6 This question is about reactions of calcium compounds.

| 0 | 6 | 1 | A pure solid is thought to be calcium hydroxide. The solid can be identified from its |
| :--- | :--- | :--- | :--- | relative formula mass.

The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.

You are provided with $50.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.
Outline, giving brief practical details, how you would conduct an experiment to calculate accurately the relative formula mass of the solid using this method.
[8 marks]
\qquad

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{2}$ A 3.56 g sample of calcium chloride was dissolved in water and reacted with an |
| :--- | :--- | :--- | :--- | :--- | excess of sulfuric acid to form a precipitate of calcium sulfate.

The percentage yield of calcium sulfate was 83.4%.
Calculate the mass of calcium sulfate formed.
Give your answer to an appropriate number of significant figures.

Turn over for the next question

