

Fluid Mechanics

Homework \#2

The following problems are from the recommended textbook: Fluid Mechanics, $7^{\text {th }}$ Edition by Frank White.

1. Denver, Colorado has an average altitude of 5300 ft which has an atmospheric pressure of 83.4 kPa . On a US standard day, pressure gage A reads 83 kPa and gage B reads 105 kPa . Express these readings in gage or vacuum pressure, whichever is appropriate.
2. A storage tank, 26 ft in diameter and 36 ft high, is filled with SAE 30 W oil at $20^{\circ} \mathrm{C}\left(\rho=1.73\right.$ slugs $\left./ \mathrm{ft}^{3}\right)$. (a) What is the gage pressure, in $\mathrm{lb} / \mathrm{in}^{2}$, at the bottom of the tank? (b) How does your result in (a) change if the tank diameter is reduced to 15 ft ? (c) Repeat (a) if leakage has caused a layer of 5 ft of water ($\rho=1.94 \mathrm{slugs} / \mathrm{ft}^{3}$) to rest at the bottom of the (full) tank.
3. A closed tank contains 1.5 m of SAE 30 oil, 1 m of water, 20 cm of mercury, and an air space on top, all at $20^{\circ} \mathrm{C}$. If the pressure at the bottom of the tank is 60 kPa , what is the pressure in the air space? $\left(\gamma_{\text {oil }}=\right.$ $8720 \mathrm{~N} / \mathrm{m}^{3}, \gamma_{\text {water }}=9790 \mathrm{~N} / \mathrm{m}^{3}, \gamma_{\mathrm{Hg}}=133100 \mathrm{~N} / \mathrm{m}^{3}$)
4. Pressure gage A reads 1.5 kPa (gage). The fluids are at $20^{\circ} \mathrm{C}$. Determine the elevations z , in meters, of the liquid levels in the open piezometer tubes B and C. $\left(\gamma_{\text {air }}=12 \mathrm{~N} / \mathrm{m}^{3}, \gamma_{g a s}=6670 \mathrm{~N} / \mathrm{m}^{3}, \gamma_{g l y}=12360 \mathrm{~N} / \mathrm{m}^{3}\right)$

Image from Fluid Mechanics, $7^{\text {th }}$ Edition by Frank White
5. The tank contains water ($\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$) and oil at $20^{\circ} \mathrm{C}$. What is h in cm if the density of the oil is $898 \mathrm{~kg} / \mathrm{m}^{3}$?

Image from Fluid Mechanics, $7^{\text {th }}$ Edition by Frank White
6. If the absolute pressure at the interface between water and mercury is 93 kPa , what, $\mathrm{in} \mathrm{lbf} / \mathrm{ft}^{2}$, is (a) the pressure at the surface and (b) the pressure at the bottom of the container? $\left(\gamma_{\text {water }}=9790 \mathrm{~N} / \mathrm{m}^{3}, \gamma_{\mathrm{Hg}}=133100 \mathrm{~N} / \mathrm{m}^{3}\right)$

Image from Fluid Mechanics, $7^{\text {th }}$ Edition by Frank White
7. The fuel gage for a gasoline tank in a car reads proportional to the bottom gage pressure as shown. If the tank is 30 cm deep and accidentally contains 2 cm of water plus gasoline, how many centimeters of air remain at the top when the gage erroneously reads "full"? ($\gamma_{\text {water }}=9790 \mathrm{~N} / \mathrm{m}^{3}$)

Image from Fluid Mechanics, $7^{\text {th }}$ Edition by Frank White

