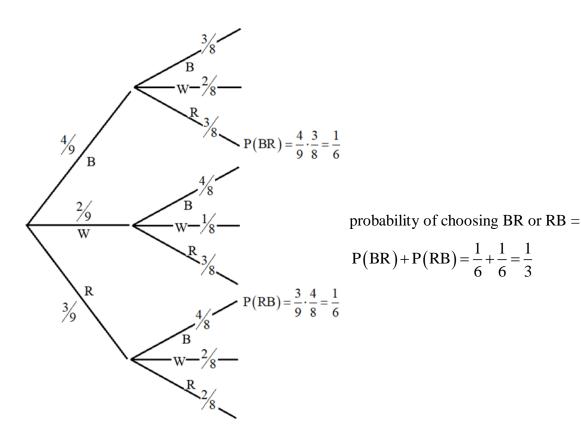
IB Mathematics HL


WWW.inthinking.co.uk

Quiz1 - Probability of Events SOLUTION KEY

[total marks on quiz: 35 marks]

No GDC allowed on questions 1-5; GDC is allowed on the last question #6.

A bag contains 4 black balls, 2 white balls and 3 red balls. A ball is chosen at random from the bag and is not replaced. A second ball is chosen. Find the probability of choosing one black ball and one red ball in any order. [4 marks]

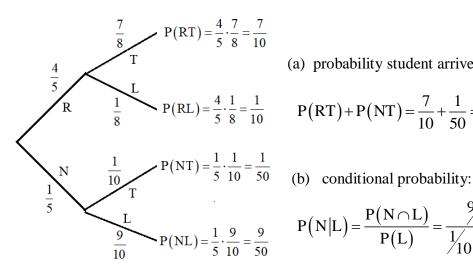
2. Independent events A and B are such that p(A) = 0.2 and $p(A \cup B) = 0.6$. Find p(B). [4 marks] $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

since A and B are independent, then $P(A \cap B) = P(A) \cdot P(B)$

thus, $P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$

letting P(B) = x and substituting given values:

$$0.6 = 0.2 + x - 0.2x \implies 0.8x = 0.4 \implies x = \frac{0.4}{0.8} = \frac{1}{2}$$
 thus, $p(B) = \frac{1}{2}$


IB Mathematics HL

An alarm clock is used to wake a student for school. The probability that the alarm rings is $\frac{4}{5}$. 3. If the alarm rings, there is a probability of $\frac{7}{8}$ that the student arrives at school on time; but, if the

alarm does not ring, the probability that the student arrives at school on time is $\frac{1}{10}$. Find:

- (a) the probability that the student arrives at school on time on a given day; [4 marks]
- (b) the probability that, on a randomly chosen morning on which the student is late for school, the alarm did not ring. [4 marks]

(a) probability student arrives on time =

 $P(RL) = \frac{4}{5} \cdot \frac{1}{8} = \frac{1}{10}$ $P(RT) + P(NT) = \frac{7}{10} + \frac{1}{50} = \frac{35}{50} + \frac{1}{50} = \frac{36}{50} = \frac{18}{25} = 0.72$

$$P(N|L) = \frac{P(N \cap L)}{P(L)} = \frac{\frac{9}{50}}{\frac{1}{10} + \frac{9}{50}} = \frac{\frac{9}{50}}{\frac{14}{50}} = \frac{9}{14} \approx 0.643$$

R = alarm rings; N = alarm does not ringT = student is on time; L = student is late

Two dice are rolled. The score is the smaller of the two numbers that appear; if the same number 4. appears on both dice, then the score is that number. What is the probability that the score is 3?

[4 marks]

JHINKING

	1	2	3	4	5	6
1	<mark>1</mark> ,1	2, <mark>1</mark>	3, <mark>1</mark>	4, <mark>1</mark>	5, <mark>1</mark>	6, <mark>1</mark>
2	1 ,2	<mark>2</mark> ,2	3, <mark>2</mark>	4, <mark>2</mark>	5, <mark>2</mark>	6, <mark>2</mark>
3	<mark>1</mark> ,3	<mark>2</mark> ,3	3 ,3	4, <mark>3</mark>	5 ,3	6, <mark>3</mark>
4	<mark>1</mark> ,4	<mark>2</mark> ,4	3 ,4	<mark>4</mark> ,4	5 ,4	6, <mark>4</mark>
5	<mark>1</mark> ,5	<mark>2</mark> ,5	<mark>3</mark> ,5	<mark>4</mark> ,5	<mark>5</mark> ,5	6, <mark>5</mark>
6	<mark>1</mark> ,6	<mark>2</mark> ,6	3 ,6	<mark>4</mark> ,6	<mark>5</mark> ,6	<mark>6</mark> ,6

The table at left shows the complete sample space.

probability score is
$$3 = \frac{7}{36}$$

IB Mathematics HL

Quiz1 - Probability of Events SOLUTION KEY

- 5. Events A and B are given such that $P(A \cap B) = \frac{1}{5}$, $P(B|A) = \frac{1}{2}$, $P(A|B) = \frac{3}{10}$. Find: (a) P(B); [3 marks] (b) P(A); [3 marks] (c) $P(A \cup B)$ [2 marks]
 - (a) $P(A|B) = \frac{P(A \cap B)}{P(B)} \implies \frac{3}{10} = \frac{\frac{1}{5}}{P(B)} \implies P(B) = \frac{\frac{1}{5}}{\frac{3}{10}} = \frac{10}{15} = \frac{2}{3}$

(b)
$$P(B|A) = \frac{P(A \cap B)}{P(A)} \implies \frac{1}{2} = \frac{\frac{1}{5}}{P(A)} \implies P(A) = \frac{\frac{1}{5}}{\frac{1}{2}} = \frac{2}{5}$$

(c)
$$P(A \cap B) = P(A) + P(B) - P(A \cap B) = \frac{2}{5} + \frac{2}{3} - \frac{1}{5} = \frac{6}{15} + \frac{10}{15} - \frac{3}{15} = \frac{13}{15}$$

- 6. A couple is told that the probability that they will have blue-eyed children is $\frac{1}{4}$. The couple would like to have 6 children.
 - (a) What is the probability that 3 of the 6 children will be blue-eyed? [4 marks]
 - (b) What is the probability that all 6 children will be blue-eyed? [3 marks]
 - (a) probability that 3 of the 6 are blue-eyed $= \binom{6}{3} \left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right)^3 \approx 0.132$

(b) probability that all 6 are blue-eyed $=\left(\frac{1}{4}\right)^6 \approx 0.000244$

