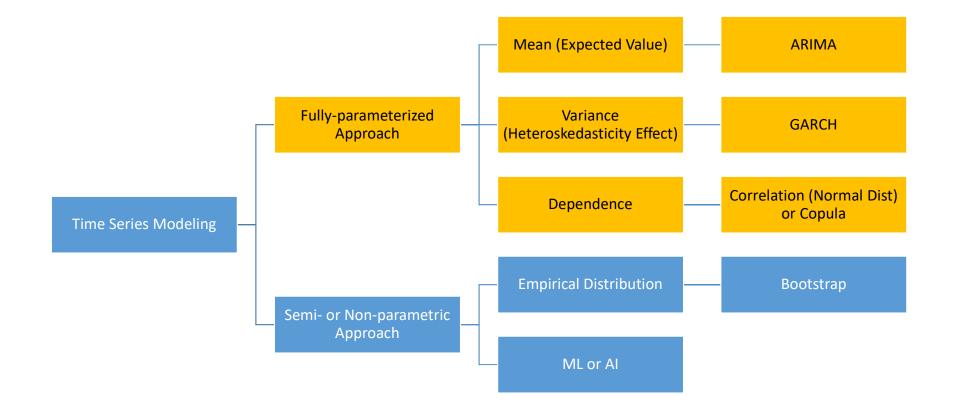
Copula & Time Series Modeling for Risk Analysis Application

Yas Suttakulpiboon

My Approach to Time Series Modeling



Mean Equation

• The mean equation of an univariate time series xt can be described by the process

$$xt = E(xt | Ft-1) + \varepsilon t$$

where E(· | ·) denotes the conditional expectation operator, Ft-1 the information set at time t - 1, and εt the innovations of the time series.

ARMA mean equation

• The ARMA(m,n) process of autoregressive order m and moving average order n can be described as

$$\mathbf{x}_t = \mu + \sum_{i=1}^m \mathbf{a}_i \mathbf{x}_{t-i} + \sum_{j=1}^n \mathbf{b}_j \varepsilon_{t-j} + \varepsilon_t ,$$

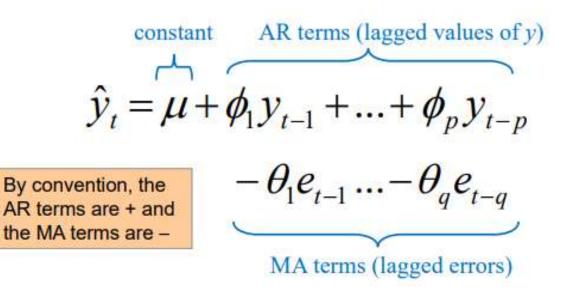
• with mean μ , autoregressive coefficients ai and moving average coefficients bi .

ARIMA mean equation

- Let Y denote the original series
- Let y denote the differenced (stationarized) series

No difference (d=0): $y_t = Y_t$ First difference (d=1): $y_t = Y_t - Y_{t-1}$ Second difference (d=2): $y_t = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$ $= Y_t - 2Y_{t-1} + Y_{t-2}$

ARIMA mean equation

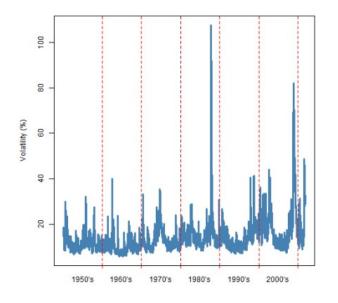


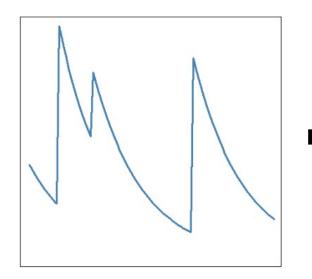
Not as bad as it looks! Usually $p+q \le 2$ and either p=0 or q=0 (pure AR or pure MA model)

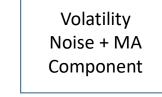
ARIMA models we've already met

- ARIMA(0,0,0)+c = mean (constant) model
- ARIMA(0,1,0) = RW model
- ARIMA(0,1,0)+c = RW with drift model
- ARIMA(1,0,0)+c = regress Y on Y_LAG1
- ARIMA(1,1,0)+c = regr. Y_DIFF1 on Y_DIFF1_LAG1
- ARIMA(2,1,0)+c = " " plus Y_DIFF_LAG2 as well
- ARIMA(0,1,1) = SES model
- ARIMA(0,1,1)+c = SES + constant linear trend
- ARIMA(1,1,2) = LES w/ damped trend (leveling off)
- ARIMA(0,2,2) = generalized LES (including Holt's)

Variance Equation: GARCH







Time

Variance Equation: GARCH

• The mean equation does not take into account heteroskedastic effects typically observed in financial time series. Engle [1982] introduced the Autoregressive Conditional Heteroskedastic model, named ARCH, later generalised by Bollerslev [1986], named GARCH.

$$\begin{aligned} \varepsilon_t &= z_t \sigma_t ,\\ z_t &\sim \mathcal{D}_{\vartheta}(0,1) ,\\ \sigma_t^2 &= \omega + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2 , \end{aligned}$$

Variance Equation: GARCH

 Ding [1993] introduced the APARCH(p,q) variance that can be expressed as

$$\begin{split} \varepsilon_t &= z_t \sigma_t ,\\ z_t &\sim \mathcal{D}_{\vartheta}(\mathbf{0}, \mathbf{1}) ,\\ \sigma_t^{\delta} &= \omega + \sum_{i=1}^p \alpha_i (|\varepsilon_{t-i}| - \gamma_i \varepsilon_{t-i})^{\delta} + \sum_{j=1}^q \beta_j \sigma_{t-j}^{\delta} , \end{split}$$

• where $\delta > 0$ and $-1 < \gamma i < 1$. This model adds the flexibility of a varying exponent with an asymmetry coefficient γi to take the leverage effect into account and the varying power δ to consider the Taylor effect.

Multivariate GARCH: DCC-GARCH

The Dynamic Conditional Correlation (DCC-) GARCH belongs to the class "Models of conditional variances and correlations" as discussed in Section 3.3. It was introduced by Engle and Sheppard in 2001 [11]. The idea of the models in this class is that the covariance matrix, H_t , can be decomposed into conditional standard deviations, D_t , and a correlation matrix, R_t . In the DCC-GARCH model both D_t and R_t are designed to be time-varying.

Suppose we have returns, a_t , from n assets with expected value 0 and covariance matrix \mathbf{H}_t . Then the Dynamic Conditional Correlation (DCC-) GARCH model is defined as:

$r_t = \mu_t + a_t$	(24)
$oldsymbol{a}_t = oldsymbol{H}_t^{1/2}oldsymbol{z}_t$	(25)
$\boldsymbol{H}_t = \boldsymbol{D}_t \boldsymbol{R}_t \boldsymbol{D}_t$	(26)

Notation:

\mathbf{r}_t :	$n \times 1$ vector of log returns of n assets at time t .
$oldsymbol{a}_t$:	$n \times 1$ vector of mean-corrected returns of n assets at time t , i.e. $\mathbf{E}[\mathbf{a}_t]=0$. $\operatorname{Cov}[\mathbf{a}_t] = \mathbf{H}_t$.
μ_t :	$n\times 1$ vector of the expected value of the conditional $\boldsymbol{r}_t.$
H_t :	$n \times n$ matrix of conditional variances of \boldsymbol{a}_t at time t .
$H_t^{1/2}$:	Any $n \times n$ matrix at time t such that H_t is the conditional variance matrix of a_t . $H_t^{1/2}$ may be obtained by a Cholesky factorization of H_t .
D_t :	$n \times n,$ diagonal matrix of conditional standard deviations of \pmb{a}_t at time $t.$
R_t :	$n \times n$ conditional correlation matrix of \mathbf{a}_t at time t .
z_t :	$n \times 1$ vector of iid errors such that $\mathbf{E}[\boldsymbol{z}_t]=0$ and $\mathbf{E}[\boldsymbol{z}_t\boldsymbol{z}_t^T]=I$.

