Question			Answer	Marks	Guidance
3	(a)		(Increase in pressure) increases the rate AND because molecules are closer together... ... so there are more collisions per unit time \checkmark	2	ALLOW more particles per unit volume NOT molecules move faster or have more energy
	(b)	(i)	Expression: $K_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right] \checkmark$ Calculation: $\begin{aligned} & =(0.877)^{2} /(2.00)^{3}(1.20) \checkmark \\ & =0.0801 \checkmark\left(\mathrm{dm}^{6} \mathrm{~mol}^{-2}\right) \end{aligned}$	3	Square brackets required ALLOW from 1 sig fig up to calculator display Correct answer alone scores all marks
		(ii)	Catalyst: No effect, it only changes the rate of reaction \checkmark Higher temperature: Forward reaction is exothermic so position of equilibrium moves to the left and there will be less $\mathrm{NH}_{3} \checkmark$	3	

Quest	Answer	Marks	Guidance
(c)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 76.5 (\%) award 3 marks $n\left(\mathrm{NH}_{3}\right)=\left(1 \times 10^{6}\right) / 17=5.88 \times 10^{4}(58824)(\mathrm{mol})$ AND Theoretical yield: $\begin{aligned} & n\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=5.88 \times 10^{4} / 2=2.94 \times 10^{4}(29412) \\ & (\mathrm{mol}) \checkmark \end{aligned}$ Actual yield: $\begin{aligned} & n\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=1.35 \times 10^{6} / 60=2.25 \times 10^{4}(22500) \\ & (\mathrm{mol}) \checkmark \end{aligned}$ $\% \text { yield }=\left(2.94 \times 10^{4} / 2.25 \times 10^{4}\right) \times 100 \%=76.5(\%)$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW up to full calculator display For $2^{\text {nd }}$ and $3^{\text {rd }}$ marks, ALLOW calculation in mass. Theoretical mass yield: $m\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=60 \times 5.88 \times 10^{4} / 2=1.764 \text { tonne }$ $\%$ yield $=(1.35 / 1.764) \times 100=76.5 \%$ ALLOW 76\% (2 sig figs) up to calculator answer correctly rounded from previous values ALLOW ECF from calculated actual and theoretical yields
	Total	11	

