

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 – العوسوم - مادة: الرياضيات شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

 ∞

EXERCICE1: (7.5 points)

Soit f la fonction numérique définie sur l'intervalle $[1,+\infty[$ par :

$$f(1) = \frac{1}{2}$$
 et pour tout $x \in]1, +\infty[$, $f(x) = \frac{\ln(x)}{x^2 - 1}$

Soit (C) la courbe représentative de la fonction f dans un repère orthogonal (O,\vec{i},\vec{j})

- 0.5 | 1- Montrer que f est continue à droite en 1
- 0.5 2- Calculer $\lim_{x \to +\infty} f(x)$ puis interpréter graphiquement le résultat obtenu.
- 0.25 | 3- a) Soit $x \in]1, +\infty$

En posant :
$$t = (x-1)^2$$
, vérifier que : $\frac{1-x+\ln(x)}{(x-1)^2} = \frac{-\sqrt{t}+\ln(1+\sqrt{t})}{t}$

0.5 b) Montrer que
$$(\forall t \in]0, +\infty[)$$
, $-\frac{1}{2} < \frac{-\sqrt{t} + \ln(1 + \sqrt{t})}{t} < \frac{-1}{2(1 + \sqrt{t})}$

(On pourra utiliser le théorème des accroissements finis sur l'intervalle [0;t])

0.25 c) En déduire que :
$$\lim_{x \to 1^+} \frac{1 - x + \ln(x)}{(x - 1)^2} = -\frac{1}{2}$$

0.5 4- a) Montrer que:
$$\forall x \in]1, +\infty[$$
, $\frac{f(x) - \frac{1}{2}}{x - 1} = -\frac{\ln(x)}{x - 1} \times \frac{1}{2(x + 1)} + \frac{\ln(x) - x + 1}{2(x - 1)^2}$

b) En déduire que f est dérivable à droite en 1 puis interpréter graphiquement le résultat obtenu.

5- Pour tout
$$x \in [1, +\infty[$$
 on pose $I(x) = \int_1^x \frac{t^2 - 1}{t^3} dt$ et $J(x) = \int_1^x \frac{t^2 - 1}{t^2} dt$

a) Montrer que :
$$\forall x \in [1, +\infty[, 0 \le I(x) \le J(x)]$$

0.5 b) Montrer que pour tout
$$x \in [1, +\infty[$$
, $I(x) = \ln(x) - \frac{x^2 - 1}{2x^2}$ et $J(x) = \frac{(x - 1)^2}{x}$

0.5 C) Montrer que:
$$\forall x \in]1, +\infty[, f'(x) = \frac{-2}{(x+1)^2} \times \frac{I(x)}{J(x)}]$$

0.5 d) En déduire que :
$$\forall x \in]1, +\infty[, -\frac{1}{2} \le f'(x) \le 0$$

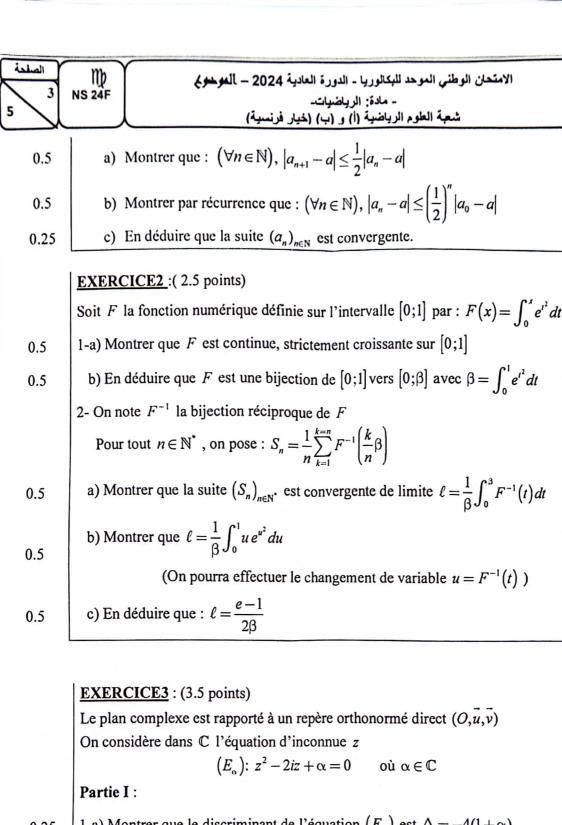
0.25 6- a) Dresser le tableau de variations de la fonction
$$f$$

0.5 b) Tracer la courbe (C) (On prendra
$$|\vec{i}| = 1 \text{cm et } |\vec{j}| = 2 \text{cm}$$
)

0.5 7- Montrer que l'équation
$$f(x) = x-1$$
 admet une unique solution a dans $]1,2[$

8- Soit
$$(a_n)_{n\in\mathbb{N}}$$
 la suite numérique définie par :

$$a_0 \in [1, +\infty[$$
 et pour tout $n \in \mathbb{N}$, $a_{n+1} = 1 + f(a_n)$



- 1-a) Montrer que le discriminant de l'équation (E_{α}) est $\Delta = -4(1+\alpha)$ 0.25
- b) Déterminer l'ensemble des valeurs α pour lesquelles l'équation (E_{α}) admette 0.25 dans l'ensemble C deux solutions distinctes.
- 2- On note z_1 et z_2 les deux solutions de l'équation (E_{α}) . 0.5 Déterminer $z_1 + z_2$ et $z_1 z_2$

 ∞

	الصلحة
5	1
	0.5
	0.25
	0.25
	0.5
	0.25
	0.25
	0.5
-	0.5
	0.25
	0.5

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 - العوحوم
- مادة: الرياضيات-
شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

 ∞

Partie II:

M) NS 24F

Soient Ω , M_1 et M_2 les points d'affixes respectivement α , z_1 et z_2

- 1- On suppose que $\alpha = m^2 2m$ avec $m \in \mathbb{R}$
 - a) Déterminer z_1 et z_2 en fonction de m
- b) En déduire que les points O, M_1 et M_2 sont alignés.
- 2-On suppose que les points O, M_1 et M_2 ne sont pas alignés.
- a) Montrer que $\frac{z_1}{z_2}$ est un imaginaire pur si et seulement si $Re(z_1\overline{z_2}) = 0$
- 0.5 b) Montrer que : $|z_1 z_2|^2 = |z_1 + z_2|^2 4Re(z_1\overline{z_2})$
- c) En déduire que $\frac{z_1}{z_2}$ est un imaginaire pur si et seulement si $|z_1 z_2| = 2$
- 0.25 | 3-a) Montrer que : $(z_1 z_2)^2 = \Delta$
 - b) Déterminer l'ensemble Γ des points Ω pour que le triangle OM_1M_2 soit rectangle en O

EXERCICE4: (3.5 points)

On rappelle que $(M_2(\mathbb{R}),+,\times)$ est un anneau unitaire non commutatif de zéro la

matrice
$$O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 et d'unité la matrice $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

On considère dans $\mathbb{C} \times \mathbb{C}^*$ la loi de composition interne T définie par :

$$\forall ((a,b),(c,d)) \in (\mathbb{C} \times \mathbb{C}^*)^2 ; (a,b)T(c,d) = (a\overline{d} + c, bd)$$

 $(\overline{d} \text{ étant le conjugué du nombre complexe } d)$

- 1-a) Vérifier que(i,2)T(1,i) = (3/2i), puis calculer(1,i)T(i,2)
- b) En déduire que la loi T n'est pas commutative dans $\mathbb{C} \times \mathbb{C}^*$
- 0.5 2- Montrer que la loi T est associative dans $\mathbb{C} \times \mathbb{C}^*$
- 0.25 3- Vérifier que (0,1) est l'élément neutre pour T dans $\mathbb{C} \times \mathbb{C}^*$
- 0.5 4-a) Vérifier que $\forall (a,b) \in \mathbb{C} \times \mathbb{C}^*$; $(a,b)T\left(-\frac{a}{\overline{b}}, \frac{1}{b}\right) = (0,1)$
- b) Montrer que $(\mathbb{C} \times \mathbb{C}^*, T)$ est un groupe non commutatif.
- 0.5 | 5-a) Montrer que $\mathbb{R} \times \mathbb{R}^*$ est stable par la loi de composition interne T
- b) Montrer que $\mathbb{R} \times \mathbb{R}^*$ est un sous-groupe du groupe $(\mathbb{C} \times \mathbb{C}^*, T)$

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

 ∞

EXERCICE5: (3 points)

Soient p et q deux nombres premiers distincts et r un entier naturel premier avec p et avec q

- 1
- 1-a) Montrer que p divise $r^{p-1}-1$ et que q divise $r^{q-1}-1$
- 0.5
- b) En déduire que p et q divisent $r^{(p-1)(q-1)}-1$
- 0.5
- c) Montrer que pq divise $r^{(p-1)(q-1)}-1$
- 1 2- Résoudre dans \mathbb{Z} l'équation $2024^{192}x \equiv 3$ [221]
- (On donne : $221 = 13 \times 17$)

FIN