Cache memory

Cache memory is divided into blocks/lines.

These memory blocks can be of different sizes.

Cache Size - C (bytes) = S x A x B

- S = Number of sets or cache rows.
- B = Block size (bytes)
- A = Associativity (determines mapping techniques, to be discussed later)

Cache memory address is generally divided into three fields.

Tag – Most significant bits. Determines which main memory block is mapped to cache memor Index – Specifies cache row (set) which main memory block is cop Block Offset – Least significant bi

6	size partitions called memory						
	blocks or frames.						
	• During mapping, some of the						
	main memory blocks	are					
s	copied to cache memory.						
	Remember, Main Me	mory					
	Size >> Cache Memo	ry Size					
ally	Performance of cache	5					
any	memory mapping fur	nction is					
	key to overall speed.						
y	Cache mapping can be performed						
, ory.	using following techniques:						
) in	Direct mapping						
, pied.	Fully associative map	Fully associative mapping					
oits.	• (N-way) Set associativ	(N-way) Set associative					
	mapping Virtual Memo	ry Mapping					
	\square	\					
		\backslash					
	Cache Mapping	\ 					
	\mathbf{V}						
	CPU Cache	Secondary Memory					
	(DRAM)	(Hard Disk)					
	Convrighted	Mate					

Cache mapping techniques

Main memory contains equal

Cache mapping defines how a

memory block is mapped to

cache.

٠

Cache Memory – Part 2

Direct Mapping

Each memory block maps to a specific cache block, the simplest cache mapping.

Direct Mapping Algorithm

If cache has 2^n blocks, data at memory address i is mapped as: Cache block index = $i \mod 2^n$ Cache memory block # = (Main memory block #) mod (# of cache memory blocks) 0 mod 4 = 0 1 mod 4 = 1 2 mod 4 = 2 3 mod 4 = 3 4 mod 4 = 0 5 mod 4 = 1 6 mod 4 = 2 7 mod 4 = 3

- $8 \mod 4 = 0$ $9 \mod 4 = 1$ $10 \mod 4 = 2$ $11 \mod 4 = 3$
- 12 mod 4 = 0 13 mod 4 = 1 14 mod 4 = 2 15 mod 4 = 3

S = # of sets (rows) = # of cache blocks, Associativity = 1,

Block size = B bytes

Consider following scenario...

- Cache memory consists of 128 blocks each containing 16 bytes
 Total cache size = 128 blocks x 16 bytes = 2048 (2K) bytes.
- Main memory is addressable by 16-bit address
 Total size of main memory is 2¹⁶ = 65536 (64K) bytes.
 Number of 16-byte blocks in main memory = 64K / 16 = 4
 Cache memory block # = mod 128

Total cache size = 128 blocks x 16 bytes = 2048 (2K) bytes. Number of 16-byte blocks in main memory = 64K / 16 = 4K

- Memory address is divided into tag, index, block-offset.
- Block size = 16 bytes = 2^4 bytes, Block offset bits = $\log_2 B = 4$ bits
- Total number of rows = $128 = 2^7$ blocks Index bits = $\log_2 S = 7$ bits
- Tags = # of main memory blocks / # of cache memory blocks = $4K / 128 = 2^{5}$ Tag bits = $\log_2 2^5 = 5$ bits

Advantage

STUDY FOR FE

ыу s.	les	5	7		4	
-	Тад	Cache Memory		Main Memory Block 0		
	Tug	Block 0		Block 0 Block 1		
К		Block 1				
		Block 12	27			
= 4 bits.						
cks = 4K / 128 = 2 ⁵			<u>2</u> 5			
					Block 4K - 1	

Copyrighted Material © www.studyforfe.com