

Essential Algorithms and Data Structures
for Computational Design in Grasshopper

Second Edition

Rajaa Issa
Robert McNeel & Associates

The Essential Algorithms and Data Structures for Computational Design in Grasshopper,
Second edition, by Robert McNeel & Associates, 2024 is licensed under a Creative Commons
Attribution-Share Alike 3.0 United States License.

1

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

Table of Contents
Preface​ 4
Chapter One: Algorithms and Data​ 5

1_1: Algorithmic design​ 5
1_2: Algorithms parts​ 5
1_3: Designing algorithms: the 4-step process​ 7
1_4: Data​ 12
1_5: Data sources​ 12
1_6: Data types​ 13
1_7: Processing data​ 16

1_7_1: Numeric operations​ 16
1_7_2: Logical operations​ 17
1_7_3: Data analysis​ 18
1_7_4: Sorting​ 18
1_7_5: Selection​ 19
1_7_6: Mapping​ 20

1_8: Pitfalls of algorithmic design​ 23
1_8_1: Invalid or wrong input type​ 23
1_8_2: Unintended input​ 24
1_8_3: Incorrect order of operation​ 25
1_8_4: Mismatched data structures​ 25
1_8_5: Long processing time​ 26
1_8_6: Poor organization​ 27

1_9: Algorithms tutorials​ 27
1_9_1: Unioned circles tutorial​ 27
1_9_2: Sphere with bounds tutorial​ 29
1_9_3: Data operations tutorial​ 30
1_9_4: Algorithmic pitfalls tutorial​ 32

Chapter Two: Introduction to Data Structures​ 33
2_1: Overview​ 33
2_2: Generating lists​ 34
2_3: List operations​ 37
2_4: List matching​ 41
2_5: Data structures tutorials​ 45

2_5_1: Variable thickness pipe tutorial​ 45
2_5_2: Custom list matching tutorial​ 47
2_5_3: Simple truss tutorial​ 48
2_5_4: Pearl necklace tutorial​ 50

Chapter Three: Advanced Data Structures​ 53

2

3_1: The Grasshopper data structure​ 53
3_1_1 Introduction​ 53
3_1_2 Processing data trees​ 53
3_1_3 Data tree notation​ 55

3_2: Generating trees​ 57
3_3: Tree matching​ 60

3_3_1: Item-to-tree matching​ 60
3_3_2: Short-list-to-tree matching​ 61
3_3_3: Long-list-to-tree matching​ 62
3_3_4: Tree-to-tree matching​ 62

3_4: Traversing trees​ 64
3_5: Basic tree operations​ 66

3_5_1: Viewing the tree structure​ 66
3_5_2: List operations on trees​ 67
3_5_3: Grafting from lists to a trees​ 69
3_5_4: Flattening from trees to lists​ 70
3_5_5: Combining data streams​ 71
3_5_6: Flipping the data structure​ 71
3_5_7: Simplifying the data structure​ 72

3_6: Advanced tree operations​ 76
3_6_1: Relative items​ 76
3_6_2: Split trees​ 81
3_6_3: Path mapper​ 86

3_7: Advanced data structures tutorials​ 92
3_7_1: Sloped roof tutorial​ 92
3_7_2: Diagonal triangles tutorial​ 95
3_7_3: Zigzag tutorial​ 96
3_7_4: Truss with plates tutorial​ 97
3_7_5: Weaving tutorial​ 100

3

Preface
The Essential Algorithms and Data Structures for Computational Design introduces
effective methodologies to develop complex 3D modeling algorithms using Grasshopper. It also
covers extensively the data structure adopted by Grasshopper and its core organization and
management tools.

The material is directed towards designers who are interested in parametric design and have
little or no background in programming. All concepts are explained visually using
Grasshopper® (GH), the generative modeling environment for Rhinoceros® (Rhino). This book
is not intended as a beginners guide to Grasshopper in terms of user interface or tools. Basic
knowledge of the interface and workflow is assumed. For more resources and getting started
guides, go to the learn section in www.rhino3d.com.

The content is divided into three chapters. Chapter 1 discusses algorithms and data. It
introduces a rigorous methodology to help create and manage parametric solutions. It also
introduces basic data concepts such as data types, sources and common ways to process
them. Chapter 2 reviews basic data structures in Grasshopper. That includes single items and
lists. Chapter 3 includes an in-depth review of the tree data structure in Grasshopper and
practical applications in design problems. All Grasshopper examples and tutorials are written
with Rhinoceros version 6 and are included in the download.

Rajaa Issa
Robert McNeel & Associates

4

http://www.rhino3d.com

Chapter One: Algorithms and Data

Algorithms and data are the two essential parts of any parametric design solution, but writing
algorithms is not trivial and requires a skill that does not come easy to intuitive designers. The
algorithmic design process is highly logical and requires explicit statements of the design intention and
the steps to achieve them. This chapter introduces a methodology to help creative designers develop
new algorithmic solutions. All algorithms involve manipulating data and hence Algorithms and Data are
tightly connected. We will introduce the basic concepts of data types and processes.

1_1: Algorithmic design

We can define algorithmic design as a design method where the output is achieved through
well-defined steps. In that sense, many human activities are algorithmic. Take, for example, baking a
cake. You get the cake (output) by using a recipe (well-defined steps). Any change in the ingredients
(input) or the baking process results in a different cake. We will analyze the parts of typical algorithms,
and identify a strategy to build algorithmic solutions from scratch.

Regardless of its complexity, all algorithmic solutions have 3 building blocks: input, key process, and
output. Note that the key process may require additional input and processes.

​
Figure (1): The building blocks of algorithmic solutions

Throughout this text, we will organize and label the solutions to identify the three blocks clearly. We
will also use consistent color coding to visually distinguish between the parts. This will help us become
more comfortable with reading algorithms and quickly identify input, key processing steps, and
properly collect and display output. Visual cues are important to develop fluency in algorithmic
thinking.

In general, reading existing algorithmic solutions is relatively easy, but building new ones from scratch
is much harder and requires a new set of skills. While it is useful to know how to read and modify
existing solutions, it is essential to develop algorithmic design skills to build new solutions from
scratch.

1_2: Algorithms parts
In Grasshopper, a solution flows from left to right. At the far left are input values and parameters, and
the far right has the output. In between are one or more key processes, and sometimes additional

5

input and output. Let’s take a simple example to help identify the three parts of any algorithm (input,
key process, output). The simple addition algorithm includes two numbers (input), the sum (output)
and one key process that takes the numbers and gives the result. We will use purple for the input,
maroon for the key processes and light blue for the output. We will also group and label the different
parts and adhere to organizing the Grasshopper solutions from left to right.

Example 1-2-1:
Algorithm to add 2 numbers

Algorithms may involve intermediate processes. For example, suppose we need to create a circle
(output) using a center and a radius (input). Notice that the input is not sufficient because we do not
know the plane on which the circle should be created. In this case, we need to generate additional
information, namely the plane of the circle. We will call this an intermediate process and use brown
color to label it.

Example 1-2-2:
Algorithm to create a circle on the XY-Plane from a center and a radius

Some solutions are not written with styles and hence are hard to read and build on. It is very important
that you take the time to organize and label your solutions to make them easier to understand, debug
and use by others.

Tutorial 1-2-3: Read existing algorithm
Given the following definition, write a description of what the algorithm does, identify input, the main process(s) and output,
then label and color-code all the parts. Re-write the solution to make it more readable.

6

Solution

In order to figure out what the algorithm is meant to do, we need to group the input on the left side, and collect the
output on the right side, then organize the processes in the order of execution. We then step through the solution
from left to right to deduce what it does. We can examine and preview the output in each step.

The example of the tutorial is meant to create a circle that is twice as large as another circle that goes through
three given points. One of the points is constructed out of its 3 coordinates.

1_3: Designing algorithms: the 4-step process

Before we generalize a method to design algorithms, let’s examine an algorithm we commonly use in
real life such as baking a cake. If you already have a recipe for a cake, you simply get the
recommended ingredients, mix them, pour in a pan, put in a preheated oven for a certain amount of
time, then serve. If the recipe is well documented, then it is relatively straightforward to use. As you
become more proficient in baking cakes, you may start to modify the recipe. Perhaps add new
ingredients (chocolate or nuts) or use different tools (cupcake container).

​
Figure (2): Steps to follow existing recipe

When designers write algorithms, they typically try to search for existing solutions and modify them to
fit their purposes. While this is a good entry point, using existing solutions can be frustrating and
time-consuming. Also, existing solutions have their own flavor and that may influence design decisions
and limit creativity. If designers have unique problems, and they often do, they have no choice but to
create new solutions from scratch; albeit a much harder endeavor.

Back to our example, the task of baking a cake is much harder if you don’t have a recipe to follow and
have not baked one before. You will have to guess the ingredients and the process. You will likely end
up with bad results in the first few attempts, until you figure it out! In general, when you create a new
recipe, you have to follow the process in reverse. You start with an image of the desired cake, you
then guess the ingredients, tools and steps. Your thinking goes along the following lines:

7

-​ The cake needs to be baked, so I need an oven and time,
-​ What goes in the oven is a cake batter held by a container,
-​ The batter is a mix of ingredients

​
Figure (3): Steps to invent a new recipe from scratch

We can use a similar methodology to design parametric algorithms from scratch. Keep in mind that
creating new algorithms is a “skill” and it requires patience, practice and time to develop.

Algorithmic thinking in 3D modeling vs parametric design
3D modeling involves a certain level of algorithmic thinking, but it has many implicit steps and data.
For example designing a mass model using a 3D modeler may involve the following steps:

1- Think about the output (e.g. a mass out of few intersecting boxes)
2- Identify a command or series of commands to achieve the output (e.g. run Box command a few
times, Move, Scale or Rotate one or more boxes, then BooleanUnion the geometry).

At that point, you are done!

Data such as the base point for your initial box, width, height, scale factor, move direction, rotation
angle, etc. are requested by the commands, and the designer does not need to prepare ahead of time.
Also, the final output (the boolean mass) becomes directly available and visible as an object in your
document.

​
Figure(4): Interactive 3D modeling to create and manipulate geometry uses visual widgets and guides

Algorithmic solutions are not interactive and require explicit articulation of data and processes. In the
box example, you need to define the box orientation and dimensions. When copying, you need a
vector and when rotating you need to define the plane and angle of rotation.

8

Figure(5): Algorithmic solutions involve explicit definition of geometry, vectors and transformations

Designing algorithms
Designing algorithms requires knowledge in geometry, mathematics and programming. Knowledge in
geometry and mathematics is covered in the Essential Mathematics for Computational Design . As 1

for programming skills, it takes time and practice to build the ability to formulate design intentions into
logical steps to process and manage geometric data. To help get started, it is useful to think of any
algorithm as a 4-step process as in the following:

Output 1- Clearly identify the desired outcome

Key processes 2- Identify key steps to reach the outcome

Input 3- Examine initial data and parameters

Intermediate steps 4- Define intermediate parameters and processes to generate additional
data

Thinking in terms of these 4 steps is key to developing the skill of algorithmic design. We will start with
simple examples to illustrate the methodology, and gradually apply more complex examples.

Example 1-3-1: Add two numbers
Use the 4-Step process to write an algorithm to add two numbers

Step 1: Output:
The sum of the 2 numbers

Use a Panel to collect the
sum

1 Issa, Essential Mathematics for Computational Design, 4th edition, 2019. Free download of the PDF and
examples: https://www.rhino3d.com/download/rhino/6/essentialmathematics

9

https://www.rhino3d.com/download/rhino/6/essentialmathematics

Step 2: Key process:
Addition.

Use the Addition
component that takes 2
numbers and gives the sum

Step 3: Input:
2 numbers.

Use a Panel to hold and
view the values of input
numbers.

Example 1-3-2: Create a circle
Use the 4-Step process to create a circle from a given center and radius

Step 1: Output:
Circle.
Use the Circle parameter to
collect the output.

Step 2: Key process:
Identify a key process that
generates a circle from a
radius.
Use the Circle component in
Grasshopper.

Step 3: Input:
Use the given input (center
and radius). Feed the radius
to the Circle component.

10

Step 4: Intermediate
process:
The circle needs a center,
and also the plane on which
the circle is located. Let’s
assume the circle is on a
plane parallel to the
XY-Plane and use the circle
center as the origin of the
plane.

Example 1-3-3: Create a line
Use the 4-Step process to create an algorithm to generate a line from 2 points. One point is referenced from Rhino, and the
other is created using three coordinates (x=1, y=0.5 and z=3).

Step 1: Output:
The line geometry. Use the
Geometry parameter to
collect the output.

Step 2: Key process:
Identify a key process that
generates a line from 2
points. Use the Line
component in Grasshopper.

Step 3: Input:
Use the given input (a
referenced point and 3
coordinates). Feed one point
to one of the ends of the line.

11

Step 4: Intermediate
process:
Before we can use the
coordinates as a point, we
need to construct a point.

In more complex algorithms, we will need to analyze the problems, investigate possible solutions and
break them down to pieces whenever possible to make it more manageable and readable. We will
continue to use the 4-step process and other techniques to solve more complex algorithms throughout
the book.

1_4: Data

Data is information stored in a computer and processed by a program. Data can be collected from
different sources, it has many types and is stored in well defined structures so that it can be used
efficiently. While there are commonalities when it comes to data across all scripting languages, there
are also some differences. This book explores data and data structures specific to Grasshopper.

1_5: Data sources

In Grasshopper, there are three main ways to supply data to processes (or what is called
components): internal, referenced and external.

Data sources in Grasshopper

1- Internally set data
Data can be set inside any instance of a parameter. Once set, it remains constant, unless
manually changed or overridden by external input. This is a good way when you do not
generally need to change the data after it is set (constant). Data is stored inside the GH file.​

2- Referenced data
Data can be referenced from Rhino or some external document. For example, you can
reference a point created in a Rhino document. When you move the point in Rhino, its
reference in Grasshopper updates as well. Grasshopper files are saved separately from
Rhino files, and hence if the GH file has referenced data, the Rhino file needs to be saved

12

and passed along with the GH file to avoid any loss of data.​

3- Externally supplied data
Data can be supplied from previous processes. This method is best suited for dynamic data or
data controlled parametrically. Externally supplied data to a parameter takes precedent over
the internal or referenced values (when both exist).​

1_6: Data types

All programming languages identify the kind of data used in terms of the values that can be assigned
to and the operations and processes it can participate in. There are common data types such as
Integer, Number, Text, Boolean (Boolean type can be set to True or False), and others.
Grasshopper lists those under the Params > Primitives tab.

​
Figure (6): Examples of primitive data types common to all programming languages

Grasshopper supports geometry types that are useful in the context of 3D modeling such as Point (3
numbers for coordinates), Line (2 points), NURBS Curve, NURBS Surface, Brep, and others. All
geometry types are included under the Params> Geometry tab in GH.

13

​
Figure (7): Examples of geometry data types

There are other mathematics types that designers do not usually use in 3D modeling, but are very
common in parametric design such as Domains, Vectors, Planes, and Transformation Matrices.
GH provides a rich set of tools to help create, analyze and use these types. To fully understand the
mathematical as well as geometry types such as NURBS curves and surfaces, you can refer to the
Essential Mathematics for Computational Design book by the author.

​
Figure (8): Examples of data types common in computer graphics

The parameters in GH can be used to convert data from one type to another (cast). For example if you
need to turn a text into a number, you can feed your text into a Number parameter. If the text cannot
be converted, you’ll get an error.

14

​
Figure (9): Data conversion (casting) inside parameters in Grasshopper

Grasshopper components internally convert input to suitable types when possible. For example, if you
feed a “text” to Addition component, GH tries to read the text as a number. If a component can
process more than one type, it uses the input type without conversion. For example, equality in an
expression can compare text as well as numbers. In such cases, make sure you use the intended type
to avoid confusion.

​
Figure (10): Some operations can be performed on multiple types. Cast to the intended type especially if the component is

capable of processing multiple types (such as Expression in GH)

It is worth noting that sometimes GH components simply ignore invalid input (null or wrong type). In
such cases, you are likely to end up with an unexpected result and it will be hard to find the bug. It is
very important to verify the output from each component before using it.

​
Figure (11): Invalid input is ignored and a default value is used. For example a number inside a Panel component can be

interpreted as a text and hence become invalid input to an Addition component

15

1_7: Processing data
Algorithmic designs use many data operations and processes. In the context of this book, we will
focus on five categories: numeric and logical operations, analysis, sorting and selection.

1_7_1: Numeric operations
Numeric operations include operations such as arithmetic, trigonometry, polynomials and complex
numbers. GH has a rich set of numeric operations, and they are mostly found under the Math tab.
There are two main ways to perform operations in GH. First by using designated components for
specific operations such as Addition, Subtraction and Multiplication.

​
Figure (12): Examples of numeric operations components in GH

Second, use an Expression component where you can combine multiple operations and perform a
rich set of math and trigonometry operations, all in one expression.

​
Figure (13): Expression component in GH can be used to perform multiple operations

The Expression component is more robust and readable when you have multiple operations.

​
Figure (14): When a chain of operations is involved, using the Expression component is easier to maintain

Input to Expressions can be treated as text depending on the context.

16

​
Figure (15): Expression can process and format text

It is worth mentioning that most numeric input to components allow writing an expression to modify the
inputs inline. For example, the Range component has N (number of steps) input. If you right mouse
click on “N”, you can set an expression. You always use “x” to represent the supplied input regardless
of the name.

​
Figure (16): Expression can be set inside the input parameter. Variable “x” refers to the supplied input value

1_7_2: Logical operations
Main logical operations in GH include equalities, sets and logic gates.

​
Figure (17): GH has multiple components to perform Logical operations

17

Logical operations are used to create conditional flow of data. For example, if you like to draw a
sphere only when the radius is between two values, then you need to create a logic that blocks the
radius when it is not within your limits.

​
Figure (18): Data flow control using logical operations

1_7_3: Data analysis
There are many tools in GH to examine and preview data. Panel is used to show the full details of the
data and its structure, while the Parameter Viewer shows the data structure only. Other analysis
components include Quick Graph that plots data in a graph, and Bounds to find the limits in a given
set of numbers (the min and max values in the set).

​
Figure (19): Some of the ways to analyze data in Grasshopper

1_7_4: Sorting
GH has designated components to sort numeric and geometry data. The Sort List component can
sort a list of numeric keys. It can sort a list of numbers in ascending order or reverse the order. You
can also use the Sort List component to sort geometry by some numeric keys, for example sort
curves by length. GH has components designated to sort geometry sets such as Sort Points to sort
points by their coordinates.

18

​
Figure (20): Sorting numbers in Grasshopper

1_7_5: Selection
3D modeling allows picking specific or a group of objects interactively, but this is not possible in
algorithmic design. Data is selected in GH based on the location within the data structure, or by a
selection pattern. For example List Item component allows selecting elements based on their indices.

​
Figure (21): Select items from a list in Grasshopper

The Cull Pattern component allows using some repeated patterns to select a subset of the data.

​
Figure (22): An example to select every other item in a list

19

As you can see from the examples, selecting specific items or using cull components yield a subset of
the data, and the rest is thrown away. Many times you only need to isolate a subset to operate on,
then recombine back with the original set. This is possible in GH, but involves more advanced
operations. We will get into the details of these operations when we talk about advanced data
structures in chapter 3.

1_7_6: Mapping
That refers to the linear mapping of a range of numbers where each number in a set is mapped to
exactly one value in the new set. GH has a component to perform linear mapping called ReMap. You
can use it to scale a set of numbers from its original range to a new one. This is useful to scale your
range to a domain that suits your algorithm’s needs and limitations.

​
Figure (23): An example of linear remapping of numbers in Grasshopper

Converting data involves mapping. For example, you may need to convert an angle unit from degrees
to radians (GH components accept angles in radians only).

​
Figure (24): Convert angles from degrees to radians

As you know, parametric curves have “domains” (the range of parameters that evaluate to points on
the curve). For example, if the domain of a given curve is between 12.5 to 51.3, evaluating the curve

20

at 12.5 gives the point at the start of the curve. Many times you need to evaluate multiple curves using
consistent parameters. Reparameterizing the domain of curves to some unified range helps solve this
problem. One common domain to use is “0 To 1”. At the input of each curve in any GH component,
there is the option to Reparameterize which resets the domain of the curve to be “0 to 1”.

​
Figure (25): Normalize the domain of curves (set to 0-1). Use Reparameterize input flag in Grasshopper

Tutorial 1-7-A: Flow control
What is the purpose of the following algorithm? Notate and color code to describe the purpose of each part.

Analyze the algorithm

The algorithm has an output that is a sphere, a radius input and some conditional logic to process the radius.​

Notate and color-code the solution

From testing the output and following the steps of the solution it becomes apparent that the intention is to make
sure that the radius of the sphere cannot be less than 1 unit.
Test with radius > 1

Test with radius < 1

21

Tutorial 1-7-B: Data processing
Given a list of point coordinates, do the following:
1- Analyze the list to understand the data.
2- Write an algorithm to convert the list of Numbers to a list of Points. Also change the domain of coordinate values to be
between 3 and 9.
Note that the input list is organized so that the first 3 numbers refer to the x,y,z of the first point, the second 3 numbers
belong to the second point and so on.

Algorithm analysis

There are 2 inputs: a list of 51 numbers
(3 coordinates for each point implies the
list includes 17 points)

Using a QuickGraph, we can see that
the numbers are between 2.60 and
15.89. We can also see that the values
are distributed randomly.

The other input is the target domain:

Use the 4-step process to solve the algorithms

Output: List of points

Use Parameter Viewer to view the
resulting data structure. To start, it will
be empty

Key Process #1 Remap Coordinates:
Map the coordinates list from its current
domain (2.60 to 15.89) to a new domain
(3.0 to 9.0)
Use ReMap component to achieve that

22

Intermediate processes #1
The input domain is missing and can be
extracted using Bounds component

Key Process #2 Construct Points:
Construct points from coordinates
Use Construct Point (Pt) component

Intermediate processes #2
Extract all X coordinates as one list, Y
in another and Z in the third. Use Cull
Pattern component with appropriate
pattern to extract each coordinate as a
separate list.

The input to Cull is the remapped
points from process #1

Putting it all together

1_8: Pitfalls of algorithmic design
Writing elegant algorithms that are efficient and easy to read and debug is hard. We explained in this
chapter how to write algorithms with style using color-coding and labeling. We also articulated a 4-step
process to help develop algorithms. Following these guides help minimize bugs and improve the
readability of the scripts. We will list a few of the common issues that lead to incorrect or unintended
results.

1_8_1: Invalid or wrong input type
If the input is of the wrong type or is invalid, GH changes the color of components to red or orange to
indicate an error warning, with feedback about what the issue might be. This is helpful, but sometimes

23

faulty input goes unnoticed if the components assign a default value, or calculate an alternative value
to replace the input, that is not what was intended. It is a good practice to always double check the
input (hook to a panel or parameter viewer and label the input). To avoid using wrong types, it is
advisable to convert to the intended type to ensure accuracy.​

​
Figure (26): Error resulting from wrong input type

1_8_2: Unintended input
Input is prone to unintended change via intermediate processes or when multiple users have writing
access to the script. It is very useful to preview and verify all key input and output. The Panel
component is very versatile and can help check all types of values. Also you can set up guarding logic
against out of range values or to trap undesired values.

​
Figure (27): Error resulting from unintended input. Cannot assume curve domain is 0-1 and use 0.5 to evaluate the midpoint.

​
Figure (28): Example of a robust solution to evaluate the midpoint of a curve

24

1_8_3: Incorrect order of operation
You should try to organize your solutions horizontally or vertically to clearly see the sequence of
operations. You should also check the output from each step to make sure it is as expected before
continuing on your code. There are also some techniques that help consolidate the script, for example
use Expression when multiple numeric and math operations are involved. The following highlights
some unfavorable organization.

​
Figure (29): Easy to confuse input to operations with poor organization

The following shows how to rewrite the same code to make it less error prone.

​
Figure (30): Best practices to align input with processes, or use Expressions

1_8_4: Mismatched data structures
The issue of mismatched data structures as input to the same process or component is particularly
tricky to guard against in GH, and has the potential to spiral the solution out of memory. It is essential
to test the data structure of all input (except trivial ones) before feeding into any component. It is also
important to examine desired matching under different scenarios (data matching will be explained at
length later).

25

​

​
Figure (31): Mismatched data structures of input can cause errors in the output

1_8_5: Long processing time
Some algorithms are time consuming, and you simply have to wait for it to process, but there are ways
to minimize the wait when it is unnecessary. For example, at the early cycles of development, you
should try to use a smaller set of data to test your solution with before committing the time to process
the full set of data. It is also a good practice to break the solution into stages when possible, so you
can isolate and disable the time consuming parts. Also, it is often possible to rewrite your solution to
be more optimized and consume less time. Use the GH Profiler to test processing time. When a
solution takes far too long to process or crashes, you should do the following: before you reopen the
solution, disable it, and disconnect the input that caused the crash.

​

​
Figure (32): Grasshopper Profiler widget helps observe processing time

26

1_8_6: Poor organization
Poorly organized definitions are not easy to debug, understand, reuse or modify. We can’t stress
enough the importance of writing your definitions with styles, even if it costs extra time to start with.
You should always color code, label everything, give meaningful names to variables, break repeated
operations into modules and preview your input and output.

​

​
Figure (33): Poor organization in visual programming make the code hard to read and debug

1_9: Algorithms tutorials
1_9_1: Unioned circles tutorial
Use the 4-step process to design an algorithm that combines 2 circles, given the following:
Both circles are located on the XY-Plane. The first circle (Cir1) has a center (C1) = (2,2,2) and radius (R1) that is equal to a
random number between 3 and 6. The second circle (Cir2) has a center (C2) that is shifted to the right of the first circle (Cir1)
by an amount equal to the radius of the first circle (R1) along the positive X-Axis. The second circle radius (R2) is 20%
bigger, or in other words (R2) = (R1) * 1.2.

Analyze the question and the flow of the solution

There are 2 inputs: the coordinates of the center of the first circle (2,2,2) and the XY-Plane where both circles are
located. Also, we know that the second circle is shifted the positive X-Axis direction, The following diagram shows
an overview of the solution:

Solution steps

27

Output

Curve for the region union

Key Process: union of 2 circles

Use the Region Union component that
takes curves and a plane

Input to the region union

Identify the input needed and use given
input when relevant.

The plane for region union has been
given. The 2 circles need their own
plane and radius. The center of the
plane is the center of the circle.

Intermediate process to generate the
center and plane of the 1st circle

Construct a center from the given
coordinates. Create a plane using
Plane Origin component and use the
constructed center and XY-Plane

The radius is from a random number
between 3 and 6. Use Random
component to create the radius

Intermediate process to generate the
center and plane of the 2nd circle

Calculate the 2nd circle plane by
moving the first circle plane along the
x-axis by an amount = first radius

Calculate the 2nd circle radius by
multiplying the first radius by 1.2

28

Put it all together

1_9_2: Sphere with bounds tutorial
Use the 4-step process to draw a sphere with a radius between 2 and 6. If input is less than 2, then set the radius to 2, and if
input radius is greater than 6, set the radius to 6. Use a number slider to input the radius and set between 0 and 10 to test. ​
Make sure your solution is well organized, color-coded and labeled properly.

The 4-step process to solve the algorithm

Output
The sphere as geometry

Key Process: create a sphere
Use the Sphere component to create a
sphere from a base plane and radius

Input
1- The radius parameter (0 - 10)
2- The bounds of the radius are 2 & 6

Intermediate processes #1
Construct a selection logic of radii and pattern. The radii is a list of the values from the slider, min and max.
The list of pattern is generated to select the correct radius value

29

Intermediate processes #2
The selection logic ensures that the radius value falls within the intended range. If the radius input is less than the
minimum value of the bounds, then the radius is set to the min value, and if it is greater than the maximum, then
the max value is used instead.

1_9_3: Data operations tutorial
Given the numbers embedded in the Number parameter, do the following:
1- Analyze input in terms of bounds and distribution
2- View the data and how it is structured
3- Extract even numbers
4- Sort numbers descending
5- Remap sorted numbers to (100 to 200)

Solution

1- Analyze the input bounds and
distribution

Use the QuickGraph to show that the
set of numbers are between 3 and 98
and are distributed randomly.

30

2- Analyze the input data structure
and values

Use the Panel and Parameter Viewer
to show that there are 16 elements
organized in a list

3- Extract Even numbers

Create the logic to test if a number is
even (divisible by 2 without a
remainder) and use Dispatch to extract
even numbers

4- Sort numbers descending

The Sort List component sorts
numbers in ascending order. Use
Reverse List component to further
process the list to order descending

5- Remap to 100-200

Check the input range and use Remap
component to scale data to be between
100-200

31

1_9_4: Algorithmic pitfalls tutorial
Analyze what the following algorithm is intended to do, identify the errors that are preventing it from working as intended,
then rewrite to fix the errors. Organize to reflect the algorithm flow, label and color-code.

Solution

The first step is to mark the errors:

Next, fix the errors and rewrite the solution with labels and proper color codes:

32

Chapter Two: Introduction to Data Structures

All algorithms involve processing input data to generate a new set of data as output. Data is stored in
well-defined structures to help access and manipulate efficiently. Understanding these structures is the
key for successful algorithmic designs. This chapter includes an in-depth review of the basic data
structures in Grasshopper.

2_1: Overview

Grasshopper has three distinct data structures: single item, list of items and tree of items. GH
components execute differently based on input data structures, and hence it is essential to be fully
aware of the data structure before using. There are tools in GH to help identify the data structure.
Those are Panel and Param Viewer.

​
Figure (34): Data structures in Grasshopper

Processes in GH execute differently based on the data structure. For example, the Mass Addition
component adds all the numbers in a list and produces a single number, but when operating on a tree,
it produces a list of numbers representing the sum of each branch.

​
Figure (35): Components execute differently based on the data structures. Result of adding numbers from Figure(34)

33

The wires connecting the data with components in GH offer additional visual reference to the data
structure. The wire from a single item is a simple line, while the wire connecting a list is drawn as a
double line. A wire output from a tree data structure is a dashed double line. This is very useful to
quickly identify the structure of your data.

Display the data structure Example

Item: single branch with single item
Wire display: single line

List: single branch with multiple items
Wire display: double line

Tree: multiple branches with any number of items per branch
Wire display: double dashed line

2_2: Generating lists

There are many ways to generate lists of data in GH. So far we have seen how to directly embed a list
of values inside a parameter or a panel (with multiline data). There are also special components to
generate lists. For example, to generate a list of numbers, there are three key components: Range,
Series and Random. The Range component creates an equally spaced range of numbers between a
min and max values (called domain) and a number of steps (the number of values in the resulting list
is equal to the number of steps plus one).

​
Figure (36): Generate a list of 8 numbers using the Range component in Grasshopper

34

The Series component also creates an equally spaced list of numbers, but here you set the starting
number, step size and number of elements.

​
Figure (37): Generate a list of 7 numbers using the Series component in Grasshopper

The Random component is used to create random numbers using a domain and a number of
elements. If you use the same seed, then you always get the same set of random numbers.

​
Figure (38): Generate a list of numbers using the Random component in Grasshopper

Lists can be the output of some components such as Divide curve (the output includes lists of points,
tangents and parameters). Use the Panel component to preview the values in a list and Parameter
Viewer to examine the data structures.

​
Figure (39): Divide Curve takes a single input (curve) and generate lists of output

35

2_2_1 Generating lists tutorial
Explore 4 different ways to create circles. Use different data sources and data structures.

Description Grasshopper solution

Directly set a
circle in a
parameter

Set the plane
input to the
default XY-Plane
(internal).

Supply a list of
radiuses using
Range
component

Supply one value
for the center.

Normal is set to
default (internal)

List of radiuses
using Random
component

Create a circle
from 3 points:

A: set internally
to one value

B: Supply one
value

C: Supply a list of
values using the
Series
component to set
a list of Z
coordinates

36

2_3: List operations

Grasshopper offers an extensive list of components for list operations and list management. We will
review the most commonly used ones.
You can check the length of a list using the List Length component, and access items at specific
indices using the List Item component.

​
Figure (40): Examples of list operations in Grasshopper

Lists can be reversed using the Reverse List component, and sorted using the Sort List component.

​
Figure (41): Lists can be reversed or sorted using designated components in Grasshopper

Components such as Cull Patterns and Dispatch allow selecting a subset of the list, or splitting the
list based on a pattern.These components are very commonly used to control data flow and select a
subset of the data.

37

​
Figure (42): Cull part of a list using components such as Cull Pattern and Dispatch

The Shift List component allows shifting a list by any number of steps. That helps align multiple lists
to match in a particular order.

​
Figure (43): Shift operation in Grasshopper

The Subset component is another example to select part of a list based on a range of indices.

​
Figure (44): Select a subset of the list using a range of indices

38

2_3_1 List operations tutorial
Given two lists of points from dividing two concentric circles, generate the following patterns.

Output image Grasshopper solution

39

40

2_4: List matching

When the input is a single item or has an equal number of elements in a simple list, it is easy to
imagine how the data is matched. The matching is based on corresponding indices. Let’s use the
Addition component to examine list matching in GH. Note that the same principles apply to all other
Grasshopper components.

​
Figure (45): Matching equal length lists is based on matching corresponding indices

There are times when input has variable length lists. In this case, GH reuses the last item on the
shorter list and matches it with the next items in the longer list.

​
Figure (46): The default list matching in Grasshopper reuses the last element of the shorter list

41

Grasshopper offers alternative ways of data matching: Long, Short and Cross reference that the user
can force to use. The Long matching is the same as the default matching. That is, the last element of
the shorter list is repeated to create a matching length.

​
Figure (47): Long list matching is the default matching mode in Grasshopper

The Short list matching truncates the long list to match the length of the short list. All additional
elements are ignored and the resulting list has a length that matches the shorter list.

​
Figure (48): Short matching of lists omits additional values in longer lists

The Cross Reference matches the first list with each of the elements in the second list. The resulting
list has a length equal to the multiplication product of the length of input lists. Cross reference is useful
when trying to produce all possible combinations of input data. The order of input affects the order of
the result as shown in Figure (49).

42

​
Figure (49): Cross reference matching creates longer lists to account for all possible permutations

If none of the matching methods produce the desired result, you can explicitly adjust the lists to match
in length based on your requirements. For example, if you like to repeat the shorter list until it matches
the length of the longer list, then you’ll need to create the logic to achieve that as in the following
example.

 ​
Figure (50): Need to create custom script to generate custom matching

43

2_4_1 List matching tutorial
Use the 4-step method to generate an algorithm that takes 6 numbers (0 to 5) and turn them into a cube of points as in the
image:

Solution

Output:
A list of 6x6x6 = 216 points
constructed from a list of X, Y, Z
coordinates

Key process:
Use the Construct Point
component to generate the list of
points

Input:
Examine input using the
Parameter Viewer and Panel
components.

The given list has 6 points
representing each coordinate
along each axis

Intermediate process:
Need to find all possible
permutations for the coordinates
to create the cube of 216 points
along all 3 axes

Use Cross Reference matching
to generate lists of coordinates
that have all possible
permutations

44

Put it all together

2_5: Data structures tutorials
2_5_1: Variable thickness pipe tutorial
Use the 4-step method to create a surface similar to the one in the image with thickness that changes in 10 locations random
along the curve. Thickness variations are random between 1 and 3 as in the image:​

Algorithm analysis

We can think of two different
ways to generate this surface:​

1. Loft circles created along a line
at random locations with random
radii​

2. Create a profile curve at the
circles start points, and Revolve
around the line

Solution steps

Output:
The surface

45

Key process:
Use the Loft component to
generate the surface

Input:
Line (not given, so create one)
​
Number of intervals (not given,
assume it is equal 10)​
​
Thickness range (not given,
assume it is equal to 1.0 to 3.0)

Intermediate process #1:
The Loft is created from a list of
circles. Use the Circle
component that takes centers,
normals and radii lists.
We can use the default Loft
options.

Intermediate process #2:
To create a list of random radii,
use the Random component and
the input thickness range

Intermediate process #3:
Evaluate the line at random
intervals. Use the Evaluate
Curve component to extract
center points and normals, and
use the Random component to
generate the parameters along
the curve.

Problem: The loft follows the
order of input curves, however
the parameters (generated from
the Random component) are not
ordered along the line and hence
it produces unordered circles.
Use the Sort List component to
order the parameters before
feeding them into the Evaluate
Curve.

Put it all together

46

2_5_2: Custom list matching tutorial
Given the following three lists of numbers: [1,2], [10,20,30] and [0.2, 0.4, 0.6, 0.9, 1], explain the default GH list matching
when they are used as input. Compare the default matching with Grasshopper Shortest List matching. Finally, use
the original lists to create custom matching that repeats the pattern in the shorter lists to create a periodic matching. For
example [1,2] becomes [1,2,1,2,...] until it matches the length of the longer list and so on.​

Solution

Construct default GH
matching:

To test the matching, feed the
lists into the coordinates of the
Construct Point component and
observe the result.

Analysis of GH default
matching:

The last element of shorter lists is
repeated until all lists have the
same length, then elements are
matched by indices

47

Shortest List matching:

Omit additional values in longer
lists so that the length of all lists
equals the length of the shortest
list

Custom matching:
We know that the longest list has 5 items, but it is a good practice to make the script generic so it works with any
input. First, figure out the length of the longest list, then use the Repeat component to repeat the elements in
shorter lists until they match the length of the longest list.

2_5_3: Simple truss tutorial
Use the 4-step method to generate a simple truss as in the image. For input, use a line (base of the truss), height, number of
runs (or spans), and the radius of the joint.

Algorithm analysis:

Define values for the input:
L= create a Line along X-Axis
H= assume height=7
R= assume number of
runs=10
J= assume joint radius=0.5

Divide the baseline into 20
spans (or 2*R)

Move every other point by 7
units (or H) in the Z-Axis
direction

48

Create 3 sets of ordered
points for the beams along the
base, top and middle, then
connect each of the 3 sets
with a polyline. Create
spheres to represent the
joints.

Solution steps:

Output:
There are 2 outputs, the
beams as curves (polylines)
and joints as spheres
(surfaces)

Key processes:
Need to create the polylines
for the top, middle, and
bottom beams. Use the
Polyline component with a
relevant set of points for each.

Use the Sphere component to
create joints. Use middle
points and joint radius as
input.

Input:
Specify the inputs and
assume values when they are
not given:
line, number of runs, height
and joint radius

Intermediate process #1
Divide the curve with twice the
number of runs. Use Divide
Curve component and
Multiply the number of runs

49

Intermediate process #2
To create top points, select
every other point from the list
of all divide points, then move
vertically by the height
amount.
Use Cull Pattern component
to select points and Move
component to shift vertically

Intermediate process #3
To create bottom points,
select every other point, in the
invert pattern used to select
top points.
Use Cull Pattern component
to select points (set the invert
flag for the pattern input)

Intermediate process #4
To create middle points,
Weave the top and bottom
points.

Put it all together

2_5_4: Pearl necklace tutorial
Create a necklace with one big pearl in the middle, and gradually smaller size pearls towards the ends as in the image. The
number of pearls is between 15-25.​

50

Algorithm analysis

The workflow to create the
necklace follows these general
lines:
1- Divide the curve into segments
of variable distances (widest in
the middle and narrow towards
the ends).
2- Find length and midpoints of
each segment
3- Create spheres at midpoints
using half the length as radius

Solution steps

Output:
The surfaces

Key process:
Use the Sphere component to
generate the pearl surfaces

Input:
Necklace curve,
Number of pearls as a parameter
(can be changed by the user)

Intermediate process #1:
The Range component creates
equal distances. We need to
change to variable distances and
for that we can use the Graph
Mapper component to control the
spacing.

51

Intermediate process #2:
Since we have normalized
distances from the start of the
curve (parameters are between 0
to 1), we can use the Evaluate
Length component to find the
divide points.

Intermediate process #3:
Generate the segments. Use
Polyline and Explode
components to turn the points
into segments

Center points are calculated at
the middle of the segments. Use
Evaluate Length at mid length

Radii are calculated as half of
each segment length. Use
Length and Division
components

Put it all together

52

Chapter Three: Advanced Data Structures

This chapter is devoted to the advanced data structure in GH, namely the data trees, and different
ways to generate and manage them. The aim is to start to appreciate when and how to use tree
structures, and best practices to effectively use and manipulate them.

3_1: The Grasshopper data structure

3_1_1 Introduction
In programming, there are many data structures to govern how data is stored and accessed. The most
common data structures are variables, arrays, and nested arrays. There are other data structures that
are optimized for specific purposes such as data sorting or mining. In Grasshopper, there is only one
structure to store data, and that is the data tree. Hold on, what about what we have learned so far:
single item and list of items? Well, in GH, those are nothing but simple trees. A single item is a tree
with one branch that has one element, and a list is a tree with one branch that has a number of
elements. It is actually pretty elegant to be able to fit all data in one unifying data structure, but at the
same time, this requires the user to be aware and vigilant about how their data structure changes
between operations, and how that can affect intended results. This chapter attempts to demystify the
data tree of Grasshopper.

3_1_2 Processing data trees
We used the Panel and Parameter Viewer components to view the data structure. We will use both
extensively to show how data is stored. Let’s start with a single item input. The Parameter Viewer has
two display modes, one with text and one that is graphical. You can see that the single item input is
stored in one branch that has only one item.

​
Figure (51): Different ways to preview the data structure in Grasshopper

53

The Parameter Viewer shows each branch address (called “Path”), and the number of elements in
that branch as shown in Figure (52).

​
Figure (52): The Parameter Viewer indicates the path address and the number of elements in each branch

A list of items is typically stored in a tree with one branch. Figure (53). However, the three items can
also be stored in three different branches. Figure (54).

​
Figure (53): A list is a tree that has one branch with multiple elements

​
Figure (54): A tree contains any number of branches with any number of elements in each branch

The key to understanding the Grasshopper data structure is to be able to answer the following
question: What is the significance of storing x number of values in one branch vs using x
number of branches to store one value in each branch?

54

The data structure informs GH components about how to match input values. In other words,
components may process data differently based on their structure. The following example illustrates
how different data structures for the same set of values can affect the result.

​
Figure (55): Organizing same set of value in different data structures affect the output

We will elaborate on data tree matching later, but you can already see that GH components do pay
attention to the data structure and the result can vary considerably based on it. This is one of the
complications inherited in using one unifying data structure in a programming language.

3_1_3 Data tree notation
The first step to understanding data trees is to learn the GH notation of trees. As we have seen from
the examples, trees consist of branches, and each branch holds a number of elements. The address
or path of each branch is represented with integers separated by semicolons and enclosed in curly
brackets. The index of each element is enclosed by square brackets. This diagram shows a
breakdown of the address of elements in trees.

​
Figure (56): Address of elements include the address of the branch and the index of the element in the branch

55

Here are a few examples of various tree structures and how they show in the Parameter Viewer and
the Panel.

​
Figure (57): Same set of values held in different structures.

Left: 5 trunks (5 trees) with one item in each. Middle: 5 branches out of one trunk (1 tree), and each branch holds a single
item. Right: two trunks (2 trees), the first has 2 branches with the first branching into 3 branches, each holds one item, the

second holds 1 item. The second trunk holds 2 items.

3_1_1 Data tree tutorial:
Construct a tree of numbers shown in the image using the Number parameter only.
What is the full address to the item "1.2" ? Note that order of branches and leaves is always from left to right going clockwise

56

Solution

The path for“1.2” is: { 0 ; 3 ; 0} [1]

Note: The three branches from the main trunk are set here to 0:1,
0:2, and 0:3. They also could have been 0:0, 0:1 and 0:2. Both are
correct.

3_2: Generating trees
There are many ways to generate complex data trees. Some explicit, but mostly as a result of some
processes, and this is why you need to always be aware of the data structures of output before using it
as input downstream. It is possible to enter the data and set the data structure directly inside any
Grasshopper parameter. Once set, it is relatively hard to change and therefore is best suited for a
constant input. The following is an example of how to set a data tree directly inside a parameter.

57

​
Figure (58): Set data trees directly inside the parameter

There are many components that generate data trees such as Grid and DivideSrf, and others that
combine lists into a tree structure such as Entwine. Also all the components that produce lists can
also create a tree if the input is a list. For example, if you input more than one curve into the
DivideCrv component, we get a tree of points.

​
Figure(59): The SDivide component takes one input (surface) and outputs a data tree (grid).

58

All components that generate lists of numbers (such as Range and Series) can also generate trees
when given a list of input.

​
Figure(60): Entwine component takes any number of lists and combines them into a tree structure.

Perhaps one of the most common cases to generate a tree is when dividing a list of curves to
generate a grid of points. So the input is one list and the output is a tree.

​
Figure(61): Divide component takes any list (curves) and generates a tree structure (grid).

59

3-2-1 Generating trees tutorial
Given the following list of points, construct a number tree with 3 branches, one for each coordinate.

Solution

Discussion:
Each input point is a single data item that contains 3 numbers (coordinates). We know we would like to isolate
each coordinate into a separate list, then combine them into one data structure. Hence we need to first deconstruct
input points (use Deconstruct of pDecon component), then combine the lists into one structure (use Entwine
component).

3_3: Tree matching
We explained the Long, Short and Cross matching with lists. Trees follow similar conventions to
expand the shorter branches by repeating the last element to match. If one tree has fewer branches,
the last branch is repeated. The following illustrates common tree matching cases.

3_3_1: Item-to-tree matching
When matching an item to a tree, a matching tree structure is created and the item is
repeated. For example when adding a single number to a tree of numbers, the single number

60

is added to every item in the tree and the result is a tree with matching structure to the input
tree.

3_3_2: Short-list-to-tree matching
When matching a short list to a tree, where the length of the list is shorter than the tree
branches, a matching tree structure is created where the list is repeated in each branch, and
the last item in the short list is repeated. See the following example adding a list of two
number to a tree of numbers.

61

3_3_3: Long-list-to-tree matching
When matching a long list to a tree with branches that are shorter than the list, the tree branches
expand to match the length of the list. The last item in each branch is repeated to match the list length
Note that the resulting tree structure will be different than the input tree. In the following example, both
input, the list and the tree, are modified to arrive at a matching structure, then the addition result has a
new data structure.

3_3_4: Tree-to-tree matching
There are numerous possibilities when matching two trees, but the basic principle applies. The goal is
to find a tree structure that can combine both input tree structures. Let’s assume the case when there
is a simple tree with one level of branches that match in depth. There are two possibilities. The first is
that both input trees have the same number of branches. In this case, the length of the shorter
corresponding branches is matched. The output tree might end up matching at least one of the input
trees, or be different to both.

62

The second possibility is that one tree might have more branches than the other. In that case, new
branches are inserted into the smaller tree repeating the last branch, then each branch is expanded
(repeating the last item in the branch) to create matching length among all corresponding branches as
in the following example.

63

When working with trees, it is of utmost importance to examine the data structure of each input before
using it as input to one component. A small change in the structure can have a big impact.

3_3_1 Tree matching tutorials
Inspect the following 2 number structures, then predict the structure and result of adding them (with default Grasshopper
matching). Verify your answer using the Addition components.

Solution

Key solution idea: The two input trees have different number of branches and different number of elements in each
branch. The last branch of the shorter tree is repeated to match the number of branches, then corresponding
branches are matched by repeating the last element of the shorter branch.

3_4: Traversing trees
Grasshopper provides components to help extract branches and items from trees. If you have the path
to a branch or to an item, then you can use Branch and Item components. You need to check the
structure of your input so you can supply the correct path.

64

​
Figure (62): Select branches from a tree

​
Figure (63): Select items from a tree

If you know that your structure might change, or you simply do not want to type the path, you can
extract the path using the Param Viewer and List Item components.

​
Figure (64): Example of how to extract data paths dynamically

65

3_4_1 Traversing trees tutorial
The following tree has 3 branches for each one of the coordinates (x, y, z) of some list of points. Use that tree to construct a
list of these points.

Solution

Key solution idea: We can construct a point list using as input 3 lists representing X, Y and Z values. If we can
isolate the 3 branches of the input tree, then we will be able to feed them to the point construction component.

3_5: Basic tree operations
Basic tree operations are widely used and you will likely need them in most solutions. It is very
important to understand what these operations do, and how they affect the output.

3_5_1: Viewing the tree structure
As we have seen in the data matching, different data structures of the same set of elements produce
different results. Grasshopper offers three ways to view the data structure, the Parameter Viewer in
text or diagram format, and the Panel.

66

​
Figure (65): View trees using the Parameter Viewer and the Panel components

Tree information can be extracted using the TStats component. You can extract the list of paths to all
branches, number of elements in each branch and the number of branches.

​
Figure (66): Extract trees structure using TStats component

3_5_2: List operations on trees
Trees can be thought of as a list of branches. When using list operations on trees, each branch is
treated as a separate list and the operation is applied to each branch independently. It is tricky to
predict the resulting data structure and therefore it is always important to check your input and output
structures before and after applying any operation.
To illustrate how list operations work in trees, we will use a simple tree, a grid of points, and apply
different list operations on it. We will then examine the output and its data structure.

67

Operations Common list operation and how they apply to trees

List Item
Select items at
specific index in
each branch

List Item
Select multiple
indices to isolate
part of the tree
and perform one
operation on such
as Mass
Addition

Split List
Split the elements
of branches into 2
trees at the
specified index

Shift List
Shifts the
elements of each
branch

68

Cull Pattern
Culls each branch

3_5_3: Grafting from lists to a trees
In some cases you need to turn a list into a tree where each element is placed in its own branch.
Grafting can handle complex trees with branches of variable depths.

​
Figure (67): Grafting a tree creates a new branch for each element

It might feel unintuitive to complicate the data structure (from a simple list to a tree), but grafting is very
useful when trying to achieve certain matching. For example if you need to add each element of one
list with all the elements in the second list, then you will need to graft the first list before inputting to the
addition process.

69

Figure (68): Grafting complex trees

3_5_4: Flattening from trees to lists
Other times you might need to turn your tree structure into a simple list. This is achieved with the
flattening process. Data from each branch is extracted and sequentially attached to one list.

​
Figure (69): Flattening place all tree elements in one list

Flatten also can handle any complex tree. It takes the branches in order starting with the lowest index
trunk and put all elements in one list.

​
Figure (70): Flattening complex trees

70

3_5_5: Combining data streams
It is possible to compose a number of lists into a tree where each list becomes a branch in a new tree.
It is different from the merging of lists where simply one bigger list is created.

​
Figure (71): Entwine and Merge components combine lists into trees or bigger lists

3_5_6: Flipping the data structure
It is logical in some cases to flip the tree to change the direction of branches.This is specially useful in
grids when points are organized in rows and columns (similar to a 2 dimensional array structure).
Flipping causes corresponding elements across branches (have the same index in their branch) to be
grouped in one branch. For example, a data tree that has 2 branches and 4 items in each branch, can
be flipped into a tree with 4 branches and 2 elements in each branch.

​
Figure (72): Flip helps reorganize data in a trees

71

If the number of elements in the branches are variable in length, some of the branches in the flipped
tree will have “null” values.

​
Figure (73): Add “null” when flipping trees with variable length branches

Flipping is one of the operations that cannot handle variable depth branches, simply because there is
no logical solution to flip.

​
Figure (74): Flip fails when the input tree has variable depth branches

3_5_7: Simplifying the data structure
Processing data through multiple components can add unnecessary complexity to the data structure.
The most common form is adding leading or trailing zeros to the paths addresses. Complex data
structures are hard to match. Simplify Tree process helps remove empty branches. There are other
operations such as Clean Tree and Trim Tree to help remove null elements, empty branches and
reduce complexity. It is also possible to extract all branches as separate lists using the Explode Tree
operation.

​
Figure (75): Paths can increase in complexity as more operations are applied to the data. Simplify helps remove empty

branches

72

3_5_A Louvers tutorial
Given one curve on XY-Plane, create horizontal and vertical louvers as in the image

Solution

Examine the data structure of
output from each step before
feeding it into the next process.

input curve data structure: Single
item (one branch and one item in
the branch)

Divide input curve to extract points.
Data structure: list (one branch with
11 items). Note that the path has
added leading “0”. This indicates the
next layer of calculation.

Create vertical lines at each point.
Data structure: list (one branch with
11 items). Note that the path did not
increase in complexity.

Divide vertical lines to create a grid
of points.
Data structure: Tree (11 branches
with 6 items). Note that the path has
added leading “0”.

Create horizontal lines at each
point.
Data structure:Tree (11 branches
with 6 items). Note that the path did
not increase in complexity.

Create lofted surfaces through
branches of lines.
Data structure:Tree (11 branches
with 1 item each). Note that the path
did not increase in complexity.

73

Flip the tree matrix and then create
lofted surfaces through branches of
lines.
Data structure:Tree (11 branches
with 1 item each). Note that the path
did not increase in complexity.

You can flatten the tree to create
one list of horizontal louvers.

3_5_B Shutters
Given four corner points on a plane and a radius for the hinge, create a shutter that can open and shut as in the image using
a rotation parameter.

Algorithm analysis

For each shutter there are two parts:
the rectangle and the hinge.

Union the rectangle and hinge, then
allow rotating around the hinge.

There is one rotation control to move all
shutters together

Solution steps

Output
Surface of the shutters
Curves for the frame

74

Input
The window four corner points (and
center)
Hinge radius
Rotation angle parameter

Key processes

Create rectangle and hinges. Use the
Rectangle component

Union the curves. Use RUnion
Create a surface from the boundary.
Use Boundary component

Intermediate process #1

Rotate the rectangles using the angle.
Use Rotate component.

Intermediate process #2

Properly match the data structures of
the rectangles and hinges before the
region union.

Use Graft so that rectangles and
hinges pair correctly.

75

Put it all together

3_6: Advanced tree operations

As your solutions increase in complexity, so will your data structures. We will discuss three advanced
tree operations that are necessary to solve specific problems, or are used to simplify your solution by
tabbing directly into the power of the data tree structure.

3_6_1: Relative items
The first operation has to do with solving the general problem of connectivity between elements in one
tree or across multiple trees. Suppose you have a grid of points and you need to connect the points
diagonally. For each point, you connect to another in the +1 branch and +1 index. For example a point
in branch {0}, index [0], connects to the point in branch {1}, index [1].

​
Figure (76): Relative Item mask {+1}[+1] create positive diagonal connectivity

76

In Grasshopper, the way you communicate the offset is expressed with an offset string in the format
“{branch offset}[index offset]”. In our example, the string to connect points diagonally is “{+1}[+1]”.
Here is an example that uses relative tree component in Grasshopper. Notice that the relative item
component creates two new trees that correlate in the manner specified in the offset string.

​
Figure (77): Relative Item mask {+1}[+1] breaks the original tree into 2 new trees with diagonal connectivity

Here is an example implementation in Grasshopper where we define relative items in one tree, then
connect the two resulting trees with lines using the Relative Item component.

​
Figure (78): Relative Item with mask {+1}[+1] in Grasshopper

3_6_1_A Relative item pattern tutorial #1
Create the pattern shown in the image using a square grid of 7 branches where each branch has11 elements.

77

Solution

Define the {branch_offset} [index_offset]

Create the grid

Create relative trees that
connect each element with
-1 branch and +1 index:
{-1}[+1]

Create lines to connect the
2 relative trees.

Change the offset to
{+2}[+3] to create the
second connections

We showed how to define relative items in one tree, but you can also specify relative items between 2
trees. You’ll need to pay attention to the data structure of the two input trees and make sure they are
compatible. For example, if you connect each point from the first tree with another point from a
different tree with the same index, but +1 branch, then you can set the offset string to be {+1}[0].

78

​
Figure (79): Relative Items create connections across multiple trees

The input to the Relative Items component is two trees and the output is two trees with corresponding
items according to the offset string.

​
Figure (80): The offset mask of the Relative Items generates new trees with the desired connections

The following GH definition achieves the above:

​
Figure (81): Relative Items implementation in Grasshopper

79

3_6_1_B Relative item truss tutorial #2
Use relative items between 2 bounding grids to generate the structure shown in the image.

Solution

Create the connections for the bottom tree

Cull every other index and keep the
same number of branches (cull indices
1, 3,...)

Define the offset strings for
RelativeItem components to create the
vertical and horizontal connections

Grasshopper definition

Create the connections for the top tree

Cull every other index and keep the
same number of branches. (cull indices
0, 2,...)

Define the offset strings for
RelativeItem components to create the
vertical and horizontal connections

Grasshopper definition

Connections between the bottom and top trees

80

Use culled grids, then define first offset
string for RelativeItems component to
create the first set of cross lines: {0}[0]

Define second offset string for
RelativeItems component to define the
second set of cross lines: {0}[-1]

3_6_2: Split trees
The ability to select a portion of a tree, or split into two parts is a very powerful tree operation in
Grasshopper. You can split the tree using a string mask using specific syntax (see examples below).
The mask filters, or helps select, the positive part of your tree. The portion of the tree left, is also given
as an output and is called the negative part of the tree. Since all trees are made out of branches and
indices, the split mask should include information about which branches and indices within these
branches to split along. Here are the rules of the split mask:

Split tree mask: syntax and general rules

{ ; ; } Use curly brackets to enclose the mask for the tree branches.

[] Use square brackets to enclose the mask for the elements (leaves). Can be omitted if
select all items or use [*]

() Round brackets are used for organizing and grouping

* Any number of integers in a path. The asterisk also allows you to include all
branches, no matter what their paths look like

? Any single integer

6 Any specific integer

!6 Anything except a specific integer

(2,6,7) Any one of the specific integers in this group.

!(2,6,7) Anything except one of the integers in this group.

(2 to 20) Any integer in this range (including both 2 and 20).

!(2 to 20) Any integer outside of this range.

(0,2,...) Any integer part of this infinite sequence. Sequences have to be at least two integers
long, and every subsequent integer has to be bigger than the previous one (sorry,
that may be a temporary limitation, don't know yet).

81

(0,2,...,48) Any integer part of this finite sequence. You can optionally provide a single sequence
limit after the three dots.

!(3,5,...) Any integer not part of this infinite sequence. The sequence doesn't extend to the left,
only towards the right. So this rule would select the numbers 0, 1, 2, 4, 6, 8, 10, 12
and all remaining even numbers.

!(7,10,21,...,425) Any integer not part of this finite sequence.

{ * }[(0 to 4) or (6,11,41)] It is possible to combine two or more rules using the boolean and/or operators. The
example selects the first five items in every list of a tree and also the items 7, 12 and
42.

Here are some examples of valid split masks.

Split by branches

{ * } Select all (the whole tree output as positive, and negative tree will be empty)

{ *; 2 } Select the third branch

{ *; (0,1) } Select the first two end branches

{ *; (0, 2, …) } Select all even branches

Split by branches and leaves

{ * }[(1,3,...)] Select elements located at odd indices in all branches

{ *; 0 }[(1,3,...)] Select elements located at odd indices in the first branch

{ *; (0, 2) }[(1,3,...)] Select elements located at odd indices in the first and third branches

 {*; (0,2,...) } [(1,3,...)] Select elements located at odd indices in branches located at even indices

 {*; (0,2,...) } [(0) or (1,3,...)] Select elements located at odd indices, and index “0”, in branches located at even
indices

One of the common applications that uses split tree functionality is when you have a grid of points that
you like to transform a subset of. When splitting, the structure of the original tree is preserved, and the
elements that are split out are replaced with null. Therefore, when applying transformation to the split
tree, it is easy to recombine back.
Suppose you have a grid with 7 branches and 11 elements in each branch, and you’d like to shift
elements between indices 1-3 and 7-9. You can use the split tree to help isolate the points you need to
move using the mask: {*}[(1,2,3) or (7,8,9)], move the positive tree, then recombine back with the
negative tree.

82

​
Figure (82): Split tree allows operating on a subset of the tree with the possibility to recombine back

This is the GH definition that does the above using the Split Tree component.

​
Figure (83): Split tree Grasshopper implementation of Figure (82)

One of the advantages of using Split Tree over relative trees is that the split mask is very versatile
and it is easier to isolate the desired portion of the tree. Also the data structure is preserved across the
negative and positive trees which makes it easy to recombine the elements of the tree after
processing the parts.

3_6_2_A Split tree pattern tutorial
Given a 6x9 grid, use the split tree to generate the following pattern.​

83

Solution steps

Create the grid

Split the tree to isolate
the middle part

Split the middle part
into two new parts

Move the two middle
parts in opposite
directions then
recombine them

84

Recombine the middle
part with the rest of the
tree and create
polylines through each
branch elements

3_6_2_B Split tree truss tutorial
Given a grid, create the following truss system using the split tree method.​

Solution

Create the 6x9 grid

Split at every other element

85

Move positive tree vertically

Combine positive and
negative trees
And create a polyline
through each branch

Create bottom curves using
negative tree

Create top curves using
positive tree

3_6_3: Path mapper
When dealing with complex data structures such as the Grasshopper data trees, you’ll find that you
need to simplify or rearrange your elements within the tree. There are a few components offered in
Grasshopper for that purpose such as Flatten, Graft or Flip. While very useful, these might not suffice
when operating on multiple trees or needing custom rearrangement. There is one very powerful
component in Grasshopper that helps with reorganizing elements in trees or changing the tree
structure called the Path Mapper. It is perhaps the least intuitive to use and can cause a loss of data,
but it is also the only way to find a solution in some cases, and hence it pays to address here.
The Path Mapper maps data between source and target paths. The source path is fixed, and is given
by the input tree. You can only set the target path. There is a set of constants that you can use to help
construct the mapping. Those are listed in the table below.

item_count Number of items in the current branch

path_count Number of paths (branches) in the tree

path_index Index of the current path

86

Let’s start by familiarizing ourselves with the syntax using built-in mappings inside the Path Mappers.
If you right-mouse-click on the mapper components, you can open the editor, and also access a
number of default mapping functions that are commonly used.

​
Figure (84): Path Mapper built-in mappings

The following example examines different built-in mapping in the Path Mapper and how it changes the
data structure. The Polyline component creates one polyline through each branch of the tree. Notice
how different mapping affects the result.

Built-in mappings inside the Path Mapper component

Null Mapping Does not change anything.

Flatten
Mapping

87

Graft Mapping

Reverse
Mapping

Renumbering
Mapping

For more details about the Path Mapper, please refer to the help inside the component in
Grasshopper.

3_6_3_A Partitions tutorial
Given the following tree structures of points, create the following connections.​

88

Solution

The input has two trees, and each
has 5 branches with 11 elements
in each branch, a total of 10
branches.

A Polyline is used to connect the
elements in each branch

To create the vertical connections, you need to create a branch for each 2 corresponding elements across the 2
trees, then use Polyline to connect them
1- Analyze the paths of the trees
2- Come up with a mapping that generates the desired grouping

First, group corresponding
branches across the 2 trees.

That can be achieved by switching
the last two integers in the paths:

Second, Flip each of the 5 trees.
Since the branches have 11
elements each, flipping each tree
will create 11 branches with 2
elements in each branch. Total of
55 branches.

You flip by switching the last
integer of the path with the
element index:

89

Finally, a Polyline makes the
vertical connections.

Note: You can combine the 2
mappings in one step as in the
following:

Combining is not always possible,
but it can save processing time
and size.

3_6_3_B Building strucuture tutorial
Given the input tree of points, create the following structure.​

Solution

The initial tree
has 42
branches, 7
branches in
each of the 6
trees

90

The Polyline
component
connects the
elements in
each branch

Flip the trees
using Path
Mapper by
switching branch
and element
indices

Regroup the
elements of
corresponding
branches in all
trees using the
Path Mapper

91

Final result
Create all
connections

3_7: Advanced data structures tutorials
3_7_1: Sloped roof tutorial
Create a parametric truss system that changes gradually in height as shown in the image.​

Solution

Algorithm analysis: First, solve it for one simple truss

Identify desired output for a
single truss

Define initial input
1- Base line on XY-Plane
2- Number of runs
3- Height

Algorithms steps:

Create input (L=line,
H=height and R= #runs)

Divide curve by 2*R

92

Move every other point in
the Z direction by height

Create 3 sets of ordered
points for the bottom beams,
top beams and middle
beams, then connect each
of the 3 sets with a polyline

Implement the algorithm for a single truss In Grasshopper

Resolve for multiple trusses with variable height

Create a series of base lines
using the initial line and copy
in Y-Axis direction

Use the list of lines as input
instead of a single line.

Notice that instead of a list
of points for each of the 3
sets (bottom, top and
middle), we now have a tree
or grid of points with a
number of branches equal to
the number of trusses

93

Create cross connections
using Flip tree operation for
the bottom and top trees

Create variable height

The complete solution implementation in Grasshopper:

94

3_7_2: Diagonal triangles tutorial
Given the input grid, use the RelativeItem component to create diagonal triangles​

Solution

Algorithm analysis

To generate the triangles, we need 3
sets of corner points.

Two of the point sets (A, B) are within
the grid. B is diagonal from A (relative
index is +1 branch and +1 element)

The third point set (C) is a copy of set
(B) moved vertically.

Group corners to connect into
boundaries then generate surfaces

Grasshopper implementation

Use RelativeItem to create set A and
set B (use “{+1}[+1] mask)

Move set B vertically.

Create a tree with 3 branches for sets
A, B and C.

Flip the tree to group corresponding
points.

Use Polyline and Boundary to
generate the surfaces.

95

3_7_3: Zigzag tutorial
Create the structure shown in the image using a base grid as input.​

Algorithm analysis

Since the zigzags alternate directions
from one row to the next, it is best to
split the grid into 2 parts, positive and
negative.

Find 3 sets of points in the positive tree
and order

Reverse the elements in the branches
of the negative tree, then find the 3 sets
of points and order

Merge back the 2 trees to create
geometry through points

Grasshopper implementation

Use the Split Tree component to
generate positive and negative trees for
both bottom and top grids. Use {0,2,...}
split mask.

Use RelativeItems2 to create A and B
trees, use {0}[+1] relative mask.

Use Shift to create the C tree.

Use Weave to combine data in the
intended order, then remove
consecutive duplicates using the DCon
component.

Merge ordered positive and negative
trees to generate geometry using
Polyline and Pipe components.

96

3_7_4: Truss with plates tutorial
Create the structure shown in the image using a base grid as input:​

Algorithm analysis

Understanding input:

The 2 input grids have a similar data structure of 7 branches and each branch has 9 elements.
Bottom grid:

Top grid:

97

Understanding output: There are 4 parts to the output:

Bottom beams

Top beams

Middle beams

Middle plates

Discussion: Constructing the bottom and top grids can be achieved with culling some points and flipping the
points grid to get both directions. The middle beams weave the 2 culled grids of the bottom and top grids. We can
also use the culled points to create the joints.

Constructing the triangular connections is more involved since we need to create groups of 3 points that use a pair
of consecutive points from the bottom grid and one point from the top. We can use relative trees to solve this. We
can then offset the triangles to create the frame points, and offset again to create the plates points.

Grasshopper implementation

Cull top and bottom tree, flip culled tree, then feed the 4 trees into a pipe component with the desired radius as a
parameter.

Weave bottom and top grids to generate the grid of middle beams. Connect grid rows with a Polyline the use Pipe
with the radius as a parameter​

98

To create the triangular connections, we will use a relative tree on the culled bottom grid, and combine with the
culled top grid. Use Offset to generate smaller grid for the plates and their frame

Offset the triangles to create desired sizes. Use Pipe and boundary to create frames and surfaces for the plates.

Create spheres to represent the joints at culled points. This is the full definition:

99

3_7_5: Weaving tutorial
Create flat weaved threads using a rectangular grid as an initial input. Set your desired density and
size. Bonus: Make the weaving go along any surface
​

Algorithm analysis

The input is a planar square grid with
vertical branches. For vertical threads:

Split the grid into two parts alternating
elements in each branch.

Move the first part up, and the second
down, then recombine the parts into
one set

Draw a curve through the points in each
branch.

Flip the grid, then repeat to create
horizontal curves

Grasshopper implementation

Use Split Tree to separate alternating
points and move up and down

Combine points and use IntCrv to
interpolate through points of each
branch

Flip the tree, and repeat Split,
Combine and IntCrv to create curves
in the other direction

The full Grasshopper definition

100

Expanded solution

Instead of using the Z-Axis to move points up and down, use the surface normal direction at each point
Note: Make sure the data structure of normals and points match

The full Grasshopper definition:

101

	Preface
	Chapter One: Algorithms and Data
	1_1: Algorithmic design
	1_2: Algorithms parts
	1_3: Designing algorithms: the 4-step process
	1_4: Data
	1_5: Data sources
	1_6: Data types
	1_7: Processing data
	1_7_1: Numeric operations
	1_7_2: Logical operations
	1_7_3: Data analysis
	1_7_4: Sorting
	1_7_5: Selection
	1_7_6: Mapping

	1_8: Pitfalls of algorithmic design
	1_8_1: Invalid or wrong input type
	1_8_2: Unintended input
	1_8_3: Incorrect order of operation
	1_8_4: Mismatched data structures
	1_8_5: Long processing time
	1_8_6: Poor organization

	1_9: Algorithms tutorials
	1_9_1: Unioned circles tutorial
	1_9_2: Sphere with bounds tutorial
	1_9_3: Data operations tutorial
	
	
	
	
	
	1_9_4: Algorithmic pitfalls tutorial

	Chapter Two: Introduction to Data Structures
	2_1: Overview
	2_2: Generating lists
	
	2_3: List operations
	2_4: List matching
	2_5: Data structures tutorials
	2_5_1: Variable thickness pipe tutorial
	2_5_2: Custom list matching tutorial
	2_5_3: Simple truss tutorial
	
	2_5_4: Pearl necklace tutorial

	Chapter Three: Advanced Data Structures
	3_1: The Grasshopper data structure
	
	3_1_1 Introduction
	3_1_2 Processing data trees
	3_1_3 Data tree notation

	
	3_2: Generating trees
	3_3: Tree matching
	3_3_1: Item-to-tree matching
	3_3_2: Short-list-to-tree matching
	3_3_3: Long-list-to-tree matching
	3_3_4: Tree-to-tree matching

	3_4: Traversing trees
	3_5: Basic tree operations
	3_5_1: Viewing the tree structure
	3_5_2: List operations on trees
	3_5_3: Grafting from lists to a trees
	3_5_4: Flattening from trees to lists
	3_5_5: Combining data streams
	3_5_6: Flipping the data structure
	
	3_5_7: Simplifying the data structure

	
	3_6: Advanced tree operations
	3_6_1: Relative items
	3_6_2: Split trees
	3_6_3: Path mapper

	3_7: Advanced data structures tutorials
	3_7_1: Sloped roof tutorial
	3_7_2: Diagonal triangles tutorial
	3_7_3: Zigzag tutorial
	3_7_4: Truss with plates tutorial
	3_7_5: Weaving tutorial

