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Abstract

Purpose – The purpose of this paper to develop an empirical methodology for managing spatial
basis risk in weather index insurance by studying the fundamental causes for differences in weather
risk between distributed locations.

Design/methodology/approach – The paper systematically compares insurance payouts at
nearby locations based on differences in geographical characteristics. The geographic characteristics
include distance between stations and differences in altitude, latitude, and longitude.

Findings – Geographic differences are poor predictors of payouts. The strongest predictor of payout
at a given location is payout at nearby location. However, altitude has a persistent effect on heat risk
and distance between stations increases payout discrepancies for precipitation risk.

Practical implications – Given that payouts in a given area are highly correlated, it may be
possible to insure multiple weather stations in a single contract as a “risk portfolio” for any one
location.

Originality/value – Spatial basis risk is a fundamental problem of index insurance and yet is still
largely unexplored in the literature.

Keywords Insurance, Precipitation, Rainfall, Index insurance, Weather derivatives, Spatial basis risk,
Basis risk

Paper type Research paper

Introduction
Basis risk, the difference between the insured quantity and the underlying risk, is known
to be a major concern with weather index insurance. Because weather index insurance
insures an “index” of weather variables instead of actual adjusted losses, the settlement
of the index insurance may not match the risk exposure of the insuree. Basis risk may
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take a spatial dimension, as the coverage of weather stations across the world is not
perfect, or a local dimension, for example, if the index/yield relationship were found to be
flawed.

This paper investigates the problem of spatial basis risk for weather index insurance,
which is necessarily a complicated subject of investigation. Part of the complication is
that pricing weather index insurance (or weather derivatives) according to burn rate
analysis includes not only a spatial dimension but also a temporal one as historical
frequencies are calculated. Weather risk is further subjected to potential long-term
trends due to climate change as well as variations due to prevailing weather conditions
such as the El Niño Southern Oscillation (ENSO) index.

From an empirical point of view, this paper investigates basis risk using a
decorrelation approach to space measurement. We have developed a program that is
linked to all of the weather stations in a given region (i.e. includes data on all weather
stations in the USA). From a randomly selected point, we select all weather stations
within a certain radius and calculate the particular weather risk for each year at each
station to calculate the burn rate insurance premium. This is done for the same specific
criteria for all stations within the sphere. Next, we compare on a year-by-year basis the
payouts that would have been made at each pair of locations. Thus, if there are nweather
stations then there aren(n 2 1)/2 pairwise comparisons. Finally, we measure the error or
basis risk between each station pair and regress the mean differences against a number
of spatial variables. These spatial variables include longitude and latitude coordinates
as well as elevation difference and distance between weather stations.

This exercise reveals the spatial characteristics which have a persistent effect on
temperature and precipitation risk. For temperature/heat risk, the most important
independent variable is the difference in elevation between stations, explained by the fact
that the primary temperature difference will be due to the elevation of the station. Rainfall
correlation, however, is strongly dependent on distance as precipitation will often be an
extremely localized phenomenon, with the other variables of lesser importance.

Lastly, we offer a pricing strategy for both temperature and precipitation risk
tailored to the specific typology of each distinct type of risk. In many cases, the “portfolio”
method of selecting a proportion of risk from each nearby station based on similarity in
elevation (temperature) or geographic placement (precipitation) offers advantages over an
index based more sophisticated spatial statistics algorithms. By compartmentalizing the
risk into existing weather stations, the “portfolio” method has the advantage of allowing
for easier pricing of policies for insurance and reinsurance companies. In this manner, we
will demonstrate a strategy for pricing risk in distributed locations around the USA.

This paper is structured as follows: first, a discussion of the mathematical and
spatial considerations for analyzing weather risk. This is followed by the introduction
of a regression equation that attempts to predict differences in risk at existing stations
through the use of the geographic characteristics of those stations. The results of the
regression equation lead to a discussion of a pricing strategy for both temperature and
precipitation risk tailored to the specific typology of each distinct type of risk as
revealed by the regression results.

Background
Weather index insurance is a recent financial innovation that has received much
attention from academics and implementers alike as a way to smooth risk for
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agricultural producers (Zeng, 2000; Turvey, 2001; Vedenov and Barnett, 2004). By using
an “index” of weather observations as a proxy for crop loss, the problems of traditional
indemnity insurance are reduced or eliminated. Weather index insurance removes the
subjective nature of insurance adjustment as well as the problems of adverse selection
and moral hazard that are present in the traditional indemnity insurance model. Weather
index insurance makes it possible to offer microinsurance to rural farmers in developing
countries, which can serve a valuable function in a development intervention and may
lead to more interactive benefits, such as improved access to rural credit (Skees, 2008). In
countries such as China (Turvey and Kong, 2010; Göncü, 2011), India (Seth et al., 2009),
and Portugal (Ghiulnara and Viegas, 2010), among others, researchers have studied the
feasibility of weather index insurance as a risk hedging mechanism.

However, despite the promise of the technology, it is not always straightforward to
apply. In particular, we trade the problems of adverse selection and moral hazard with
that of basis risk, which is defined as the risk that payoffs of a hedging instrument do
not correspond to the underlying exposures. Basis risk may be reduced through the
selection of appropriate weather observations to construct the index, but in reality the
prevailing weather conditions are only one variable in crop production and are often
considered exogenous to the production function (Turvey and Norton, 2008). Basis risk
is a major problem when using a risk-smoothing implement such as weather index
insurance. The good years should help pay for the bad years, but if the product were
not aligned properly, this strategy of risk smoothing could be harmful to the producers’
bottom lines. Basis risk as a problem for index insurance is widely acknowledged in
the literature and has even been seen to affect take-up rates in India (Giné et al., 2008).

The proposed solutions to the problem of basis risk are varied. Heimfarth and
Musshoff (2011) quantify spatial basis risk in the North China Plain using a
decorrelation function. One approach is to perform spatial analysis techniques on
weather data to provide a historical time series in varied geographic locations
(Paulson et al., 2010). Another study intentionally analyzed data from a flat area with
consistent elevation (Richards et al., 2004). Other researchers link microinsurance to
microcredit and advocate for a central financial institution to aggregate index insurance
contracts so as to average out basis risk for all actors (Miranda and Gonzalez-Vega, 2011;
Woodard and Garcia, 2008b). If index insurance is to be widely used as a risk mitigation
and climate adaptation tool for individual farmers, the problem of basis risk must be
better understood.

A traditional difficulty in pricing weather index insurance is that there are only a
certain number of weather stations for which historical data exists. A longer time
series of data provides more confidence for historical burn rate analysis pricing and a
minimum number of years is needed to understand historical weather patterns, which
will often require at least ten or 20 years of weather data. Establishing a new station
can provide high quality weather data, but there will be no historical record at that new
station with which to price risk. This problem is acute in countries with poor
infrastructure, which is paradoxically where weather index insurance might do the
most good (Morduch, 2006). But even in places with many long-established weather
stations, the spatial distribution of risk is not yet fully understood. The challenge that
is present in the weather index insurance market is how to strategically leverage the
information from existing stations at geographic locations where the precise weather
observations are unknown.

JRF
14,1

22

D
ow

nl
oa

de
d 

by
 C

hu
la

lo
ng

ko
rn

 U
ni

ve
rs

ity
 A

t 0
6:

06
 2

9 
N

ov
em

be
r 

20
17

 (
PT

)



Theoretical basis
Some researchers have applied spatial analysis techniques to the weather observations
directly, and used that information to construct a surface of historical time series
observations for any geographic point. While techniques like kriging have shown to be
very accurate in producing a prediction surface for points in space, these spatial
analysis techniques are not designed to model for deviations from normal conditions,
which is precisely what we are interested in and want to protect against.

This paper takes rather the opposite approach to spatial analysis by pricing risk at
known locations and analyzing how that risk changes through space. To that effect,
we have developed a web-based computer program, as described in Turvey and Norton
(2008), that is able to analyze historical weather observation data for all weather stations
in the USA. From a randomly selected point we select all weather stations within a
certain radius and calculate the particular weather risk at each station to calculate the
burn rate insurance premium.

Mathematical considerations for spatial weather risk
Table I lists aggregate temperature and rainfall observations for Ithaca, NY for June
1-August 31 along with the mean observation for all stations within a proscribed
radius (100 miles for temperatures and 67 miles for rainfall). The overall means are
similar, but when we examine the yearly variation as measured by the average
correlation between the base station (Ithaca) and every other station, we find that heat
is highly correlated but rainfall less so. A familiar pattern is that when we introduce
risk events (defined later), the variability increases, not only in the averages but also in
the correlation. Our risk events were intentionally defined as generally as possible and
represent a kind of baseline for analyzing weather risk. One way that we may think of
this is that the weather observations themselves have a certain structure and
correlation, but we attempt to impose order upon those observations in the form of risk
events, we lose some of the structure of that information. These risk events also
represent relatively common events over long date ranges; presumably these numbers
would also weaken if a more specific time frame or risk event were used.

The challenge presented is, very simply, to improve the accuracy of the yearly
correlation. Although this may seem somewhat abstract, insurance policies have
profound real-world implications for farmers holding a policy and it is crucial to match
the years with payments with the actual losses. By taking the payout schedule for all
stations and adjusting for geographic variables, we can potentially price insurance
contracts for any given point on the map. Because of the vast number of stations
located around the country, our hopeful result is a simple equation in which we can
build upon this simple methodology and adjust for the differences in distance, altitude,

Weather risk Base station
Mean of surrounding

stations Difference (%) Correlation

Heat risk event (payout) $22.37 $27.31 222.10 0.78
CDD index (858F) 68.41 71.51 24.50 0.89
Drought risk event (payout) $20.95 $22.61 27.90 0.69
Cumulative rainfall (in) 10.65 10.36 2.60 0.75

Table I.
Correlation of average of

nearby stations of
cumulative weather

indexes
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and polar coordinates. What follows is an attempt to provide a universal solution using
those readily available geographic variables to arrive at a payout for any unknown
location.

Defining the risk events
Choosing an event that is sufficiently general yet meaningful for all sites is difficult,
because there is no such thing as generality. For example, a heat event in upstate
New York is incomparable to a heat event in a warmer climate. Temperatures in central
New York infrequently reach above 908F, but in Norman, OK this temperature is reached
quite frequently in summer months (Turvey and Norton, 2008). The sheer variation of
climates in America requires us to tailor our heat risk events for each station.

To start, evidence indicates that temperatures above 858F correlate with crop yield
losses (Schlenker and Roberts, 2006). Using this as a benchmark, we employ a common
financial tool to measure long-term deviations in temperature observations known as
degree days. Well established in the derivatives market, degree days accumulate above
or below a benchmark value and indicate the relative suitability of a given time period.
Because only degrees of temperature that are above the benchmark value are
accumulated, a degree day measure is quite appropriate in this instance as we are
modeling crop losses due to excessively high temperatures.

For this paper, we use a cooling degree day (CDD) index with benchmark value of
858F and the mean CDD at the base station serving as the strike value (or “trigger”)
with a sliding payout for values above that. Payouts are calculated at each station for
every year data is available. Figure 1 shows the payout schedule for Ithaca, NY, where
mean CDD is 68.41.

Six weather stations were selected at sites across the country according to quality of
data and the absence of geographic features within 50 miles that would prevent
weather stations from being placed, such as bodies of water or international borders.
Mean CDD for those six stations varies from 68.41 at Ithaca, NY to 720.63 in Davis, CA,
and are listed in Table II.

For precipitation, the contract is identical for all sites. We use a drought event of less
than 0.100 of precipitation over any 14-day period. The payout occurs on a sliding scale

Figure 1.
Schedule of payouts for
heat risk event –5
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with $10 accumulating for each hundredth of an inch less than 0.100, to a maximum of
$100 per event if no rainfall was recorded. Up to three non-overlapping events are
possible, with an annual maximum liability of $300. Figure 2 shows the payoff
schedule due to the observed rainfall in any 14-day period, but yearly payoff amounts
range from $0 to $300 because of the possibility of multiple events.

Defining the geographic area
Weather Wizard is flexible as to the distance of the radius extending from the base
station, but there are a few requirements that must be considered for a successful trial.
A certain number of stations are needed to provide contrast, but there are relatively
few stations within a short distance (ten miles) of each other. However, as we increase
the radius of the circle, the area of the circle increases exponentially. Barring any
obstacles like oceans or international borders, the number of stations increases
exponentially as the radius of the circle increases. Because we compare each station
against each other in each year, this also dramatically increases the number of
comparisons that are made, as given by the following formula:

comparisions ¼
n*ðn2 1Þ

2
*years

where n is the number of stations within the selected geographic radius, and years is the
number of years of data at the base station. The total number of comparisons is subject to
missing and incomplete data; many stations have only limited data, and with longer time
horizons the potential for periods of missing data within years becomes greater.

Station
Bridgeport,

NE
Bethany,

MO
Greenville,

AL
Davis,

CA
Ithaca,

NY
Mosquero,

NM

Mean CDD (858F) 442.13 350.74 603.18 720.63 68.41 282.05

Table II.
Mean CDD (benchmark

858F) at each location

Figure 2.
Schedule of payouts for

drought risk event–20
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Table III displays the number of stations for each type of weather data within a certain
number of miles. Using the number of stations as the value of n in the equation above
as well as the number of years of data at the base station, the number of potential
comparisons between years is calculated.

Such factors as length of contract and number of years selected will also affect the
percentage of available data as presented in Table III. In particular, these percentages
are somewhat low because of a relatively long date range. In this case, a 92-day window
encompassing June-August was selected, which offers more opportunities for data to be
missing than a more carefully targeted risk event. Also, more importantly, very few
stations have data continuously to 1,926 as Ithaca does; most stations date to just after
Second World War, and it is not uncommon for a station to have as little as one or two
years of data for the entire 75 year period. If we selected a shorter contract length (say,
15 days instead of 92) fewer stations would be disqualified for missing data; likewise, if
we only considered years after 1949, the percentage of actual comparisons would
improve markedly. This discussion is intended to underscore the fact that even though
we might define an identical geographic area, there is often a very different spatial
distribution of data within that area depending on the parameters we select.

Also, perhaps in acknowledgement of the periodic, unpredictable nature of rainfall,
precipitation observation stations are more densely placed and often contain more years
of data. In the case presented here, there are more than twice as many precipitation
gauges in a given radius than temperature stations, even if the percentage of usable data
is roughly similar. It is very likely that temperature observations are placed more
sparsely to reflect the intuition that temperatures are considered to vary more
continuously over a geographic area, while rainfall can be an extremely localized event.

The advantage of this comparison-based model is that it treats all weather stations
equally and is able to include otherwise useless data. In this model, the data will be
compared on a year-by-year basis, regardless of how many years of data are at a
particular station. The weather stations that only have a few years of data help provide
contrast for spatial distributions of risk even though it is impossible to accurately price
a contract for that station individually.

Miles Stations Potential comparisons Actual comparisons Percentage

Rainfall
10 2 225 93 41.33
15 4 750 223 29.73
20 12 5,850 801 13.69
25 17 11,475 1,628 14.19
30 25 24,375 3,304 13.55
35 35 47,250 6,921 14.65
Heat
10 2 225 23 10.22
15 2 225 23 10.22
20 4 750 105 14.00
25 6 1,575 220 13.97
30 10 4,125 525 12.73
35 16 10,200 1,366 13.39

Table III.
Number of comparisons
in Ithaca, NY for a given
number of miles
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Also of pertinent interest is what these details entail for selecting a radius to study. As
the radius increases, the area of study increases exponentially (according to the area of
a circle – pr 2). The number of stations increases accordingly, which has vast
ramifications for the number of potential comparisons according to the equation above.
Since Weather Wizard is hosted on a web platform, there are limitations to the amount
of data that it can process in a single iteration – selecting a radius requires the user to
select a value large enough to offer meaningful results that will also fit within technical
possibilities. For this paper, we are using a radius of 50 miles, which is large enough to
allow the inclusion of sufficient stations for both heat and precipitation, but small
enough to run properly on the Weather Wizard web site.

The regression equation
The goal when formulating this regression equation was to try and predict the
difference in payouts in any given year between any two locations using simple
geographic variables:

ðP1 2 P2Þ ¼ b1wþ b2ða1 2 a2Þ þ b3ðv1 2 v2Þ þ b4ðl1 2 l2Þ þ b0 þ 1

where Px are payouts at station 1 and 2, w is the distance between the two stations, ax is
the altitude at each station, vx is the latitude at each station, and lx is the absolute
value of the longitude of each station (as longitudes in the western hemisphere are
traditionally negative).

This equation is primarily a difference equation, where we are attempting to explain
the difference in payouts by the difference in altitude and geographic coordinates. At
first glance, it seems as if the w variable, distance, is ill-suited for inclusion because
distance is strictly positive, and the differences in any part of the equation can easily
be negative. However, by imposing a condition of P1 $ P2 and adjusting the order of
the independent variables to match the condition, we may ensure symmetry between
the left and right sides of the equation; only if (P1 2 P2) is strictly positive will it reflect
a potential linear relationship with w. Furthermore, distance is a trigonometric function
of the individual latitude and longitude variables but is highly correlated to neither.
This is because it is a joint function of latitude and longitude, and a degree of longitude
is not a constant surface measurement but varies according to distance from the pole. It
is useful to think of the latitude/longitude coordinates as reflecting directionality, and
distance as an adjustment for increasing variability at increased distances.

The equation for distance is given thusly:

w ¼ R*Cos
21ðSinðv1Þ*Sinðv2Þ þ Cosðv1Þ*Cosðv2Þ*Cosðl2 2 l1ÞÞ

where R is a constant reflecting the radius of the sphere we can use to normalize to
standard units; the constant for miles is 3,963.1.

What we are left with is a description of how each station compares to each other in
three-dimensional space, not only in distance (w) but with x and y coordinates given by
the latitude (vx) and longitude (l x), and z coordinate given by altitude (ax). Our initial
hypothesis was that distance (w) should be positively correlated in both heat
and precipitation, meaning that as distance increases, so do the differences in
premiums. For rainfall, the rest of the geographic variables are indeterminate, given
that coordinates and/or altitude would seemingly have no effect on the sporadic nature
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of rainfall. For heat, however, we might expect that altitude and latitude have a
negative effect on risk; or, in other words, heat risk is decreased by either an increase in
elevation or more northerly locations.

Regression results
The first thing to notice when looking at these results is that (with one exception) the R 2

values are usually quite near to zero, which is to say that these geographic variables
provide a very poor explanation for differences in payout amounts between stations. In
and of itself this is scant evidence for the predictive power of the geographic variables on
the differences in payouts, but most of the difference is accounted for in the constant
term. The coefficients for the geographic variables are quite often significant, but
unpredictably so. How much of the unpredictability is due to localized conditions is
impossible to determine, but local geographic idiosyncracies might have effects on the
latitude/longitude coefficients, as directionality within different locations could reflect
different geographic characteristics (Tables IV and V).

The two enduring relationships that can be deduced are the effect of altitude on heat
risk and the effect of distance on precipitation risk. The signs are consistent and significant
for all stations except Greenville, AL. The coefficient for altitude for the heat risk

Station Bridgeport, NE Bethany, MO Davis, CA Ithaca, NY Mosquero, NM

No. of years 104 75 83 74 71
Mean CDD 442.13 350.74 720.63 68.41 282.05
Stations within 50 miles 19 25 44 35 16
n 4,300 4,417 7,255 5,953 1,831
R 2 0.01 0.04 0.02 0.05 0.49
Distance 20.22 * * 0.12 0.29 * * 0.04 0.39 *

Alt. diff. 20.01 * * 20.15 * * 20.02 * * 20.01 * * 20.21 * *

Lat. diff. 0.43 14.90 * * 31.28 * * 215.93 * * 60.89 * *

Long. diff. 29.29 * * 15.13 * * 18.27 * * 7.85 * * 84.17 * *

Constant 52.30 * * 35.23 * * 80.51 * * 20.72 * * 69.95 * *

Note: Significance at: *10 and * *5 per cent levels, respectively

Table IV.
Regression results for
heat risk event

Station Bridgeport, NE Bethany, MO Davis, CA Ithaca, NY Mosquero, NM

No. of years 104 75 83 74 71
Mean CDD 442.13 350.74 720.63 68.41 282.05
Stations within 50 miles 27 33 41 70 35
n 7,515 8,693 10,895 22,393 5,770
R 2 0.01 0.008 0.01 0.02 0.03
Distance 0.07 * * 0.18 * * 0.0001 0.05 * * 0.22 * *

Alt. diff. 20.01 * * 20.03 * * 0.02 * * 20.003 * * 0.002
Lat. diff. 0.31 1.82 2.35 * 21.62 * * 216.06 * *

Long. diff. 10.05 * * 10.93 * * 13.98 * * 21.23 * * 9.48 * *

Constant 57.90 * * 54.71 * * 64.00 * * 14.61 * * 66.29 * *

Note: Significance at: *10 and * *5 per cent levels, respectively

Table V.
Regression results for
drought risk event
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regressions is consistently negative and significant, which follows intuitive sense – we
would expect heat risk to decrease as elevation increases. The effect of altitude on rainfall
payoffs is unclear, as one might expect – rain likely does not consider the altitude of the
land on which it is falling. The coefficient attached to distance for rainfall is, with one
exception, significant and positive, meaning that as distance increases the difference in the
payoffs does too. Or in other words, as distance increases, the payoffs become less
accurate. We might expect a similar result for heat, as stations further apart produce more
differentiated results, but it seems that temperatures vary continuously throughout a
geographic region and the directionality measures are often of more interest.

These relationships may have interesting implications for future efforts to model
spatial variability. In effect, the relationship between rainfall and distance is shown to
be strong, which indicates that spatial prediction models could have some success.
Heat risk, however, is heavily influenced by altitude and spatial prediction models
would do well to account for that effect above and beyond the effect of distance.

These results may seem to be providing little beyond the very obvious – heat risk
decreases with altitude because of lower temperatures at higher elevations; likewise,
rainfall correlations decrease with distance because of the unpredictable, periodic nature
of rainfall. However, there is little evidence for other seemingly obvious implications,
like the relationship between latitude and heat risk – we would expect that heat risk
would decrease with increased latitudes, but in fact only one of the six coefficients is
negative and significant. In fact, it is somewhat remarkable how little we can say about
the relationship between simple geographic variables and differences in downside risk.
It has been assumed by many researchers that it would be possible to provide a
statistical solution to the problem of geographic basis risk; these results belie the fact
that weather risk may indeed defeat the ability of statistical methods to predict.

Improving the fit
There are a few transformations that we can do to improve the fit, which is not a purely
academic exercise if our goal is to make out-of-sample predictions for unknown
locations. The easiest way to improve the fit of the regression is to include dummy
variables for the weather stations and years.

The justification for including dummy variables is thus: it is easy to postulate that
each station is to some degree idiosyncratic; these dummy variables are intended to
catch the effects of nearby lakes or valleys, or anything else that cannot be captured by
the simple geographic variables that we use. The dummy variables for each year
isolate the amount of variability in any given year because the dependent variable is
strictly positive. This will account for any years in which payout differences were more
pronounced. Both of these dummy variable types may also be included in a pricing
algorithm as well, although if we are pricing a premium for an unknown location for
which there have never been weather observations, we cannot use the variables which
account for station idiosyncrasies.

In addition, the regression results presented above indicate that geographic
variables do not explain the difference in payouts very well, but there is some evidence
that the problem is one of scale. More specifically, this difference equation has no way
of distinguishing between payouts which are $0/$200 and $1,000/$1,200. In both cases
the dependent variable will be $200, even though they are quite different on a
percentage basis.
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There are several potential ways to modify the equation to account for this. One
method is to move the P2 variable to the right side of the equation, where it may be fit
with a regression coefficient. This approach improves the fit markedly but necessitates
difficult interpretations of the equation. First, if the coefficient attached to the P2

variable is significantly different than one, it is difficult to interpret what that means,
because P1 and P2 are identical in nature and the matter of which one is written first
depends only on the (P1 $ P2) condition. Second, if we are trying to make an
out-of-sample prediction, we cannot assume that the P1 variable will be larger than P2,
which may bias the results.

The results of these transformations for all stations and years of data are presented
in Table VI. The R 2 calculations are highlighted and improve considerably, but it is
wise to remember standard caveats on the effects of R 2 values when adding dozens, if
not hundreds, of variables to the equation. Of course, the greatest effect on the R 2 value
comes from the addition of a single variable (and the manipulation of the dependent
variable) that accompanies moving P2 to the right side of the equation.

Remarkably, the P2 variable is highly statistically significant in all places that it is
introduced. The two variables that we identified as causal in the regression equation
maintain their significance and sign through all modifications even as all other
variables experience widely ranging results.

Out-of-sample predictions
Table VII shows the results of out-of-sample predictions of payoffs in Ithaca, NY for
heat and rainfall using several different types of effects for illustration – first with the
simple geographic variables, then including the station and year dummy variables,
and finally when moving P2 to the right side of the equation. Also of note is that this

Original
Incl. station

dummies
Incl. year
dummies

Incl. station and
year dummies P1 as Y All effects

Heat
DF 5,948 5,889 5,875 5,816 5,947 5,815
R 2 0.05 0.23 0.54 0.61 0.68 0.87
Distance 0.04 0.06 * * 0.01 0.09 * * 0.04 0.07 * *

Alt. diff. 20.01 * * 20.03 * * 20.01 * * 0.02 * * 20.01 * * 0.04 * *

Lat. diff. 215.93 * * 27.07 211.57 * * 35.80 * * 217.15 * * 35.52 * *

Long 7.85 * * 224.86 * * 5.44 * * 5.65 7.85 * * 12.45 *

Constant 20.72 * * 22.05 * * 8.27 228.22 * * 13.03 * * 237.62 * *

P2 – – – – 1.12 * * 0.72 * *

Rainfall
DF 34,841 34,690 34,768 34,617 34,840 34,616
R 2 0.01 0.18 0.11 0.24 0.26 0.44
Distance 0.13 * * 0.10 * * 0.12 * * 0.10 * * 0.13 * * 0.09 * *

Alt. diff. 0.01 * * 20.03 * * 0.01 * * 20.02 * * 0.01 * * 20.03 * *

Lat. diff. 3.09 * * 8.16 3.05 * * 10.34 3.00 * * 17.12 *

Long 20.74 * 12.82 * 20.53 19.81 * * 20.61 17.93 * *

Constant 32.35 * * 23.67 * * 25.33 * * 10.08 30.45 * * 10.71
P2 – – – – 1.41 * * 0.42 * *

Note: Significance at: *10 and * *5 per cent levels, respectively

Table VI.
Results of
transformations in the
regression equation
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prediction was only performed when Ithaca was the station listed first (i.e. the P1

variable), the consequence of which is that the payouts are significantly higher
($64.39 and $64.17) than the long-term averages as presented in Table I ($20.76 and
$20.87). Whether this has implications for the end results is an important consideration.

What this shows is that the predictions with geographic variables are not very
accurate, but improve with the addition of the station and year effects. The strongest
effect is obtained by moving P2 to the right side of the equations, which may make
sense – the weather observations are the strongest piece of information we have about
prevailing conditions in any given year and by taking the difference we often censor
that important piece of information. In any case, it must be said that the geographic
variables seem to be useful only in the optimization of an already robust distribution –
in any successful prediction presented herein, the “heavy lifting” is done by the station,
year, and P2 effects. And in the case of rainfall, this entire exercise has resulted
in payouts that are in fact slightly worse than the very simplistic approach taken in
Table I of simply averaging payouts for each station within 67 miles of Ithaca.

The next step
While it may be difficult to propose an index insurance contract based on an average of
every weather station within a certain area, even if it is most accurate, the concept of
doing so reveals a larger principle. Woodard and Garcia (2008a) write that “portfolio”
of derivatives from established derivatives markets in large cities could be a solution to
the problem of spatial basis risk. While the authors of this paper would not advocate
for using information from stations that are very far away, it may be possible to extend
this concept by offering an index insurance contract which is a configured portfolio of
local stations. This is because our results strongly indicate that the strongest predictor
of a payout at any given station is in fact whether or not there is a payout in a nearby
station. Based on the discussion presented in this paper, the portfolio would use
weather stations as close as possible and explicitly include elevation and distance into
the portfolio selection criteria, if not the other variables which may or may not be
significant in any geographic location.

The next step for this research would be to construct a function which could serve to
provide guidelines for a “portfolio” of weather index insurance priced to the nearby
stations. The amount of index insurance purchased for the portfolio from nearby
stations would depend on the similarity of the pertinent geographic characteristics.
For example, in a topologically diverse area such as New York’s Finger Lakes region,
this could mean a station that is quite removed in distance but similar in altitude.

Prediction ($) Difference (%) Correlation

Heat
Geo. variables only 25.27 2154.8 20.44
With station and year effects 32.20 2100.0 0.46
And moving P2 to right side 67.30 4.3 0.90
Rainfall
Geo. variables only 37.34 271.8 0.43
With station and year effects 51.33 225.0 0.52
And moving P2 to right side 66.81 4.0 0.62

Table VII.
Out-of-sample predictions
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Particularly in regard to the relationship between heat and elevation, the closest station
in a geographically diverse region may not always be the most similar.
Indeed, researchers such as Ritter et al. (2012) have started to investigate multi-site
rainfall models for hedging geographic basis risk.

A portfolio of index insurance chosen according to pertinent spatial variables would
offer several advantages. First, since the pricing would be done at a known location
according to historical burn rates, the price calculated would be straightforward and
done in a manner consistent with previous applications of index insurance. This would
likely lead to easier adoption of the technology, as insurance companies would not need
to build additional safeguards for risk into the model than those that already exist in
established methodology. Second, by pricing only at known locations, the concepts
behind this method are more transparent to the layperson than a mathematically
rigorous treatment designed to predict risk at any given point. It is too true that as the
complexity of mathematical instruments increases, the basis risk inherent in the
equation decreases, along with comprehension. The portfolio approach is a simple
extension of existing methodology and has the advantage of being easier to
comprehend and price.

Lastly, this approach would likely take the form of a set of suggestions based on the
best available evidence that would be easily modified to include additional information.
In other words, this approach would allow the buyer of the insurance to individually
tailor their index insurance portfolio according to their perceived risk. The farmer is
likely to have the most detailed local knowledge as to prevailing weather patterns and
will even have information as to the effects of other geographic characteristics that do not
show up in the regression equation, such as mountains, bodies of water, or even the
general pattern by which rain falls on their fields. The ultimate source of information as
to the minimization of basis risk is with the farmer and the portfolio approach would
allow the flexibility for farmers to hedge their weather risk in the manner they best see fit.

The major disadvantage of this method is that it would benefit from a rich series of
historical data in the area surrounding the point of interest. Unfortunately, this may
preclude a portfolio method from being used in developing countries, which are areas
of the world that could benefit greatly from the adoption of this technology. Because of
this, further research needs to be done to test the applicability of this so-called
“portfolio” approach to pricing weather risk.

Conclusion
This paper discusses the problem of spatial basis risk for weather index insurance,
a basic and fundamental problem in the widespread adoption of the technology, and
shows that there is no easy solution at present. Even when putting aside considerations
of the weather/yield relationship and the predictive power of the selected index on crop
yields, geographic basis risk will likely remain a persistent problem due to complex
interactions of weather, space, and geography. Our search for a general principle for
pricing risk at unknown locations has indicated that the relationship of risk to
geographic variables is complex and highly dependent on local conditions.

The two enduring relationships presented in this research are the relationship of
altitude on heat risk and distance on precipitation risk, which may have interesting
implications for future efforts at spatial prediction models. Rainfall is proven to be
heavily influenced by distance measures, which holds promise for future efforts to
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model spatial variability, but future efforts to model heat risk should explicitly account
for altitude as the predominant variable of interest.

Our results also strongly show that the best predictor of a payout at any given
location is the presence of a payout at another location. This implies that an insurance
product could successfully be written using nearby weather stations in a so-called
“portfolio method”. Buying index insurance based on multiple weather stations would
have advantages above and beyond a pricing strategy which offers a point estimate for
risk at unknown locations. A portfolio of index insurance would offer transparent
pricing, and would be as easy to understand as policies written on a single location.
Likewise, writing index insurance contracts for multiple stations is a simple way to
allow the consumer to configure the product to address their own perceived risks.
Future research should explore the possibilities of hedging weather risk on multiple
stations, with specific emphasis on optimizing weights for the stations based on
geographic characteristics and climatological concerns.

The concepts produced in this research provide insight into the possibilities and
challenges present in pricing spatial basis risk. The next step for spatial basis risk
research is to compare the accuracy of pricing multiple contracts for a “portfolio” of
risk at a single location. This is especially true given the potential pitfalls of the method
as described above, such as a lack of consistent historical data. Future researchers will
be able to carry on the material presented in this paper by building upon the
relationships that we did find to be evident in the struggle to overcome a persistent
problem in the adoption of weather index insurance.
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