

Episode 2.01		
Episode title:	Cryptography Basics	
Objective:	Overview	

- Cryptography is the practice of disguising information in a way that looks random
- The Caesar cipher is one of the earliest known and simplest ciphers
- The Vigenère cipher employs the Caesar cipher as one element of the encryption process

Episode 2.02	
Episode title:	Data Protection
Objective:	2.1 Explain the importance of security concepts in an enterprise environment.

- Data at rest is housed physically on some kind of computer storage
- Data in use is housed in RAM and being accessed
- Data in transit is moving through cables and wireless transmission

Ephemeral Key

- Temporary
- Provides perfect forward secrecy

Asymmetric Encryption

- Uses a key pair
 - Public key
 - Private key
- Public key is only used to encrypt
- Private key is only used to decrypt

- Ephemeral keys provide perfect forward secrecy due to the temporary nature of the key
- Asymmetric encryption is slow but very useful in exchanging session keys
- Cryptosystems define key properties, communication requirements for the key exchange, and the actions taken through the encryption and decryption process

Symmetric Key Algorithms

- Block
 - Encrypts data in chunks
 - Symmetric block algorithm
 - Data Encryption Standard (DES)

Symmetric Block Algorithms

- DES
- Blowfish
- Triple DES (3DES)
- Defined by
 - Key length
 - Block size
 - Number of rounds

Symmetric Key Cryptosystems

- Streaming
 - Encrypt one bit at a time
 - Popular in wireless networking
 - RC4

- Symmetric block algorithms encrypt data in discrete chunks
- Streaming symmetric algorithms encrypt data one bit at a time
- Block algorithms (or ciphers) include the outdated DES, 3DES, and Blowfish, as well as the currently-used AES
- The most used streaming symmetric cipher is RC4

- ECB block modes will always output the same results with the same input
- A binary block is plain text converted into 16bit, 64-bit, or 128-bit binary ciphertext
- CBC, CFC, OFB, CTR block modes use an initialization vector (IV), which ensure the output block is uniquely different

Factoring

- 12
 - 1 X 12
 - 2 X 6
 - 3 X 4
 - 4 X 3
- 11
 - 1 X 11
 - Prime number

Prime Number Factoring

- 11 X 17
 - Equals 187
 - Semi-prime number
- 100,160,063
 - 10,007 X 10,009
- 182,663,117,011,676,687

CompTIA Security+ (SY0-601) with Mike Meyers and Dan Lachance

- Public keys are paired with a private key (key pair) when using RSA asymmetric cryptography
- ECC can create a smaller key than RSA and provides the same security with increased performance
- Each public key has a single private key, without the private key the information cannot be decrypted

Episode 2.07		
Episode title:	Diffie-Hellman	
Objective:	No objective	

Diffie-Hellman

- Asymmetric algorithm
- Provides a methodology for 2 parties to come up with the same session key

Diffie-Hellman Groups		
Group 1	768-bit modulus	
Group 2	1024-bit modulus	
Group 5	1536-bit modulus	
Group 14	2048-bit modulus	
Group 19	256-bit elliptic curve	
Group 20	384-bit elliptic curve	
Group 21	521-bit elliptic curve	

- Diffie-Hellman is an asymmetric algorithm often referred to as a key exchange agreement
- Diffie-Hellman groups help by defining the size or type of key structure to use
- Diffie-Hellman can have very large keys

- Hashes are one-way, deterministic, and will produce the same results each time the source is hashed
- The length of the source data does not matter; the hash will be the same exact size
- Hashes are involved with password storage and encryption

Episode 2.09		
Episode title:	Understanding Digital Certificates	
Objective:	2.8 Summarize the basics of cryptographic concepts. 3.9 Given a scenario, implement public key infrastructure.	

- Digital signatures verify that the person who sent the public key legitimately owns the private key
- Digital certificates include verification from a third party to authenticate the owner of the digital signature

Episode 2.10	
Episode title:	Trust Models
Objective:	3.9 Given a scenario, implement public key infrastructure.

- Web of trust uses a network of mutuallytrusting peers
- Public key infrastructure (PKI) uses a hierarchical structure with certificate authorities (CAs) and intermediate CAs

- X.509 is a method to query systems that store certificates and also includes standards for constructing digital certificates
- Public Key Cryptography Standards (PKCS) gives details on digital certificate construction and use
- Certificate authorities (CAs) or registration authorities (RAs) identify and authenticate individuals registering for certificate; the middle entities are called intermediate CAs, the entity at the top of the hierarchy is called the root CA
- A self-signed certificate is one that is authorized by the same entity who registers for the digital certificate (these should not be trusted outside an internal network)

Episode 2.12	
Episode title:	Certificate Types
Objective:	3.9 Given a scenario, implement public key infrastructure.

- Digital certificates store a public key with a digital signature, personal information about the resources, and a second digital signature from a trusted third party
- Digital certificates come in many forms including Web (which includes DV, EV, wildcard, and SAN), e-mail, code-signing, machine/computer, and user

- Expired certificates are included in a certificate authority's published list called a certificate revocation list (CRL)
- P7B files include the certificate and chain certificates, no private key
- P12 files include the certificate, chain certificates, and the private key

- Cryptographic attacks can be put into three main categories: attack the algorithm, implementation, or key
- Attacking the algorithm is nearly impossible for the most up-to-date standards, as crackable algorithms are usually taken out of production
- Attacking the implementation means taking advantage of weaknesses in how the connection is made
- Attacking the key means somehow figuring out the key in order to break in

Usernames and Hashed Passwords

username	password hash
root	098f6bcd4621d373cade4e832627b4f6
daemon	501be90e7a4210727034c38555d78490
sys	d00d84d04a6091922be5cd06457f9cfa
user1	437b930db84b8079c2dd804a71936b5f
user2	8277e0910d750195b448797616e091ad

Salting

- Password
 - Timmy123
- Salted password
 - Timmy123Krj8e00
- Salted password hash
 - 075E8E6B3F2A84E12FCA6AB15722E65B3726119E3AD 57AB4EBF61638CA7836CF

- Passwords are usually stored in hash format, making them difficult to crack
- Brute-force attacks try character combinations
- Dictionary attacks use lists of probable passwords
- Rainbow tables use pre-calculated hashes of passwords
- Salting and key stretching adds another layer of obfuscation, making passwords even harder to crack than just hashing

