Topic: Definite integrals, even functions

Question: If this is the integral of an even function, rewrite the integral.

$$
\int_{-4}^{4} x^{4}-2 x^{2} d x
$$

Answer choices:

A The function isn't even or can't be rewritten.

B The function is even and can be rewritten as

C The function is even and can be rewritten as $\quad 2 \int_{0}^{4} x^{4}-2 x^{2} d x$

D The function is even and can be rewritten as

$$
\begin{aligned}
& \int_{0}^{4} x^{4}-2 x^{2} d x \\
& 2 \int_{0}^{4} x^{4}-2 x^{2} d x \\
& 2 \int_{-2}^{2} x^{4}-2 x^{2} d x
\end{aligned}
$$

Solution: C

In order for us to be able to rewrite the integral, we need to know that the area under the function to the left of the y-axis is equal to the area under the function to the right of the y axis. We can say that these two areas are equal if we can show two things:

1. That the function is even, which means it's symmetrical about the y-axis.
2. That the limits of integration are symmetrical about the y-axis.

We can use simple algebra to determine whether or not the function is even. The way we do this is by substituting $-x$ for x in our original function. If we simplify and the result is equal to our original function, then we know that the function is even.

$$
\begin{aligned}
& f(x)= x^{4}-2 x^{2} \\
& f(-x)=(-x)^{4}-2(-x)^{2} \\
& f(-x)=x^{4}-2 x^{2} \\
& f(x)=f(-x)
\end{aligned}
$$

Since we've shown that $f(x)=f(-x)$, we know that the function is even. We can also easily see that the limits of integration are symmetrical about the y-axis, because the interval is $[-4,4]$, which is in the form $[-a, a]$.

With these two requirements satisfied, we can rewrite the integral, changing the limits of integration from $[-a, a]$ to $[0, a]$ and multiply the integral by 2 . So we get

$$
\begin{aligned}
& \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \\
& \int_{-4}^{4} x^{4}-2 x^{2} d x=2 \int_{0}^{4} x^{4}-2 x^{2} d x
\end{aligned}
$$

Topic: Definite integrals, even functions

Question: If this is the integral of an even function, rewrite the integral.

$$
\int_{0}^{3} x^{2}+18 d x
$$

Answer choices:

A The function is even and can be rewritten as $\int_{0}^{3} x^{2}+18 d x$
B The function isn't even or can't be rewritten.

C The function is even and can be rewritten as

$$
2 \int_{0}^{\frac{1}{2}} x^{2}+18 d x
$$

D The function is even and can be rewritten as

$$
2 \int_{-3}^{0} x^{2}+18 d x
$$

Solution: B

In order for us to be able to rewrite the integral, we need to know that the area under the function to the left of the y-axis is equal to the area under the function to the right of the y axis. We can say that these two areas are equal if we can show two things:

1. That the function is even, which means it's symmetrical about the y-axis.
2. That the limits of integration are symmetrical about the y-axis.

We can use simple algebra to determine whether or not the function is even. The way we do this is by substituting $-x$ for x in our original function. If we simplify and the result is equal to our original function, then we know that the function is even.

$$
\begin{aligned}
& f(x)=x^{2}+18 \\
& \\
& f(-x)=(-x)^{2}+18 \\
& \\
& f(-x)=x^{2}+18 \\
& f(x)=f(-x)
\end{aligned}
$$

Since we've shown that $f(x)=f(-x)$, we know that the function is even. However, the limits of integration are $[0,3]$. Since that doesn't match the form $[-a, a]$, we know that the limits of integration are not symmetrical about the y-axis.

So even though the function is even, we can't rewrite the integral.

