lid wua dljLbyl vuuii Y
aailall aeil

«f/ \\

A

\\? laa ama

$9in aiYc haa aule Glha)all AAlg despull dexljall wlall 1aa
alaguaiall wa aa pii ais laa 720 ga Jél wlc
dlaglea auas puai dlead wgu haa allc alaic)ig Jlaeiw)i
opuis alpig
MalS gujall giasd Gambiia culc qag
sraall Gailall aeil élidll 4S)jlhag L1y Jac vuniiy

AaSilca jga Liguuii Y
ProgrammingAdvices.com S
g Mohammed gbu-Hadhoud % ' S
& - ,‘
' rROGRAMMING
4((2 P ADVITES RN

ProgrammingAdvices.com

PRINGIPLES

Dr. Mohammed Abu-Hadhoud
DBA, MBA, PMOC, PGMP*®, PMP*, PMI-RMP*, CM, ITILF, MCPD, MCSD

Dependency
Inversion
Principle (DIP)

5 Solid Principles

Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
rammingAdivces.com

EEEEEEEE Prog

nnnnnnnn

DBA,MBA, PNOC, PgMP, PP, PMI-RMPO, CM, ITILF, MCPD, MCSD
28+ years of experience

ProgrammingAdvices.com

SOLID
PRINGIPLES

Dr Mahammed Abu-Hadhoud

A, MBA, PMOC, PgMP®, PMP*, PMI-RMP®, CM, ITILF, MCPD, MCSD

Analogies

Analogy 1: Electrical Outlet.

Think of the electrical outlets in your home. These outlets are
designed to provide power to any appliance whether it's a toaster, a
TV, or a computer. The outlet doesn’t need to be modified for each
appliance.

Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
ProgrammingAdivces.com =

Now Imagin:

The outlet doesn’t need to be modified for each appliance; it simply
provides electricity through a standard plug interface.

In this case, the electrical outlet is the high-level module, and the
appliances are the low-level modules. The outlet doesn't need to know
the specifics of the appliances (what they do or how they work), just
that they follow the standard plug interface.

Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
ProgrammingAdivces.com

Dependency Inversion Principle (DIP)

In DIP terms: The outlet (high-level) doesn't
depend on specific appliances (low-level), and
both rely on the abstraction of a standard plug.

p PROGRAMMING Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
AV -

nnnnnn
@E»% i Programmin gAdivces .com . DA ,MBA, PMOC, PgMPO , PMPO, PMI-RMPO , CM, ITILF , MCPD, MCSD

Analogy 2: Device Charger.

USBTYPEA USBTYPES USB MICRO B SUPER SPEED

N

USBMCROA USBMCROB

Imagine if every phone/device had a unique charging port, and you
needed a different charger for each device. That would be
inconvenient.

Copyright® 2024 Dr. Mohammed Abu-Hadhoud
ProgrammingAdivces.com DBA,MBA, PMOC, PgHPO, PMPO, PMI-RMPO, CM, ITILF, MCPD, MCSD
28+ years of experience

Now Imagin:

Device : Phone, Laptop, Headphone ..etc

Now think of how USB chargers workOthey create a standard, and any
phone with a USB port can use the same charger, regardless of the
brand. The charger and phone depend on the same abstraction (the USB
standard) rather than on each other’s specifics.

Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
ProgrammingAdivces.com

Dependency Inversion Principle (DIP)

DIP promotes this kind of flexibility, where
classes rely on abstract concepts (interfaces)
instead of concrete details, making your code
adaptable to different implementations.

Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
ProgrammingAdivces.com

Analogy 3: Electrical Adapter.

Imagine you are traveling to a foreign country where the wall sockets
are different. You need to buy new appliances!

P PROGRAMMING Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
ADV =

LEARN THE Programmin gAdivces .com . DB ,MBA, PMOC, PgMPO , PMPO, PMI-RMPO , CM, ITILF , MCPD, MCSD
........

Now Imagin:

Instead of buying new appliances, you get a universal adapter that
works with any socket, regardless of the type. The adapter creates an
abstraction, allowing your devices to work anywhere without being
tightly coupled to the specifics of one country’s electrical system.

Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
ProgrammingAdivces.com DBA,MBA, PMOC, PgMPO, PMPO, PMI-RMPO, CM, ITILF, MCPD, MCSD

28+ years of experience

Dependency Inversion Principle (DIP)

In software, DIP works similarly. Instead of
tightly coupling your high-level code to specific
implementations (like only supporting one kind of
socket), you depend on abstractions (like the
adapter), which makes the system more flexible
and adaptable to changes.

What is DIP?

* High-level modules should not depend on low-
level modules. Both should depend on
abstractions (e.g., interfaces or abstract
classes).

 DIP encourages the decoupling of software
modules by ensuring that both high-level and
Llow—-level modules depend on abstractions, making
your code more flexible and easier to maintain.

p‘ PROGRAMMING Copyrighte 2024 Dr. Mohammed Abu-Hadhoud
AV -

nnnnnn
@E»% i Programmin gAdivces .com . DA ,MBA, PMOC, PgMPO , PMPO, PMI-RMPO , CM, ITILF , MCPD, MCSD

26+ Years of Experience =
AR\l IR
_Lu/ Y, u& E’k RIGHT WAY

Mohammmed Abu Hndhoud ; P PROGRAMMING

| MBA.PMOC, PgMP®, PMWPE, PMI-RMP®, CM. ITILF, MCPD. MCSD :

