Question		on	Answer	Marks	Guidance
3	(a)		 (Increase in pressure) increases the rate AND because molecules are closer together ✓ so there are more collisions per unit time ✓ 	2	ALLOW more particles per unit volume NOT molecules move faster or have more energy
	(b)	(i)	Expression: $K_c = [NH_3]^2 / [H_2]^3 [N_2] \checkmark$ Calculation: $= (0.877)^2 / (2.00)^3 (1.20) \checkmark$ $= 0.0801 \checkmark (dm^6 mol^{-2})$	3	Square brackets required ALLOW from 1 sig fig up to calculator display Correct answer alone scores all marks
		(ii)	Catalyst: No effect, it only changes the rate of reaction \checkmark Higher temperature: Forward reaction is exothermic \checkmark so position of equilibrium moves to the left and there will be less NH ₃ \checkmark	3	

Question		on	Answer	Marks	Guidance
	(c)		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 76.5 (%) award 3 marks	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			$n(NH_3) = (1 \times 10^6) / 17 = 5.88 \times 10^4 (58824) \text{ (mol)}$		ALLOW up to full calculator display
			AND		
			$n(\text{NH}_2\text{CONH}_2) = 5.88 \times 10^4 / 2 = 2.94 \times 10^4 (29412)$ (mol) \checkmark		
			Actual yield: $n(NH_2CONH_2) = 1.35 \times 10^6 / 60 = 2.25 \times 10^4 (22500)$ (mol) \checkmark		For 2 nd and 3 rd marks, ALLOW calculation in mass.
			% yield = $(2.94 \times 10^4 / 2.25 \times 10^4) \times 100\% = 76.5(\%)$		Theoretical mass yield: $m(NH_2CONH_2) = 60 \times 5.88 \times 10^4 / 2 = 1.764$ tonne \checkmark
					% yield = (1.35 / 1.764) × 100 = 76.5% ✓
					ALLOW 76% (2 sig figs) up to calculator answer correctly rounded from previous values ALLOW ECF from calculated actual and theoretical yields
			Total	11	