| $\mathbf{0}$ | $\mathbf{4} \quad$ Compounds \mathbf{A} and \mathbf{B} react together to form an equilibrium mixture containing |
| :--- | :--- | compounds \mathbf{C} and \mathbf{D} according to the equation

$$
2 \mathbf{A}+\mathbf{B} \rightleftharpoons 3 \mathbf{C}+\mathbf{D}
$$

| 0 | 4 | 1 |
| :--- | :--- | :--- | A beaker contained $40 \mathrm{~cm}^{3}$ of a $0.16 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of \mathbf{A}. $9.5 \times 10^{-3} \mathrm{~mol}$ of \mathbf{B} and $2.8 \times 10^{-2} \mathrm{~mol}$ of \mathbf{C} were added to the beaker and the mixture was left to reach equilibrium.

The equilibrium mixture formed contained $3.9 \times 10^{-3} \mathrm{~mol}$ of \mathbf{A}.
Calculate the amounts, in moles, of \mathbf{B}, \mathbf{C} and \mathbf{D} in the equilibrium mixture.

Amount of D mol

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{2}$ Give the expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this equilibrium and its units. |
| :--- | :--- | :--- | [2 marks]

$K_{\text {c }}$

Units \qquad

| $\mathbf{0}$ | $\mathbf{4} .3$ A different equilibrium mixture of these four compounds, at a different temperature, |
| :--- | :--- | :--- | contained 0.21 mol of $\mathbf{B}, 1.05 \mathrm{~mol}$ of \mathbf{C} and 0.076 mol of \mathbf{D} in a total volume of $5.00 \times 10^{2} \mathrm{~cm}^{3}$ of solution.

At this temperature the numerical value of K_{c} was 116
Calculate the concentration of \mathbf{A}, in $\mathrm{mol} \mathrm{dm}^{-3}$, in this equilibrium mixture. Give your answer to the appropriate number of significant figures.

| 0 | $\mathbf{4} .4$ | Justify the statement that adding more water to the equilibrium mixture in |
| :--- | :--- | :--- | Question 04.3 will lower the amount of \mathbf{A} in the mixture.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

