
Java Programming AP Edition
U4C13 Abstract Classes and Interfaces

ABSTRACT CLASSES

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Abstract Classes and Interfaces
Templates and Shell of Data

Yes data fields No instantiation.
No data fields No instantiation.

Abstract Class is CORE
Interface is Outer Skin

Abstract Class
Pointer Yes, no objects, with data/methods (Conceptual Class)

A class can be declared with the abstract qualifier,
e.g.:

public abstract class SuperClass

When this is added, it means that no object can be
instantiated from this class and so must have
subclasses for it to be useful.

Experiment with abstract

Using the classes from the basic package above:

1. Edit SuperClass, changing the declaration line to the following and save the changes:public

abstract class SuperClass { When you save the changes, you'll see that the Driver class now

has an error.

2. Edit Driver and observe NetBeans' response. Fix it by commenting out the flagged line://new

SuperClass(), Re-run the driver program observe the only change is reflected by the missing

object.

3. Reset SuperClass and Driver back to their original states.

Note that the top member function in SuperClass is unaffected by making the class

abstract. An abstract class is similar to an interface in that it must be extended to be

used, but unlike an interface in that it usually does have functionality whereas an

interface has no functionality, only prototypes.

Motivations
You learned how to write simple programs to display GUI components.
Can you write the code to respond to user actions such as clicking a
button?

Demo Program: HandleEvent.java

JFrame (Application)

pane

Button with Listener

Abstract Classes and
Abstract Methods

 GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

#GeometricObject()

#GeometricObject(color: string,

filled: boolean)

+getColor(): St ring

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled : boolean): void

+getDateCreated(): java.util.Date

+toString(): String

+getArea(): double

+getPerimeter(): double

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: string,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getDiameter(): double

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,

color: string, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

The # sign indicates

protected modifier

Abstract class

Abstract methods

are italicized

Methods getArea and getPerimeter are overridden in

Circle and Rectangle. Superclass methods are generally

omitted in the UML d iagram for subclasses.

Demo Program:
GeometricObject.java
Circle.java
Rectangle.java
TestGeometricObject.java

Abstract method in abstract class

An abstract method cannot be contained in a nonabstract
class. If a subclass of an abstract superclass does not implement
all the abstract methods, the subclass must be defined abstract.
In other words, in a nonabstract subclass extended from an
abstract class, all the abstract methods must be implemented,
even if they are not used in the subclass.

abstract Methods undefined method (like headers of methods)

Object cannot be created from abstract
class

An abstract class cannot be instantiated using the
new operator, but you can still define its
constructors, which are invoked in the constructors
of its subclasses. For instance, the constructors of
GeometricObject are invoked in the Circle class and
the Rectangle class.

Abstract class without abstract method

A class that contains abstract methods must be
abstract. However, it is possible to define an abstract
class that contains no abstract methods. In this case,
you cannot create instances of the class using the
new operator. This class is used as a base class for
defining a new subclass.

(Template Class of Classes)

Superclass of Abstract Class May Be
Concrete

A subclass can be abstract even if its superclass is
concrete. For example, the Object class is concrete,
but its subclasses, such as GeometricObject, may be
abstract.

Concrete method overridden to be
abstract

A subclass can override a method from its superclass to
define it abstract. This is rare, but useful when the
implementation of the method in the superclass becomes
invalid in the subclass. In this case, the subclass must be
defined abstract.

(Disable concrete methods to set new definition in
subclasses.)

Abstract Class as Type

You cannot create an instance from an abstract class
using the new operator, but an abstract class can be
used as a data type. Therefore, the following
statement, which creates an array whose elements
are of GeometricObject type, is correct.

GeometricObject[] geo = new GeometricObject[10];

Final classes
Declaring a class final means that it cannot be extended; it is
effectively the exact opposite of abstract. Final classes are the "true
leaves" in an inheritance tree diagram. As a simple experiment with
our basic example, add final onto the declaration line of SubClass1:

public final class SubClass1 {

Save the changes and observe that the class declaration in the file
SubSubClass1 is now flagged with the obvious error message. Again,
undo the change in SubClass1 to fix it.

