correctly.
30% chance (10% × 3) of transitioning incorrectly.2

1Sometimes called the transition model.
2i.e., a different action is taken.



14/24

MDP: Reward function

Definition: Reward function1 R(s, a).
A defines the reward an agent receives when taking action a from state s.

Grid World example:
Two cells contain positive rewards

and two cells contain negative rewards,
all others are zero.

1Sometimes called the reward model.



15/24

MDP: Discount factor

Definition: Discount factor γ ∈ [0, 1].
The discount factor controls how myopic (short-sighted) the agent is in its decision making (e.g.,
when γ = 0, the agent only cares about immediate rewards (myopic) and as γ → 1, the agent takes in
potential future information in its decision making process).

(a) Short-sighted
(no reward spread)

(b) Some future
reward1 is spread

(c) Future reward
is nicely spread

(d) Dominated by
the future reward

1The sum of the discounted future rewards is called the utility U(s) or the value V (s) of a state.



16/24

QuickPOMDPs: Grid World
using POMDPs, POMDPModelTools, QuickPOMDPs

struct State; x::Int; y::Int end # State definition

@enum Action UP DOWN LEFT RIGHT # Action definition

𝒮 = [[State(x,y) for x=1:10, y=1:10]..., State(-1,-1)] # State−space

𝒜 = [UP, DOWN, LEFT, RIGHT] # Action−space

const MOVEMENTS = Dict(UP=>State(0,1), DOWN=>State(0,-1), LEFT=>State(-1,0), RIGHT=>State(1,0))

Base.:+(s1::State, s2::State) = State(s1.x + s2.x, s1.y + s2.y) # Helper for applying actions

function T(s, a) # Transition function

R(s) != 0 && return Deterministic(State(-1,-1))

Nₐ = length(𝒜)
next_states = Vector{State}(undef, Nₐ + 1)

probabilities = zeros(Nₐ + 1)

for (i, a′) in enumerate(𝒜)
prob = (a′ == a) ? 0.7 : (1 - 0.7) / (Nₐ - 1)

destination = s + MOVEMENTS[a′]

next_states[i+1] = destination

if 1 ≤ destination.x ≤ 10 && 1 ≤ destination.y ≤ 10

probabilities[i+1] += prob

end

end

(next_states[1], probabilities[1]) = (s, 1 - sum(probabilities))

return SparseCat(next_states, probabilities)

end

function R(s, a=missing) # Reward function

if s == State(4,3)

return -10

elseif s == State(4,6)

return -5

elseif s == State(9,3)

return 10

elseif s == State(8,8)

return 3

end

return 0

end

abstract type GridWorld <: MDP{State, Action} end

mdp = QuickMDP(GridWorld,

states = 𝒮,
actions = 𝒜,
transition = T,

reward = R,

discount = 0.95,

isterminal = s->s==State(-1,-1));

• This codea defines the entire Grid World problem
using QuickPOMDPs.jl

– Just a sneak-peek: we’ll walk through this
in detail in the Pluto notebooks

aYes, this is self-contained—copy and paste it into a notebook or REPL!



17/24

MDP solvers

A number of ways to solve MDPs are implemented in the following packages.

Table: MDP Solution Methods

Package Online/Offline State Spaces Actions Spaces

DiscreteValueIteration.jl Offline Discrete Discrete
LocalApproximationValueIteration.jl Offline Continuous Discrete
GlobalApproximationValueIteration.jl Offline Continuous Discrete
MCTS.jl* Online Continuous Continuous

* Monte Carlo Tree Search.

When defining your problem, the type of state and action space is very important!

https://github.com/JuliaPOMDP/DiscreteValueIteration.jl
https://github.com/JuliaPOMDP/LocalApproximationValueIteration.jl
https://github.com/JuliaPOMDP/GlobalApproximationValueIteration.jl
https://github.com/JuliaPOMDP/MCTS.jl


18/24

Reinforcement learning solvers

Certain problems are better suited in the reinforcement learning (RL) domain. Several RL
solvers that adhere to the POMDPs.jl interface are implemented in the following packages.

Table: Reinforcement Learning Solution Methods

Package State Spaces Actions Spaces Algorithms Implemented

TabularTDLearning.jl Discrete Discrete Q-learning, SARSA, SARSA-λ
DeepQLearning.jl Continuous Discrete DQN, Double DQN, Dueling DQN, Recurrent Q-learning
Crux.jl Discrete/Continuous Discrete/Continuous DQN, REINFORCE, PPO, A2C, DDPG, TD3, SAC,

Behavior Cloning, GAIL, AdVIL, AdRIL, SQIL, ASAF

When defining your problem, the type of state, action, and observation space is very important!

https://github.com/JuliaPOMDP/TabularTDLearning.jl
https://github.com/JuliaPOMDP/DeepQLearning.jl
https://github.com/ancorso/Crux.jl

