Section A								
	Answer all questions in this section.							
1	This question is about the elements in Group 2 and their compounds.							
01.1	Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]							
01.2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]							
01.3	State the role of water in the reaction with calcium. [1 mark]							
01.4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]							
0 1 . 5	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks]							
	Explanation							

0 2 . 1 A sample of sulfur consisting of three isotopes has a relative atomic mass of 32.16 Table 1 gives the relative abundance of two of these isotopes.								
		Table 1						
		Mass number of isotope	32	33				
		Relative abundance / %	91.0	1.8				
	number of	formation to determine the rel the third isotope. answer to the appropriate nun				ss [4 marks]		
Mass number =								
02.2	Describe h	now ions are formed in a time o	of flight (TC	DF) mass s	pectrometer.	[2 marks]		