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My Approach to Time Series Modeling




Mean Equation

* The mean equation of an univariate time series xt can be described
by the process

xt = E(xt |Ft-1) + &t

* where E(- | ) denotes the conditional expectation operator, Ft-1 the
information set at time t — 1, and &t the innovations of the time
series.



ARMA mean equation

* The ARMA(m,n) process of autoregressive order m and moving
average order n can be described as

m n
Xt = [ T E aiXi—j T Z bjff_j TE¥F,
=1 j=1

* with mean , autoregressive coefficients ai and moving average
coefficients bi .



ARIMA mean equation

+ Let Y denote the original series

« Let y denote the differenced (stationarized) series

No difference (@=0). y =%,

First difference (d=1): y =Y -Y,

Second difference (¢=2): y,=(Y,-Y _)—(Y_,-Y.,)
= Y~y + Yo



ARIMA mean equation

constant AR terms (lagged values of y)
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the MA terms are — —g

MA terms (lagged errors)

Not as bad as it looks! Usually p+qg <2 and
either p=0 or g=0 (pure AR or pure MA model)



ARIMA models we've already met

ARIMA(0,0,0)+c = mean (constant) model
ARIMA(0,1,0) = RW model

ARIMA(0,1,0)+c = RW with drift model
ARIMA(1,0,0)+c =regress Yon Y_LAG1
ARIMA(1,1,0)+c =regr. Y _DIFF1 onY _DIFF1_LAG1
ARIMA(2,1,0)+c= " " plus Y_DIFF_LAG2 as well
ARIMA(0,1,1) = SES model

ARIMA(O,1,1)+c = SES + constant linear trend
ARIMA(1,1,2) = LES w/ damped trend (leveling off)
ARIMA(0,2,2) = generalized LES (including Holt’s)






Variance Equation: GARCH
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Variance Equation: GARCH

* The mean equation does not take into account heteroskedastic
effects typically observed in financial time series. Engle [1982]
introduced the Autoregressive Conditional Heteroskedastic model,
named ARCH, later generalised by Bollerslev [1986], named GARCH.

£y = ZyTJp .,
zt ~ Dy(0,1),



Variance Equation: GARCH

* Ding [1993] introduced the APARCH(p,q) variance that can be
expressed as

Et = Ztot .
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 where 6 >0 and -1 <vyi < 1. This model adds the flexibility of a varying
exponent with an asymmetry coefficient yi to take the leverage effect
into account and the varying power 6 to consider the Taylor effect.






Multivariate GARCH: DCC-GARCH

The Dynamic Conditional Correlation (DCC-) GARCH belongs to the class "Models of
conditional variances and correlations” as discussed in Section 3.3. It was introduced
by Engle and Sheppard in 2001 [11]. The idea of the models in this class is that the
covariance matrix, H;, can be decomposed into conditional standard deviations, D;, and
a correlation matrix, R;. In the DCC-GARCH model both D; and R; are designed to be
time-varying.



Suppose we have returns, a;, from n assets with expected value (0 and covariance matrix
H;. Then the Dynamic Conditional Correlation (DCC-) GARCH model is defined as:

Ty = Hy + (24}
a; = H*z, (25)
H; = DR D, (26)
Notation:
T : n % 1 vector of log returns of n assets at time t.
ai : n % 1 vector of mean-corrected returns of n assets at time ¢, i.e. E[ﬂ;]:ﬂ.
Cov]a:] = H,.
1% n % 1 vector of the expected value of the conditional r;.
H;: n % n matrix of conditional variances of a; at time ¢.
H tl /2, Any n x n matrix at time ¢ such that H; is the conditional variance
matrix of a;. H :‘f 2 may be obtained by a Cholesky factorization of H ;.
D;: n % n, diagonal matrix of conditional standard deviations of a; at time ¢.
R;: n *% n conditional correlation matrix of a; at time .

Zy: n % 1 vector of iid errors such that E[z;]=0 and E[z;2z]] = I.






