


Dynamic Learning is an online subscription solution that supports teachers and students with high 
quality content and unique tools. Dynamic Learning incorporates elements that all work together to give 
you the ultimate classroom and homework resource. 

Cambridge International AS & A Level Further Mathematics Further Pure Mathematics 1  
is available as a Whiteboard eTextbook which is an online interactive version of the printed textbook 
that enables teachers to: 

 ● Display interactive pages to their class
 ● Add notes and highlight areas
 ● Add double-page spreads into lesson plans

Additionally the Student eTextbook of Cambridge International AS & A Level Further 
Mathematics Further Pure Mathematics 1 is a downloadable version of the printed textbook that 
teachers can assign to students so they can:

 ● Download and view on any device or browser
 ● Add, edit and synchronise notes across two devices 
 ● Access their personal copy on the move

To find out more and sign up for free trials visit: www.hoddereducation.com/dynamiclearning

    Integral® A Level Mathematics online resources

MEI’s Integral® A Level Mathematics online teaching and learning platform is available to enhance your 
use of this book. It can be used alongside our printed textbooks, and also links seamlessly with our 
eTextbooks, allowing you to move with ease between corresponding topics in the eTextbooks and Integral.

Integral’s resources cover the revised Cambridge International AS & A Level Mathematics and Further 
Mathematics syllabuses, providing high-quality teaching and learning activities that include printable 
materials, innovative interactive activities, and formative and summative assessments.

Integral is available by subscription. For details visit integralmaths.org.

*MEI’s Integral® material has not been through the Cambridge International endorsement process.

9781510421783_CAIE_Fur_Pure_Maths_1_CV_f.indd   6

http://www.hoddereducation.com/dynamiclearning


Cambridge  
International AS & A Level

Sophie Goldie
Rose Jewell

Series editor: Roger Porkess

Further 
Mathematics

Further Pure  
Mathematics 1

9781510421783.indb   1 02/02/18   3:59 PM



Questions from the Cambridge International AS & A Level Mathematics papers are reproduced by 
permission of Cambridge Assessment International Education. Unless otherwise acknowledged, the 
questions, example answers, and comments that appear in this book were written by the authors. 
Cambridge Assessment International Education bears no responsibility for the example answers to 
questions taken from its past question papers which are contained in this publication. 

The publishers would like to thank the following who have given permission to reproduce photographs 
in this book.

Photo Credits

p.1  ironstuff - iStock via Thinkstock/Getty Images; p.40 t  Charles Brutlag/123RF, b  oriontrail - 
iStock via Thinkstock; p.68  Dusso Janladde via Wikipedia Commons (https://en.wikipedia.org/wiki/
GNU_Free_Documentation_License); p.89  William Booth/Shutterstock.com; p.116  Dean Pennala/
Fotolia; p.135  Marcel/Fotolia; p.156  Lesley Marlor/Fotolia. t = top, b = bottom.

Every effort has been made to trace copyright and acknowledge ownership. The publishers will be glad 
to make suitable arrangements with any copyright holders whom it has not been possible to contact.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made 
from wood grown in sustainable forests. The logging and manufacturing processes are expected to 
conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. 
Telephone: (44) 01235 827720. Fax: (44) 01235 400401. Email: education@bookpoint.co.uk Lines are 
open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. You can 
also order through our website: www.hoddereducation.com

Much of the material in this book was published originally as part of the MEI Structured Mathematics 
series. It has been carefully adapted for the Cambridge International AS & A level Mathematics syllabus. 
The original MEI author team for Pure Mathematics comprised Catherine Berry, Val Hanrahan, Terry 
Heard, David Martin, Jean Matthews, Roger Porkess and Peter Secker.

 Sophie Goldie, Rose Jewell and Roger Porkess 2018

First published 2018 by 
Hodder Education, an Hachette UK company 
Carmelite House 
50 Victoria Embankment 
London EC4Y 0DZ

Impression number 10  9  8  7  6  5  4  3  2  1

Year 2022  2021  2020  2019  2018

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication 
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including 
photocopying and recording, or held within any information storage and retrieval system, without 
permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. 
Further details of such licences (for reprographic reproduction) may be obtained from the Copyright 
Licensing Agency Limited, www.cla.co.uk.

Cover photo by Dmitry Zimin/Shutterstock 
Illustrations by Aptara, Inc. and Integra software Services 
Typeset in Bembo std 11/13 Integra Software Services Pvt. Ltd., Pondicherry, India 
Printed in Italy

A catalogue record for this title is available from the British Library.

ISBN 9781510421783

9781510421783.indb   2 02/02/18   3:59 PM

https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
http://Booth/Shutterstock.com
http://www.hoddereducation.com
http://www.cla.co.uk


iii

Contents

Introduction v
How to use this book vi
The Cambridge International AS & A Level Further  
Mathematics 9231 syllabus viii

1 Matrices and transformations 1
1.1 Matrices 2
1.2 Multiplication of matrices 7
1.3 Transformations 14
1.4 Successive transformations 27
1.5 Invariance 33

2 Series and induction 40
2.1 Sequences and series 41
2.2 Using standard results 46
2.3 The method of differences 50
2.4 Proof by induction 56
2.5 Other proofs by induction 61

3 Roots of polynomials 68
3.1 Polynomials 69
3.2 Quadratic equations 71
3.3 Cubic equations 76
3.4 Quartic equations 83

4 Rational functions and graphs 89
4.1 Graphs of rational functions 90
4.2 How to sketch a graph of a rational function 92
4.3 Oblique asymptotes 98
4.4 Sketching curves related to y = f (x) 102

5 Polar coordinates 116
5.1 Polar coordinates 116
5.2 Sketching curves with polar equations 124
5.3 Finding the area enclosed by a polar curve 131

9781510421783.indb   3 02/02/18   3:59 PM



iv

6 Matrices and their inverses 135
6.1 The determinant of a 2 × 2 matrix 136
6.2 The inverse of a matrix 141
6.3 Finding the inverse of a 3 × 3 matrix 147

7 Vectors 156
7.1 The vector equation of a plane 157
7.2 The intersection of a line and a plane 162
7.3 The distance of a point from a plane 164
7.4 The angle between a line and a plane 165
7.5 The intersection of two planes 170
7.6 The angle between two planes 172
7.7 The vector product 177
7.8 Finding distances 183

Index 197

9781510421783.indb   4 02/02/18   3:59 PM



v

Introduction
This is the first in a series of four books supporting the Cambridge 
International AS & A Level Further Mathematics 9231 syllabus for 
examination from 2020. It is preceded by five books supporting Cambridge 
International AS & A Level Mathematics 9709. The seven chapters in 
this book cover the further pure mathematics required for the Paper 1 
examination. This part of the series also contains a more advanced book for 
further pure mathematics, and a book each for further mechanics and further 
probability and statistics.

These books are based on the highly successful series for the Mathematics 
in Education and Industry (MEI) syllabus in the UK but they have been 
redesigned and revised for Cambridge International students; where 
appropriate, new material has been written and the exercises contain many 
past Cambridge International examination questions. An overview of 
the units making up the Cambridge International syllabus is given in the 
following pages.

Throughout the series, the emphasis is on understanding the mathematics as 
well as routine calculations. The various exercises provide plenty of scope for 
practising basic techniques; they also contain many typical examination-style 
questions.

The original MEI author team would like to thank Sophie Goldie and Rose 
Jewell who have carried out the extensive task of presenting their work in 
a suitable form for Cambridge International students and for their many 
original contributions. They would also like to thank Cambridge Assessment 
International Education for its detailed advice in preparing the books and for 
permission to use many past examination questions.

Roger Porkess

Series editor
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How to use this book
The structure of the book
This book has been endorsed by Cambridge Assessment International 
Education. It is listed as an endorsed textbook for students taking the 
Cambridge International AS & A Level Further Mathematics 9231 syllabus. 
The Further Pure Mathematics 1 syllabus content is covered comprehensively 
and is presented across seven chapters, offering a structured route through the 
course.

The book is written on the assumption that you have covered and understood 
the work in the Cambridge International AS & A Level Mathematics 9709 
syllabus. 

Each chapter is broken down into several sections, with each section covering 
a single topic. Topics are introduced through explanations, with key terms 
picked out in red. These are reinforced with plentiful worked examples, 
punctuated with commentary, to demonstrate methods and illustrate 
application of the mathematics under discussion.

Regular exercises allow you to apply what you have learned. They offer a 
large variety of practice and higher-order question types that map to the key 
concepts of the Cambridge International syllabus. Look out for the following 
icons.

PS   Problem-solving questions will help you to develop the ability 
to analyse problems, recognise how to represent different situations 
mathematically, identify and interpret relevant information, and select 
appropriate methods.

M      Modelling questions provide you with an introduction to the 
important skill of mathematical modelling. In this, you take an everyday 
or workplace situation, or one that arises in your other subjects, and 
present it in a form that allows you to apply mathematics to it.

CP   Communication and proof questions encourage you to become a 
more fluent mathematician, giving you scope to communicate your work 
with clear, logical arguments and to justify your results.

Exercises also include questions from real Cambridge Assessment 
International Education past papers, so that you can become familiar with the 
types of questions you are likely to meet in formal assessments.

Answers to exercise questions, excluding long explanations and proofs, are 
available online at www.hoddereducation.com/cambridgeextras, so you can 
check your work. It is important, however, that you have a go at answering 
the questions before looking up the answers if you are to understand the 
mathematics fully.
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ACTIVITY

In addition to the exercises, Activities invite you to do some work for 
yourself, typically to introduce you to ideas that are then going to be 
taken further. In some places, activities are also used to follow up work 
that has just been covered. 

Other helpful features include the following.

?   This symbol highlights points it will benefit you to discuss with 
your teacher or fellow students, to encourage deeper exploration 
and mathematical communication. If you are working on your own, 
there are answers available online at www.hoddereducation.com/
cambridgeextras.

  This is a warning sign. It is used where a common mistake, 
misunderstanding or tricky point is being described to prevent you from 
making the same error.

A variety of notes are included to offer advice or spark your interest: 

Note
Notes expand on the topic under consideration and explore the deeper 
lessons that emerge from what has just been done.

Historical note
Historical notes offer interesting background information about famous 
mathematicians or results to engage you in this fascinating field.

Technology note
Although graphical calculators and computers are not permitted in the 
examinations for this Cambridge International syllabus, we have included 
Technology notes to indicate places where working with them can be helpful 
for learning and for teaching.

Finally, each chapter ends with the key points covered, plus a list of the 
learning outcomes that summarise what you have learned in a form that is 
closely related to the syllabus.

Digital support
Comprehensive online support for this book, including further questions, 
is available by subscription to MEI’s Integral® online teaching and learning 
platform for AS & A Level Mathematics and Further Mathematics, 
integralmaths.org. This online platform provides extensive, high-quality 
resources, including printable materials, innovative interactive activities, and 
formative and summative assessments. Our eTextbooks link seamlessly with 
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Integral, allowing you to move with ease between corresponding topics in the 
eTextbooks and Integral.

MEI’s Integral® material has not been through the Cambridge International 
endorsement process.

The Cambridge International 
AS & A Level Further 
Mathematics 9231 syllabus
The syllabus content is assessed over four examination papers.

Paper 1: Further Pure 
Mathematics 1

• 2 hours

• 60% of the AS Level; 30% of the 
A Level

• Compulsory for AS and A Level

Paper 3: Further Mechanics

• 1 hour 30 minutes

• 40% of the AS Level; 20% of the 
A Level

• Offered as part of AS; 
compulsory for A Level

Paper 2: Further Pure 
Mathematics 2

• 2 hours

• 30% of the A Level

• Compulsory for A Level; not a 
route to AS Level

Paper 4: Further Probability & 
Statistics

• 1 hour 30 minutes

• 40% of the AS Level; 20% of the 
A Level

• Offered as part of AS; 
compulsory for A Level

The following diagram illustrates the permitted combinations for AS Level 
and A Level.

AS Level Further 
Mathematics 

A Level  Further
Mathematics 

Paper 1 and Paper 3
Further Pure Mathematics 1 

and Further Mechanics

Paper 1 and Paper 4
Further Pure Mathematics 1

and Further Probability & Statistics

Paper 1, 2, 3 and 4
Further Pure Mathematics 1 and 2,

Further Mechanics and Further
Probability & Statistics
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Prior knowledge
It is expected that learners will have studied the majority of the Cambridge 
International AS & A Level Mathematics 9709 syllabus content before 
studying Cambridge International AS & A Level Further Mathematics 9231.

The prior knowledge required for each Further Mathematics component is 
shown in the following table.

Component in AS & A Level 
Further Mathematics 9231

Prior knowledge required from 
AS & A Level Mathematics 9709

9231 Paper 1:  
Further Pure Mathematics 1

9709 Papers 1 and 3

9231 Paper 2: 
Further Pure Mathematics 2

9709 Papers 1 and 3

9231 Paper 3: 
Further Mechanics

9709 Papers 1, 3 and 4

9231 Paper 4: 
Further Probability & Statistics

9709 Papers 1, 3, 5 and 6

Command words
The table below includes command words used in the assessment for this 
syllabus. The use of the command word will relate to the subject context.

Command word What it means

Calculate work out from given facts, figures or information
Deduce conclude from available information
Derive obtain something (expression/equation/value) from 

another by a sequence of logical steps
Describe state the points of a topic / give characteristics and 

main features
Determine establish with certainty
Evaluate judge or calculate the quality, importance, amount, or 

value of something
Explain set out purposes or reasons / make the relationships 

between things evident / provide why and/or how 
and support with relevant evidence

Identify name/select/recognise
Interpret identify meaning or significance in relation to the context
Justify support a case with evidence/argument
Prove confirm the truth of the given statement using a 

chain of logical mathematical reasoning
Show (that) provide structured evidence that leads to a given result
Sketch make a simple freehand drawing showing the key features
State express in clear terms
Verify confirm a given statement/result is true
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Key concepts
Key concepts are essential ideas that help students develop a deep 
understanding of mathematics.

The key concepts are:

Problem solving
Mathematics is fundamentally problem solving and representing systems and 
models in different ways. These include:

» Algebra: this is an essential tool which supports and expresses 
mathematical reasoning and provides a means to generalise across a 
number of contexts.

» Geometrical techniques: algebraic representations also describe a spatial 
relationship, which gives us a new way to understand a situation.

» Calculus: this is a fundamental element which describes change in 
dynamic situations and underlines the links between functions and graphs.

» Mechanical models: these explain and predict how particles and objects 
move or remain stable under the influence of forces.

» Statistical methods: these are used to quantify and model aspects of the 
world around us. Probability theory predicts how chance events might 
proceed, and whether assumptions about chance are justified by evidence.

Communication
Mathematical proof and reasoning is expressed using algebra and notation so 
that others can follow each line of reasoning and confirm its completeness 
and accuracy. Mathematical notation is universal. Each solution is structured, 
but proof and problem solving also invite creative and original thinking.

Mathematical modelling
Mathematical modelling can be applied to many different situations and 
problems, leading to predictions and solutions. A variety of mathematical 
content areas and techniques may be required to create the model. Once the 
model has been created and applied, the results can be interpreted to give 
predictions and information about the real world.

These key concepts are reinforced in the different question types included 
in this book: Problem-solving, Communication and proof, and 
Modelling.
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Answers to exercises are available at www.hoddereducation.com/cambridgeextras

1 M
atrices and transform

ations

1  Matrices and 
transformations

As for 
everything 
else, so for a 
mathematical 
theory – 
beauty can be 
perceived but 
not explained.
Arthur Cayley 
(1821–1895)

UK

Philippines

Singapore

Australia
New Zealand

▲ Figure 1.1 Direct flights between countries by one airline.

Figure 1.1 shows some of the direct flights between countries by one 
airline. How many direct flights are there from:
 Singapore to Australia

 Australia to New Zealand

 the UK to the Philippines?

?
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1.1 Matrices
You can represent the number of direct flights between each pair of countries 
(shown in Figure 1.1) as an array of numbers like this:

A N P S U

A 0 1 0 4 0

N 1 0 0 2 0

P 0 0 0 1 0

S 4 2 1 0 2

U 0 0 0 2 0

The array is called a matrix (the plural is matrices) and is usually written 
inside curved brackets.

0 1 0 4 0
1 0 0 2 0
0 0 0 1 0
4 2 1 0 2
0 0 0 2 0





















It is usual to represent matrices by capital letters, often in bold print.

A matrix consists of rows and columns, and the entries in the various cells are 
known as elements.

The matrix =





















0 1 0 4 0
1 0 0 2 0
0 0 0 1 0
4 2 1 0 2
0 0 0 2 0

M  representing the flights between 

the counties has 25 elements, arranged in five rows and five columns. M is 
described as a 5  5 matrix, and this is the order of the matrix. You state the 
number of rows first then the number of columns. So, for example, the matrix 

= −





3 1 4
2 0 5

M  is a 2  3 matrix and =
−

−













4 4
3 4
0 2

N  is a 3  2 matrix.
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Answers to exercises are available at www.hoddereducation.com/cambridgeextras

1.1 M
atrices

Special matrices
Some matrices are described by special names that relate to the number of 
rows and columns or the nature of the elements. 

Matrices such as 4 2
1 0







  and 

3 5 1
2 0 4
1 7 3

−














 that have the same number of 

rows as columns are called square matrices.

The matrix 1 0
0 1







  is called the 2 × 2 identity matrix or unit matrix, 

and similarly 
1 0 0
0 1 0
0 0 1













  is called the 3 × 3 identity matrix. Identity matrices 

must be square, and are usually denoted by I.

The matrix O = 0 0
0 0







  is called the 2 × 2 zero matrix. Zero matrices can 

be of any order.

Two matrices are said to be equal if, and only if, they have the same order 
and each element in one matrix is equal to the corresponding element in the 
other matrix. So, for example, the matrices A and D below are equal, but B 
and C are not equal to any of the other matrices. 

A = 
1 3
2 4







  B = 

1 2
3 4







  C = 

1 3 0
2 4 0







  D = 

1 3
2 4









Working with matrices
Matrices can be added or subtracted if they are of the same order.

2 4 0
1 3 5

1 1 4
2 0 5

3 3 4
1 3 0−







 + −

−






 =








 

2 3
4 1

7 3
1 2

5 0
5 1

−





 − −

−






 = −

−







 

But 2 4 0
1 3 5

2 3
4 1−







 + −






  cannot be evaluated because the matrices are 

not of the same order. These matrices are non-conformable for addition.

You can also multiply a matrix by a scalar number:

2 3 4
0 6

6 8
0 12

−





 = −








Add the elements 
in corresponding 
positions.

Subtract the elements in 
corresponding positions.

Multiply each of 
the elements by 2.
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1
Technology note

You can use a calculator to add and subtract matrices of the same order and 
to multiply a matrix by a number. If you have a calculator that can handle 
matrices, find out:
» the method for inputting matrices
» how to add and subtract matrices
» how to multiply a matrix by a number for matrices of varying sizes.

Associativity and commutativity
When working with numbers the properties of associativity and 
commutativity are often used. 

Associativity

Addition of numbers is associative. 

(3 + 5) + 8 = 3 + (5 + 8)

Commutativity

Addition of numbers is commutative.

4 + 5 = 5 + 4

When you add numbers, it 
does not matter how the 
numbers are grouped, the 
answer will be the same.

When you add numbers, 
the order of the numbers 
can be reversed and the 
answer will still be the 
same.

 Give examples to show that subtraction of numbers is not 
commutative or associative. 

 Are matrix addition and matrix subtraction associative and/or 
commutative?

?

1 Write down the order of these matrices.

(i) 
2 4
6 0

–3 7













  (ii) 

0 8 4
–2 –3 1
5 3 –2













  (iii) 7 –3( )

(iv) 

1
2
3
4
5





















 (v) 2 –6 4 9
5 10 11 –4







  (vi) 

8 5
–2 0
3 –9















Exercise 1A
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Answers to exercises are available at www.hoddereducation.com/cambridgeextras

2 For the matrices

A B C D= 2 –3
0 4

= 7 –3
1 4

= 3 5 –9
2 1 4

= 0 –4 5
2 1 8

































E = 
–3 5
–2 7







  F = 

1
3
5













  

 find, where possible

(i) A − E (ii) C + D (iii) E + A − B

(iv) F + D (v) D − C (vi) 4F

(vii) 3C + 2D (viii) B + 2F (ix) E − (2B − A)

3 The diagram below shows the number of direct ferry crossings on one 
day offered by a ferry company between cities P, Q, R and S.

 The same information is also given in the partly completed matrix X.

 

From

X =

To

P
Q
R
S

P
0
1

Q
2

R
1

S
0( )

P

R
S

Q

1

2
1

1

1

1

2

2

2

(i) Copy and complete the matrix X.

 A second ferry company also offers ferry crossings between these four 
cities. The following matrix represents the total number of direct ferry 
crossings offered by the two ferry companies.



















0 2 3 2
2 0 2 1
2 2 0 3
1 0 3 0

(ii) Find the matrix Y representing the ferry crossings offered by the 
second ferry company.

(iii) Draw a diagram similar to the one above, showing the ferry 
crossings offered by the second ferry company.

4 Find the values of w, x, y and z such that

 w x
y z

3
1 4

2 1 9 8
11 8−









 + −







 = −

−








 .
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1
5 Find the possible values of p and q such that

 p p

q

3

2 9

5 2

7
6 1
9 4

2

2

−







 − −

−











 = −







 .

6 Four local football teams took part in a competition in which every 
team plays each of the others twice, once at home and once away.  The 
results matrix after half of the games had been played is:

 

Stars
Cougars
Town
United

Win
2
0
2
1

Draw
1
0
0
1

Lose
0
3
1
1

Goals
for
6
2
4
5

Goals
against

3
8
3
3

( )
(i) The results of the next three matches are as follows:

 Stars 2 Cougars 0

 Town 3 United 3

 Stars 2 Town 4

 Find the results matrix for these three matches and hence find the 
complete results matrix for all the matches so far.

(ii) Here is the complete results matrix for the whole competition.

 



















4 1 1 12 8
1 1 4 5 12
3 1 2 12 10
1 3 2 10 9

 Find the results matrix for the last three matches (Stars vs United, 
Cougars vs Town and Cougars vs United) and deduce the result of 
each of these three matches.

7 A mail-order clothing company stocks a jacket in three different sizes 
and four different colours.

 The matrix P = 
17 8 10 15
6 12 19 3
24 10 11 6














 represents the number of jackets

 in stock at the start of one week.

 The matrix Q = 
2 5 3 0
1 3 4 6
5 0 2 3














 represents the number of orders for

jackets received during the week.

(i) Find the matrix P − Q.

 What does this matrix represent? What does the negative element 
in the matrix mean?

M

M
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 A delivery of jackets is received from the manufacturers during the week.

 The matrix R = 
5 10 10 5
10 10 5 15
0 0 5 5














  shows the number of jackets 
received.

(ii) Find the matrix that represents the number of jackets in stock at 
the end of the week after all the orders have been dispatched.

(iii) Assuming that this week is typical, find the matrix that represents 
sales of jackets over a six-week period. How realistic is this 
assumption?

1.2 Multiplication of matrices
When you multiply two matrices you do not just multiply corresponding 
terms. Instead you follow a slightly more complicated procedure. The 
following example will help you to understand the rationale for the way it 
is done.

There are four ways of scoring points in rugby: a try (five points), a 
conversion (two points), a penalty (three points) and a drop goal (three 
points). In a match, Tonga scored three tries, one conversion, two penalties 
and one drop goal.

So their score was

3 × 5 + 1 × 2 + 2 × 3 + 1 × 3 = 26.

You can write this information using matrices. The tries, conversions, 
penalties and drop goals that Tonga scored are written as the 1 × 4 row 
matrix (3 1 2 1) and the points for the different methods of scoring as the 

4 × 1 column matrix 

5
2
3
3
















.

These are combined to give the 1 × 1 matrix 
3 5 1 2 2 3 1 3 26( ) ( )× + × + × + × = .

Combining matrices in this way is called matrix multiplication and this 

example is written as ×

















=(3 1 2 1)

5
2
3
3

(26).
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Find 
10 3
2 7

5
2−















 .

Solution

The product will have order 2 × 1.

(10 × 5) + (3 × 2) = 56

(−2 × 5) + (7 × 2) = 4

10
−2

3
7

5
2( () ) 56

4( )

▲ Figure 1.2

Example 1.1

The use of matrices can be extended to include the points scored by the 
other team, Japan. They scored two tries, two conversions, four penalties 
and one drop goal. This information can be written together with Tonga’s 
scores as a 2 × 4 matrix, with one row for Tonga and the other for Japan. 
The multiplication is then written as

3 1 2 1
2 2 4 1

5
2
3
3

26
29

























=





.

So Japan scored 29 points and won the match.

This example shows you two important points about matrix multiplication. 
Look at the orders of the matrices involved.

The two 'outside' numbers give you the order of 
the product matrix, in this case 2 × 1.

The two 'middle' numbers, in this case 4, must 
be the same for it to be possible to multiply two 
matrices. If two matrices can be multiplied, they 
are conformable for multiplication.

2 × 4   ×   4 × 1

You can see from the previous example that multiplying matrices involves 
multiplying each element in a row of the left-hand matrix by each element 
in a column of the right-hand matrix and then adding these products.  
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Find 1 3
2 5

4 3 0
2 3 1−







 − −







 .

Solution

The order of this product is 2 × 3. 

2 6 3
18 21 5

−
− −











−(1 × 4) + (3 × −2) = −2

(−2 × 4) + (5 × −2) = −18

(1 × 3) + (3 × −3) = −6 (1 × 0) + (3 × 1) = 3

(−2 × 3) + (5 × −3) = −21 (−2 × 0) + (5 × 1) = 5

So 1 3
2 5

4 3 0
2 3 1

2 6 3
18 21 5−







 − −







 = − −

− −








Example 1.2

 If A = 
1 3 5
2 4 1
0 3 7









− , B = 

8 1
2 3

4 0











−
−  and C = 


−

5 0
3 4

,

  which of the products AB, BA, AC, CA, BC and CB exist?

?

Find 3 2
1 4

1 0
0 1−















 .

What do you notice?

Solution

The order of this product is 2 × 2.

3 2
–1 4

1 0
0 1

=
3 2

–1 4































Multiplying a matrix by the identity matrix has no effect.

(3 × 1) + (2 × 0) = 3

(3 × 0) + (2 × 1) = 2

(−1 × 0) + (4 × 1) = 4

(−1 × 1) + (4 × 0) = −1

Example 1.3
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ACTIVITY 1.2

Using A = 2 1
3 4( )− , B = 4 0

2 1( )−
−

 and C = 1 2
2 3( ), find the matrix products:

(i) AB

(ii) BC

(iii) (AB)C

(iv) A(BC)

Does your answer suggest that matrix multiplication is associative?
Is this true for all 2 × 2 matrices? How can you prove your answer?

Technology note
You could use the matrix function on your calculator.

Properties of matrix multiplication
In this section you will look at whether matrix multiplication is:

» commutative
» associative.

On page 4 you saw that for numbers, addition is both associative and 
commutative. Multiplication is also both associative and commutative.  
For example:

(3 × 4) × 5 = 3 × (4 × 5)

and

3 × 4 = 4 × 3

ACTIVITY 1.1

Using A = 
2 1
3 4( )−

 and B = 
4 0
2 1( )−

−  find the products AB and BA and 

hence comment on whether or not matrix multiplication is commutative.
Find a different pair of matrices, C and D, such that CD = DC.
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In this exercise, do not use a calculator unless asked to. A calculator can be 
used for checking answers.

1 Write down the orders of these matrices.

(i) (a) A = 
3 4 1
0 2 3
1 5 0

−











  (b) B = ( )2 3 6

 (c) C = 4 9 2
1 3 0−







  (d) D = 0 2 4 2

0 3 8 1− −






  

 (e) E = 3
6







  (f ) F = 

2 5 0 4 1
3 9 3 2 2
1 0 0 10 4

−
− −













  

(ii) Which of the following matrix products can be found? For those 
that can, state the order of the matrix product.

 (a) AE (b) AF (c) FA (d) CA (e) DC

2 Calculate these products.

(i) 3 0
5 1

7 2
4 3−







 −









(ii) 2 3 5
0 2
5 8
3 1

( )−
−















(iii) 2 5 1 0
3 6 4 3

1
9

11
2

−
−









−

−

















Check your answers using the matrix function on a calculator if possible.

3 Using the matrices A = 5 9
2 7−







  and B = 3 5

2 9
−

−






 , confirm that 

matrix multiplication is not commutative.

4 For the matrices

A = 3 1
2 4







    B = 3 7

2 5
−






  C = 2 3 4

5 7 1







   

D = 
3 4
7 0
1 2−













  E = 

4 7
3 2
1 5

−












  F = 

3 7 5
2 6 0
1 4 8

−

−













  

 calculate, where possible, the following:

(i) AB (ii) BA (iii) CD (iv) DC (v) EF (vi) FE

CP

Exercise 1B
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5 Using the matrix function on a calculator, find M4 for the matrix  

M = 
2 0 1
3 1 2
1 4 3

−

−













 .

6 A = x 3
0 1−







  B = x2 0

4 3−






 :

(i) Find the matrix product AB in terms of x.

(ii) If AB = 
x10 9
4 3

−
−







 , find the possible values of x.

(iii) Find the possible matrix products BA.

7 (i) For the matrix A = 2 1
0 1







 , find

(a) A2

(b) A3

(c) A4

(ii) Suggest a general form for the matrix An in terms of n.

(iii) Verify your answer by finding A10 on your calculator and 
confirming it gives the same answer as (ii). 

8 The map below shows the bus routes in a holiday area. Lines represent 
routes that run each way between the resorts. Arrows indicated one-way 
scenic routes. 

M is the partly completed 4 × 4 matrix that shows the number of direct 
routes between the various resorts. 

B

D

C

A

From

M =

To

A
B
C
D

A
1

B
1

C
2

D
0( )

(i) Copy and complete the matrix M.

(ii) Calculate M2 and explain what information it contains.

(iii) What information would M3 contain?

Note
M4 means M × M × M × M

PS
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9 A = x4 0
2 3 1−







  B = x

x

2 5
4

7

−











 :

(i) Find the product AB in terms of x.

 A symmetric matrix is one in which the entries are symmetrical about 

the leading diagonal, for example 








2 5
5 0

 and 
−

−















3 4 6
4 2 5
6 5 1

.

(ii) Given that the matrix AB is symmetric, find the possible values of x.

(iii) Write down the possible matrices AB.

10 The diagram on the right shows 
the start of the plaiting process for 
producing a leather bracelet from 
three leather strands a, b and c.

The process has only two steps, 
repeated alternately:

Step 1: cross the top strand over 
the middle strand

Step 2: cross the middle strand 
under the bottom strand.

At the start of the plaiting process, 

Stage 0, the order of the strands is given by S0 = 















a
b
c

. 

(i) Show that pre-multiplying S0 by the matrix A = 
0 1 0
1 0 0
0 0 1














 

 gives S1, the matrix that represents the order of the strands at Stage 1.

(ii) Find the 3 × 3 matrix B that represents the transition from Stage 1 to 
Stage 2.

(iii) Find matrix M = BA and show that MS0 gives S2, the matrix that 
represents the order of the strands at Stage 2.

(iv) Find M2 and hence find the order of the strands at Stage 4.

(v) Calculate M3. What does this tell you?

A B C
PS
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1.3 Transformations
You are already familiar with several different types of transformation, 
including reflections, rotations and enlargements.

» The original point, or shape, is called the object.
» The new point, or shape, after the transformation, is called the image.
» A transformation is a mapping of an object onto its image.

Some examples of transformations are illustrated in Figures 1.3 to 1.5 (note that 
the vertices of the image are denoted by the same letters with a dash, e.g. A′, B′).

O x

y

A′

B

A

B′

▲ Figure 1.3 Reflection in the line y = x

O x

y

A′

B

A

B′

▲  Figure 1.4 Rotation through 90° 
clockwise, centre O

O x

y

A′

B

A

B′

▲ Figure 1.5 Enlargement centre O, scale factor 2

In this section, you will also meet the idea of

» a stretch parallel to the x-axis or y-axis
» a shear.

A transformation maps an object according to a rule and can be represented by 
a matrix (see next section). The effect of a transformation on an object can be 

found by looking at the effect it has on the position vector of the point 










x
y

,  

i.e. the vector from the origin to the point (x, y). So, for example, to find the effect  
of a transformation on the point (2, 3) you would look at the effect that the 

transformation matrix has on the position vector 








2
3

.
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Vectors that have length or magnitude of 1 are called unit vectors. 

In two dimensions, two unit vectors that are of particular interest are

i = 








1
0

 − a unit vector in the direction of the x-axis

j = 








0
1

 − a unit vector in the direction of the y-axis.

The equivalent unit vectors in three dimensions are

i = 














1
0
0

 − a unit vector in the direction of the x-axis

j = 














0
1
0

 − a unit vector in the direction of the y-axis

k = 














0
0
1

 − a unit vector in the direction of the z-axis.

Finding the transformation represented by a 
given matrix

Start by looking at the effect of multiplying the unit vectors i = 








1
0

 

and j = 








0
1  by the matrix 

−
−









1 0
0 1

.

The image of 








1
0

 under this transformation is given by

1 0
0 1

1
0

1
0

−
−













= −





. 

O x

y

I′ I

▲ Figure 1.6

Note
The letter I is often used for the point (1, 0).
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Example 1.4

The image of 








0
1

 under the transformation is given by

−
−















 =

−








1 0
0 1

0
1

0
1

.

O x

y

J′

J

▲ Figure 1.7

You can see from this that the matrix 1 0
0 1
−

−






  represents a rotation, centre 

the origin, through 180°.

Note
The letter J is often used for the point (0, 1).

Describe the transformations represented by the following matrices.

(i) 
0 1
1 0







  (ii) 2 0

0 2









Solution

(i) 0 1
1 0

1
0

0
1















 =







  0 1

1 0
0
1

1
0















 =









O x

y

I′

I

▲ Figure 1.8      

O x

y

J

J′

▲ Figure 1.9

 The matrix 0 1
1 0







  represents a reflection in the line y = x.

(ii) 2 0
0 2

1
0

2
0















 =







  2 0

0 2
0
1

0
2















 =









 

O x

y

I′I

▲ Figure 1.10

O x

y

J′

J

▲ Figure 1.11
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By drawing a diagram to show the image of the unit square, find the matrices 
that represent each of the following transformations:

(i) a reflection in the x-axis

(ii) an enlargement of scale factor 3, centre the origin. 

You can see that the images of i = 1
0







  and j = 0

1−






  are the two 

columns of the transformation matrix.

Finding the matrix that represents a given 
transformation
The connection between the images of the unit vectors i and j and the 
matrix representing the transformation provides a quick method for finding 
the matrix representing a transformation.

It is common to use the unit square with coordinates O (0, 0), I (1, 0), P (1, 1) 
and J (0, 1).

You can think about the images of the points I and J, and from this you can 
write down the images of the unit vectors i and j.

This is done in the next example.

You may find it 
easier to see what 
the transformation 
is when you use 
a shape, like the 
unit square, rather 
than points or 
lines.

Example 1.5

Solution

O x

y

I
I′

P′J′

J

1-1-2 2 3

-1

1

▲ Figure 1.12

  You can see from Figure 1.12 that I (1, 0) is mapped to itself
 and J (0, 1) is mapped to J′ (0, −1). 

 So the matrix that represents a reflection in the x-axis is 1 0
0 1−







 .

(i)

So the image of I is 1
0( )

and the image of J is 
0
1−







 .

➜

  The matrix 2 0
0 2







  represents an enlargement, centre the origin, scale 

factor 2.
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 For a general transformation represented by the matrix a b
c d( ), what 

are the images of the unit vectors 1
0( ) and 0

1( )?
 What is the image of the origin (0, 0)?

?

ACTIVITY 1.3

Using the image of the unit square, find the matrix which represents a 
rotation of 45° anticlockwise about the origin.
Use your answer to write down the matrices that represent the following 
transformations:
(i) a rotation of 45° clockwise about the origin

(ii) a rotation of 135° anticlockwise about the origin.

(ii) 

O x

y

P

I I′

J′ P′

J

1-1-2 2 3 4 5 6

-1

1

2

3

▲ Figure 1.13

 You can see from Figure 1.13 that I (1, 0) is mapped to I′ (3, 0), 

 and J (0, 1) is mapped to J′ (0, 3). 

 So the matrix that represents an enlargement, centre the origin,

 scale factor 3 is 3 0
0 3







 .

So the image of I is 3
0( )

and the image of J is 0
3( ).
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(i)  Find the matrix that represents a rotation through angle θ anticlockwise 
about the origin.

(ii)  Use your answer to find the matrix that represents a rotation  
of 60° anticlockwise about the origin.

Solution

(i)  Figure 1.14 shows a rotation of angle θ anticlockwise about the origin.

 

O x

y

A

B′
A′

B

θ
θ

▲ Figure 1.14

Call the coordinates of the point A′ (p, q). Since the lines OA and 
OB are perpendicular, the coordinates of B′ will be (−q, p).

From the right-angled triangle with OA′ as the hypotenuse, =θ p
cos 1  

and so p cos= θ .

Similarly, from the right-angled triangle with OB′ as the hypotenuse, 

=θ q
sin 1  so q sin= θ .

So, the image point A′ (p, q) has position vector cos
sin









θ
θ

 and the  

image point B′ (−q, p) has position vector sin
cos
−








θ
θ

.

Therefore, the matrix that represents a rotation of angle θ anticlockwise 

about the origin is cos sin
sin cos

−







θ θ
θ θ

.

(ii)  The matrix that represents an anticlockwise rotation of 60° about 

the origin is cos60 sin60
sin60 cos60

1
2

3
2

3
2

1
2

° − °
° °







=
−
















.

Example 1.6

 What matrix would represent a rotation through an angle θ clockwise 
about the origin?

?
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ACTIVITY 1.4

Investigate the effect of the matrices:

(i) 2 0
0 1







  (ii) 1 0

0 5







  

Describe the general transformation represented by the

matrices m 0
0 1







  and 

n
1 0
0







 .

Activity 1.4 illustrates two important general results:

» The matrix m 0
0 1







  represents a stretch of scale factor m parallel to the 

x-axis.

» The matrix 
n

1 0
0







  represents a stretch of scale factor n parallel to the 

y-axis.

Technology note
You could use geometrical software to try different values of m and n.

Shears
Figure 1.15 shows the unit square and its image under the transformation

represented by the matrix 1 3
0 1







  on the unit square. The matrix 1 3

0 1









transforms the unit vector i = 
1
0







  to the vector 1

0







  and transforms the

unit vector j = 0
1







  to the vector 3

1







 .

The point with position vector 1
1







  is transformed to the point with

position vector 4
1







 .

As 1 3
0 1

1
1

= 4
1( ) ( )( )
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O x

y

1 2 3 4

1

2

3

I I′

P′J′PJ

▲ Figure 1.15

This transformation is called a shear. Notice that the points on the 
x-axis stay the same, and the points J and P move parallel to the x-axis 
to the right. 

This shear can be described fully by saying that the x-axis is fixed, and giving 
the image of one point not on the x-axis, e.g. (0, 1) is mapped to (3, 1).

Generally, a shear with the x-axis fixed has the form k1
0 1







  and a shear 

with the y-axis fixed has the form 
k
1 0

1







 .

Example 1.7 Find the image of the rectangle with vertices A (-1, 2), B (1, 2), C (1, -1) and 

D (-1, -1) under the shear 1 3
0 1







  and show the rectangle and its image on 

a diagram.

Solution

1 3
0 1

1 1 1 1
2 2 1 1

5 7 2 4
2 2 1 1









− −
− −







 = − −

− −








O x

y

B A′

D′ C′

B′A

CD

1−1−4 −3 −2 2 3 4 5 76

−2

−1

1

2

3

▲ Figure 1.16
➜
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There are different conventions about the sign of a shear factor, and 
for this reason shear factors are not used to define a shear in this book. 
It is possible to show the effect of matrix transformations using some 
geometrical computer software packages. You might find that some 
packages use different approaches towards shears and define them in 
different ways.

Technology note
If you have access to geometrical software, investigate how shears are 
defined.

The effect of this shear is to transform the 
Note

Notice that under the shear 
transformation, points above 
the x-axis move to the right 
and points below the x-axis 
move to the left.

sides of the rectangle parallel to the y-axis 
into sloping lines. Notice that the

gradient of the side A′ D′ is 1
3

, which

is the reciprocal of the top right-hand 

element of the matrix 1 3
0 1







 .

ACTIVITY 1.5

For each of the points A, B, C and D in Example 1.7, find

x
distance between the point and its image

distance of original point from -axis
.

What do you notice?

In the activity above, you should have found that dividing the distance 
between the point and its image by the distance of the original point from 
the x-axis (which is fixed), gives the answer 3 for all points, which is the 
number in the top right of the matrix. This is called the shear factor for 
the shear.
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Example 1.8 In a shear, S, the y-axis is fixed, and the image of the point (1, 0) is the  
point (1, 5).

(i)  Draw a diagram showing the image of the unit square under the 
transformation S.

(ii) Find the matrix that represents the shear S.

Solution

(i) 

O x

y

BA

C′

B′

A′

C

1

2

1 2 3 4

3

4

5

6

▲ Figure 1.17

(ii) Under S 1
0

1
5







 →









 and 0
1

0
1







 →









 So the matrix representing S is 1 0
5 1







 .

Since the y-axis is fixed.

Notice that this matrix is of the form 
k
1 0

1( )  for shears with the y-axis fixed.
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Summary of transformations in two dimensions

Note
All these transformations are examples of linear transformations. In a linear 
transformation, straight lines are mapped to straight lines, and the origin is 
mapped to itself.

Reflection in the x-axis 1 0
0 1−







 Reflection in the y-axis 1 0

0 1
−








 
Reflection in the  
line y = x 

0 1
1 0







 Reflection in the line  

y = −x 

Rotation  
anticlockwise  
about the origin  
through angle θ

Enlargement, centre the   
origin, scale factor k 

 
Stretch parallel to the  
x-axis, scale factor k 

k 0
0 1







 Stretch parallel to the  

y-axis, scale factor k 

 
Shear, x-axis fixed,  
with (0, 1) mapped to (k, 1) 

Shear, y-axis fixed,  
with (1, 0) mapped to (1, k) 

0 1
1 0

−
−









−





θ θ
θ θ

cos sin
sin cos

k
k
0

0











k
1 0
0









k1
0 1







 k

1 0
1









1 The diagram shows a triangle with vertices at O, A (1, 2) and B (0, 2).

O x

y

B A

1−1−3 −2 2 3

1

2

3

 For each of the transformations below

(a) draw a diagram to show the effect of the transformation on 
triangle OAB

(b) give the coordinates of A′ and B′, the images of points A and B
(c) find expressions for x′ and y′, the coordinates of P′, the image 

of a general point P (x, y)
(d) find the matrix that represents the transformation.

Exercise 1C
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(i) Enlargement, centre the origin, scale factor 3

(ii) Reflection in the x-axis

(iii) Reflection in the line x + y = 0

(iv) Rotation 90° clockwise about O

(v) Two-way stretch, scale factor 3 horizontally and scale factor 1
2
 

vertically.

2 Describe the geometrical transformations represented by these matrices.

(i) 1 0
0 1−







 (ii) 0 1

1 0
−

−






 (iii) 2 0

0 3









(iv) 4 0
0 4







  (v) 0 1

1 0−








3 Each of the following matrices represents a rotation about the origin. 
Find the angle and direction of rotation in each case.

(i) 

1
2

3
2

3
2

1
2

−















 (ii) 0.574 0.819

0.819 0.574
−






  

(iii) 

1
2

1
2

1
2

1
2

−

− −

















 (iv) 

3
2

1
2

1
2

3
2

− −

−
















 

4 The diagram below shows a square with vertices at the points A (1, 1), 
B (1, −1), C (−1, −1) and D (−1,1).

O x

y

AD

BC

(i) Draw a diagram to show the image of this square under the 

transformation matrix M = 1 4
0 1







 .

(ii) Describe fully the transformation represented by the matrix M. 
State the fixed line and the image of the point A.
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1
5 (i)  Find the image of the unit square under the transformations 

represented by the matrices

(a) A = 1 0
5 1







  (b) B = 1 0.5

0 1







 .

(ii) Use your answers to part (i) to fully describe the transformations 
represented by each of the matrices A and B.

6 The diagram below shows a shear that maps the rectangle ABCD to the 
parallelogram A′B′C′D′.

 The angle A′DA is 60°.

O x

y

A(−1, 2) B(2, 2)

D
60°

C
D′ C′

A′ B′

(i) Find the coordinates of A′.
(ii) Find the matrix that represents the shear.

7 The unit square OABC has its vertices at (0, 0), (1, 0), (1, 1) and (0, 1).

 OABC is mapped to OA′B′C′ by the transformation defined by the 

matrix 4 3
5 4







 .

 Find the coordinates of A′, B′ and C′ and show that the area of the shape 
has not been changed by the transformation.

8 The transformation represented by the matrix M = 
1 2
0 1







  is applied 

to the triangle ABC with vertices A (−1, 1), B (1, −1) and C (−1, −1).

(i) Draw a diagram showing the triangle ABC and its image A′B′C′.
(ii) Find the gradient of the line A′C′ and explain how this relates to 

the matrix M.

9 A transformation maps P to P′ as follows:

» Each point is mapped on to the line y = x.

» The line joining a point to its image is parallel to the y-axis.

 Find the coordinates of the image of the point (x, y) and hence show 
that this transformation can be represented by means of a matrix.

 What is that matrix?

PS
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10 A square has corners with coordinates A (1, 0), B (1, 1), C (0, 1) and 
O (0, 0). It is to be transformed into another quadrilateral in the first 
quadrant of the coordinate grid.

 Find a matrix that would transform the square into:

(i) a rectangle with one vertex at the origin, the sides lie along the axes 
and one side of length is 5 units

(ii) a rhombus with one vertex at the origin, two angles of 45° and side 
lengths of 2  units; one of the sides lies along an axis

(iii) a parallelogram with one vertex at the origin and two angles of 30°; 
one of the longest sides lies along an axis and has length 7 units;  
the shortest sides have length 3 units.

 Is there more than one possibility for any of these matrices? If so, write 
down alternative matrices that satisfy the same description.

PS

1.4 Successive transformations
Figure 1.18 shows the effect of two successive transformations on a triangle. 
The transformation A represents a reflection in the x-axis. A maps the point 
P to the point A(P). 

The transformation B represents a rotation of 90° anticlockwise about O. 
When you apply B to the image formed by A, the point A(P) is mapped to 
the point B(A(P)). This is abbreviated to BA(P).

O x

y
P(x, y)

O x

y

A(P)

O x

y
BA(P)

A B

▲ Figure 1.18

Look at Figure 1.18 and compare the original triangle with the final 
image after both transformations.

  Describe the single transformation represented by BA.

  Write down the matrices which represent the transformations A and 
B. Calculate the matrix product BA and comment on your answer.

?

Note
Notice that a transformation written as BA means ‘carry out A, then carry 
out B’.

This process is sometimes called composition of transformations.
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1

 How can you use the idea of successive transformations to explain the 
associativity of matrix multiplication (AB)C = A(BC)?

?

ACTIVITY 1.6

The transformations T and S are represented by the matrices  

T = a b
c d









  and S = p q

r s









 .

T is applied to the point P with position vector p = x
y









 . The image of 

P is P′.

S is then applied to the point P′. The image of P′ is P″. This is illustrated 
in Figure 1.19.

O x

y

P

T

U

a
b

c
d( ) p

q
r
s( )

x
y( )

O x

y

x"
y"( )

O x

y
S

x'
y'( )
P'

P''

▲ Figure 1.19

(i)  Find the position vector x
y
′
′









  of P′ by calculating the matrix 

product T 
x
y









 .

(ii)  Find the position vector x
y

′′
′′









  of P″ by calculating the matrix 

product S 
x
y
′
′









 .

(iii)  Find the matrix product U = ST and show that U 
x
y









  is the same 

as x
y

′′
′′









 . 

Technology 
note

If you have access 
to geometrical 
software, you 
could investigate 
this using several 
different matrices 
for T and S.

In general, the matrix for a composite transformation is found by multiplying the 
matrices of the individual transformations in reverse order. So, for two 
transformations the matrix representing the first transformation is on the right 
and the matrix for the second transformation is on the left. For n transformations 
T1, T2, …., Tn-1, Tn, the matrix product would be TnTn-1 … T2T1.

You will prove this result for two transformations in Activity 1.6.

Note
A transformation 
is often denoted 
by a capital 
letter. The matrix 
representing this 
transformation is 
usually denoted 
by the same 
letter, in bold.
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Proving results in trigonometry
If you carry out a rotation about the origin through angle θ, followed by a 
rotation about the origin through angle φ, then this is equivalent to a single 
rotation about the origin through angle θ  + φ. Using matrices to represent 
these transformations allows you to prove the formulae for sin (θ  + φ) and  
cos (θ  + φ). This is done in Activity 1.7.

ACTIVITY 1.7

(i)  Write down the matrix A representing a rotation about the origin 
through angle θ, and the matrix B representing a rotation about the 
origin through angle φ.

(ii)  Find the matrix BA, representing a rotation about the origin through 
angle θ, followed by a rotation about the origin through angle φ.

(iii)  Write down the matrix C representing a rotation about the origin 
through angle θ  + φ.

(iv)  By equating C to BA, write down expressions for sin (θ  + φ) and 
cos (θ  + φ).

(v) Explain why BA = AB in this case.

Note
Assume that 
a rotation is 
anticlockwise 
unless otherwise 
stated

(i)  Write down the matrix A that represents an anticlockwise rotation of 
135° about the origin.

(ii)  Write down the matrices B and C that represent rotations of 45° and 90° 
respectively about the origin. Find the matrix BC and verify that A = BC.

(iii) Calculate the matrix B3 and comment on your answer.

Solution

(i) A = 

1
2

1
2

1
2

1
2

− −

−

















 

(ii) B = 

1
2

1
2

1
2

1
2

−
















, C = 0 1
1 0

−





  

 BC = 

1
2

1
2

1
2

1
2

0 1
1 0

1
2

1
2

1
2

1
2

−
















−





 =

− −

−
















 = A

Example 1.9

➜

9781510421783.indb   29 02/02/18   4:00 PM

http://www.hoddereducation.com/cambridgeextras


1 
M

AT
R

IC
ES

 A
N

D
 T

R
A

N
SF

O
R

M
AT

IO
N

S

30

1

1 A = 3 0
0 3







 ,  B = 0 1

1 0
−






 , C = 1 0

0 1−






  and D = 0 1

1 0







 .

(i) Describe the transformations that are represented by matrices  
A, B, C and D.

(ii) Find the following matrix products and describe the single 
transformation represented in each case:

(a) BC (b) CB (c) DC (d) A2 (e) BCB (f) DC2D
(iii) Write down two other matrix products, using the matrices A, B, C 

and D, which would produce the same single transformation as DC²D.

2 The matrix X represents a reflection in the x-axis.

 The matrix Y represents a reflection in the y-axis.

(i) Write down the matrices X and Y.
(ii) Find the matrix XY and describe the transformation it represents.
(iii) Find the matrix YX. 
(iv) Explain geometrically why XY = YX in this case.

3 The matrix P represents a rotation of 180° about the origin.

 The matrix Q represents a reflection in the line y = x.
(i) Write down the matrices P and Q.
(ii) Find the matrix PQ and describe the transformation it represents.
(iii) Find the matrix QP. 
(iv) Explain geometrically why PQ = QP in this case.

4 The transformations R and S are represented by the matrices  

R = 2 1
1 3

−





  and S = 3 0

2 4−






 . 

(i) Find the matrix which represents the transformation RS.
(ii) Find the image of the point (3, -2) under the transformation RS.

5 The transformation represented by C = 0 3
1 0−







  is equivalent to a 

single transformation B followed by a single transformation A. Give 
geometrical descriptions of a pair of possible transformations B and A 
and state the matrices that represent them.

 Comment on the order in which the transformations are performed.

PS

PS

Exercise 1D

(iii) B3 = 
−

















−
















−
















=
− −

−

















1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

.
This verifies that three successive anticlockwise rotations of 45° 
about the origin is equivalent to a single anticlockwise rotation of 
135° about the origin.
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6 The diagram on the right shows the 
image of the unit square OABC under the 
combined transformation with matrix PQ. 

(i) Write down the matrix PQ.

 Matrix P represents a reflection. 

(ii) State the matrices P and Q and 
define fully the two transformations 
represented by these matrices. When 
describing matrix Q you should refer 
to the image of the point B.

7 Find the matrix X that represents rotation of 135° about the origin 
followed by a reflection in the y-axis.

 Explain why matrix X cannot represent a rotation about the origin.

Note
Assume that a rotation is anticlockwise unless otherwise stated

8 (i)  Write down the matrix P that represents a stretch of scale factor 2 
parallel to the y-axis.

(ii) The matrix Q = 5 0
0 1−







 . Write down the two single 

transformations that are represented by the matrix Q.

(iii) Find the matrix PQ. Write a list of the three transformations that 
are represented by the matrix PQ. In how many different orders 
could the three transformations occur? 

(iv) Find the matrix R for which the matrix product RPQ would 
transform an object to its original position.

9 There are two basic types of four-terminal electrical networks, as shown 
in the diagrams below.

In Type A the output voltage V2 and current I2 are related to the input 
voltage V1 and current I1 by the simultaneous equations:

V V I R

I I
2 1 1 1

2 1

= −
=

 

PS

PS

PS

O x

y

BA

A′

C′

B′

C
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1 The simultaneous equations can be written as A
V

I

V

I
2

2

1

1









 =









 .

(i) Find the matrix A.

In Type B the corresponding simultaneous equations are:

 

V V

I I
V
R

2 1

2 1
1

2

=

= −

(ii) Write down the matrix B that represents the effect of a Type B 
network.

(iii) Find the matrix that represents the effect of  Type A followed by 
Type B.

(iv) Is the effect of  Type B followed by Type A the same as the effect of 
Type A followed by Type B?

10 The matrix B represents a rotation of 45° anticlockwise about the origin.

 B = 
−



















1

2

1

2
1

2

1

2

, D = a b
b a

−







  where a and b are positive real numbers

 Given that D2 = B,  find exact values for a and b. Write down the 
transformation represented by the matrix D.  What do the exact values 
a and b represent?

In questions 11 and 12 you will need to use the matrix that represents a 

reflection in the line y = mx.  This can be written as 
m

m m

m m
1

1
1 2

2 1
2

2

2+
−

−









 .

11 (i)  Find the matrix P that represents reflection in the line y x1
3

= , 

and the matrix Q that represents reflection in the line y x3= .

(ii) Use matrix multiplication to find the single transformation 

equivalent to reflection in the line y x1
3

=  followed by reflection in 
the line y x3= .

 Describe this transformation fully.

(iii) Use matrix multiplication to find the single transformation 
equivalent to reflection in the line y x3=  followed by reflection 

in the line y x1
3

= .

 Describe this transformation fully.

12 The matrix R represents a reflection in the line y mx= . 

 Show that R2 = 1 0
0 1







  and explain geometrically why this is the case.

CP
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1.5 Invariance
Invariant points

 In a reflection, are there any points that map to themselves?

 In a rotation, are there any points that map to themselves?

?

Points that map to themselves under a transformation are called invariant 
points. The origin is always an invariant point under a transformation that 
can be represented by a matrix, as the following statement is always true:

a b
c d

0
0

0
0

















 =









More generally, a point (x, y) is invariant if it satisfies the matrix equation:

a b
c d

x
y

x
y



















 =











For example, the point (−2, 2) is invariant under the transformation 

represented by the matrix 6 5
2 3







 :  6 5

2 3
2
2

2
2









−





 = −








M is the matrix 2 1
1 0

−





 .

(i)  Show that (5, 5) is an invariant point under the transformation 
represented by M.

(ii)  What can you say about the invariant points under this transformation?

Solution

(i)  2 1
1 0

5
5

5
5

−













 =







  so (5, 5) is an invariant point under the 

transformation represented by M.

(ii) Suppose the point x
y









  maps to itself.  Then

 x
y

x
y

2 1
1 0

−















 =











 x y

x

x
y

2 −







 =











⇔ 2x − y = x and x = y. 
So the invariant points of the transformation are all the points on the 
line y = x.

Both equations simplify to y = x.
These points all 
have the form 
(λ, λ). The point 
(5,5) is just one of 
the points on this 
line.

Example 1.10
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1
The simultaneous equations in Example 1.10 were equivalent and so all the 
invariant points were on a straight line. Generally, any matrix equation set up 
to find the invariant points will lead to two equations of the form ax + by = 0,  
which can also be expressed in the form y ax

b
= − . These equations may be 

equivalent, in which case this is a line of invariant points. If the two equations 
are not equivalent, the origin is the only point that satisfies both equations, 
and so this is the only invariant point.

Invariant lines
A line AB is known as an invariant line under a transformation if the image 
of every point on AB is also on AB. It is important to note that it is not 
necessary for each of the points to map to itself; it can map to itself or to 
some other point on the line AB.

Sometimes it is easy to spot which lines are invariant. For example, in 
Figure 1.20 the position of the points A−F and their images A′−F′ show 
that the transformation is 
a reflection in the line l. 
So every point on l maps 
onto itself and l is a line of 
invariant points.

Look at the lines perpendicular 
to the mirror line in 
Figure 1.20, for example the 
line ABB′A′. Any point on 
one of these lines maps onto 
another point on the same line. 
Such a line is invariant but it is 
not a line of invariant points. ▲ Figure 1.20

Example 1.11
Find the invariant lines of the transformation given by the matrix M = 5 1

2 4







 .

Solution

Suppose the invariant line has the form y mx c= +

 
x
y

x
y

x x y5 1
2 4

5
′
′









 =

















 ⇔ ′ = + ⇔ 

x
y

x
y

x x y5 1
2 4

5
′
′









 =

















 ⇔ ′ = +  and ′ = +y x y2 4  

⇔
 
  
x x mx c m x c

y x mx c m x c

5 (5 )

2 4( ) (2 4 ) 4

′ = + + = + +
′ = + + = + +





As the line is invariant, ( )′ ′x y,  also lies on the line, so ′ = ′ +y mx c .

Let the original point 
be (x, y) and the 
image point be (x′, y′).

Using y mx c= + .
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Therefore, 

m x c m m x c c(2 4 ) 4 [(5 ) ]+ + = + + +  

⇔  m m x m c0 ( 2) ( 3)2⇔ = + − + −  

For the left-hand side to equal zero, both m m 2 02 + − =  and m c( 3) 0− = .

m m m m( 1)( 2) 0 1 or 2− + = ⇔ = = −

and
m c m c( 3) 0 3 or 0− = ⇔ = =  

So, there are two possible solutions  
for the invariant line:

= = ⇔ =m c y x1, 0

or
= − = ⇔ = −m c y x2, 0 2  

Figure 1.21 shows the effect  
of this transformation,  
together with its invariant  
lines.

m = 3 is not a viable 
solution as +m m 2 02 − ≠ . 

y = −2x

y = x

x

y

C′ B′

D′ A′

C

D
B

A

▲ Figure 1.21

Exercise 1E 1 Find the invariant points under the transformations represented by the 
following matrices.

(i) − −







1 1
2 2

 (ii) 








3 4
1 2

  (iii) 








4 1
6 3

  (iv) −
−









7 4
3 1

 

2 What lines, if any, are invariant under the following transformations?

(i) Enlargement, centre the origin

(ii) Rotation through 180° about the origin

(iii) Rotation through 90° about the origin

(iv) Reflection in the line y = x

(v) Reflection in the line y = −x

(vi) Shear, x-axis fixed
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1
3 The diagram below shows the effect on the unit square of a 

transformation represented by A = 
−









0.6 0.8
0.8 0.6

.

O x

y

I

I′

B′

J′

BJ

(i) Find three points that are invariant under this transformation.

(ii) Given that this transformation is a reflection, write down the 
equation of the mirror line.

(iii) Using your answer to part (ii), write down the equation of an 
invariant line, other than the mirror line, under this reflection.

(iv) Justify your answer to part (iii) algebraically.

4 For the matrix M = 








4 11
11 4

 

(i) show that the origin is the only invariant point

(ii) find the invariant lines of the transformation represented by M.

5 (i) Find the invariant lines of the transformation given by the matrix  

−








3 4
9 2

.

(ii) Draw a diagram to show the effect of the transformation on the 
unit square, and show the invariant lines on your diagram.

6 For the matrix M = 
−









0 1
1 2

 

(i) find the line of invariant points of the transformation given by M

(ii) find the invariant lines of the transformation

(iii) draw a diagram to show the effect of the transformation on the 
unit square.

7 The matrix 

−
+ +

+
−

+



















m
m

m
m

m
m

m
m

1
1

2
1

2
1

1
1

2

2 2

2

2

2

 represents a reflection in the line y mx= .

 Prove that the line y mx=  is a line of invariant points.

CP
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8 The transformation T maps 










x
y

 to 


















a b

c d
x
y

. 

 Show that invariant points other than the origin exist if ad bc a d 1− = + − .

9 T is a translation of the plane by the vector 








a
b

.  The point (x, y) is 
mapped to the point ( x′, y′ ).
(i) Write down equations for x′ and y′ in terms of x and y.

(ii) Verify that 
′
′
′

















=




























x
y

z

a
b

x
y

1 0
0 1

0 0 1 1

 produces the same equations 

as those obtained in part (i).

 The point (X, Y) is the image of the point (x, y) under the combined 
transformation TM where













 =

−



























X
Y

a
b

x
y

1

0.6 0.8
0.8 0.6
0 0 1 1  

(iii) (a)  Show that if a = −4 and b = 2 then (0, 5) is an invariant point 
of  TM.

(b) Show that if a = 2 and b = 1 then TM has no invariant point.
(c)  Find a relationship between a and b that must be satisfied if TM 

is to have any invariant points.

CP

PS

KEY POINTS

1 A matrix is a rectangular array of numbers or letters.

2 The shape of a matrix is described by its order. A matrix with r rows 
and c columns has order r × c.

3 A matrix with the same number of rows and columns is called a 
square matrix.

4 The matrix O = ( )0 0
0 0

 is known as the 2 × 2 zero matrix. Zero 

matrices can be of any order.

5 A matrix of the form I = ( )1 0
0 1

 is known as an identity matrix. All 

identity matrices are square, with 1s on the leading diagonal and zeros 
elsewhere.

6 Matrices can be added or subtracted if they have the same order. 

7 Two matrices A and B can be multiplied to give matrix AB if their 
orders are of the form p q×  and q r×  respectively. The resulting 
matrix will have the order p r× .
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1
8 Matrix multiplication

p r( ) pa + rb
qa + sb

pc + rd
qc + sd( )a

b
c
d( ) =

Row from left matrix with
column from right matrix.

sq

 9 Matrix addition and multiplication are associative:
 A B C A B C( ) ( )+ + = + +  

 A BC AB C( ) ( )=  

10 Matrix addition is commutative but matrix multiplication is generally 
not commutative:

 A B B A+ = +  
 AB BA≠

11 The matrix M = ( )a b
c d

 represents the transformation that maps

 the point with position vector 






x

y
 to the point with position vector 









+
+

ax by
cx dy

.

12 A list of the matrices representing common transformations, including 
rotations, reflections, enlargements, stretches and shears, is given on 
page 24.

13 Under the transformation represented by M, the image of i = ( )1
0

 is 

 the first column of M and the image of j = ( )0
1

 is the second column 
of M.

14 The composite of the transformation represented by M followed by 
that represented by N is represented by the matrix product NM.

15 If x y( ,  ) is an invariant point under a transformation represented by 

the matrix M, then M MM














=x

y
x
y .

16 A line AB is known as an invariant line under a transformation if the 
image of every point on AB is also on AB.

Note
Work on matrices 
is developed 
further in 
Chapter 6 
‘Matrices and 
their inverses’.
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LEARNING OUTCOMES

Now that you have finished this chapter, you should be able to
■ understand what is meant by the terms

■ order of a matrix

■ square matrix

■ zero matrix

■ equal matrices

■ carry out the matrix operations

■ addition

■ subtraction

■ multiplication by a scalar

■ understand when matrices are conformable for multiplication and be 
able to carry out matrix multiplication

■ use a calculator to carry out matrix operations

■ understand the use of matrices to represent the geometric 
transformations in the x–y plane

■ rotation about the origin

■ reflection in lines through the origin

■ enlargement with centre the origin

■ stretch parallel to the coordinate axes

■ shear with the axes as fixed lines

■ recognise that the matrix product AB represents the transformation 
that results from the transformation represented by B followed by the 
transformation represented by A

■ find the matrix that represents a given transformation or sequence of 
transformations

■ understand the meaning of ‘invariant’ in the context of transformations 
represented by matrices

■ as applied to points

■ as applied to lines

■ solve simple problems involving invariant points and invariant lines, for 
example

■ locate the invariant points of the transformation

■ find the invariant lines of the transformation

■ show lines of a given gradient are invariant for a certain 
transformation.
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2  Series and induction

Great things 
are not done 
by impulse, 
but by a series 
of small 
things brought 
together.
Vincent Van Gogh 
(1853–1890)

▲ Figure 2.1 Phases of the Moon.

› How would you describe the sequence of pictures of the Moon 
shown in Figure 2.1?

?
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2.1 Sequences and series
A sequence is an ordered set of objects with an underlying rule.

For example: 

2, 5, 8, 11, 14

A series is the sum of the terms of a numerical sequence:

2 + 5 + 8 + 11 + 14

› How would you describe this sequence?
?

Notation
There are a number of different notations which are commonly used in 
writing down sequences and series:

» The terms of a sequence are often written as a1, a2, a3, … or u1, u2, u3, … 
» The general term of a sequence may be written as ar or ur. 

(Sometimes the letters k or i are used instead of r .)

» The last term is usually written as an or un.

» The sum Sn of the first n terms of a sequence can be written using the 
symbol ∑ (the Greek capital S, sigma).

∑= + + + + =
=

...1 2 3
1

S a a a a an n r
r

n

 The numbers above and below the ∑ are the limits of the sum. They show 
that the sum includes all the ar from a1 to an. The limits may be omitted 
if they are obvious, so that you would just write ∑ar or you might write 

ar
r

∑  (meaning the sum of ar for all values of r).

When discussing sequences you may find the following vocabulary helpful:

» In an increasing sequence, each term is greater than the previous term.

» In a decreasing sequence, each term is smaller than the previous term.

» In an oscillating sequence, the terms lie above and below a middle 
number.

» The terms of a convergent sequence get closer and closer to a limiting value.

Defining sequences
One way to define a sequence is by thinking about the relationship between 
one term and the next.
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The sequence 2, 5, 8, 11, 14, … can be written as

u1 = 2 

ur +1 = ur + 3

This is called an inductive definition or term-to-term definition.

An alternative way to define a sequence is to describe the relationship 
between the term and its position.

In this case, 

= −u r3 1r .

You can see that, for example, substituting r = 2 into this definition gives 
= × − =u (3 2) 1 52 , which is the second term of the sequence.

This is called a deductive definition or position-to-term definition.

The series of positive integers
One of the simplest of all sequences is the sequence of the integers:

1, 2, 3, 4, 5, 6, ...

As simple as it is, it may not be immediately obvious how to calculate the 
sum of the first few integers, for example the sum of the first 100 integers.

∑ = + + … +
=

r 1 2 100
r 1

100

 

One way of reaching a total is illustrated below.

S 1 2 3 98 99 100100 = + + + … + + +  

Rewrite S100 in reverse:

S 100 99 98 3 2 1100 = + + + … + + +  

Adding these two lines together, by matching up each term with the one 
below it, produces pairings of 101 each time, while giving you 2S100 on the 
left-hand side.

S

S

S

1 2 3 ... 98 99 100

100 99 98 ... 3 2 1

2 101 101 101 ... 101 101 101

100

100

100

= + + + + + +
= + + + + + +

= + + + + + +  
There are 100 terms on the right-hand side (since you were originally adding 
100 terms together), so simplify the right-hand side:

S2 100 101100 = ×  

and solve for S100:

S

S

2 10100

5050
100

100

=
=  

The sum of the first 100 integers is 5050.

You find each term by adding 3 to the previous term.

You need to say where the sequence starts.

Call the sum S100

9781510421783.indb   42 02/02/18   4:01 PM



2.1 Sequences and series

43

2

Answers to exercises are available at www.hoddereducation.com/cambridgeextras

Technology 
note

You could use a 
spreadsheet to 
verify this result 
for different 
values of n.

You can use this method to find a general result for the sum of the first n 
integers (call this Sn).

S n n n

S n n n

S n n n n n n

S n n

S n n

1 2 3 2 1

1 2 3 2 1

2 1 1 1 1 1 1

2 1

11
2

n

n

n

n

n

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

= + + + … + − + − +
= + − + − + … + + +
= + + + + + + … + + + + + +
= +

= +
 

This result is an important one and you will often need to use it.

Note
A common confusion occurs with the sigma notation when there is no r term 
present. 
For example, 

3
r 1

5

∑
=

means 
3 + 3 + 3 + 3 + 3 = 15

since there are five terms in the sum (it’s just that there is no r term to 
change anything each time).
In general:

∑
=

1 = 1 + 1 + … + 1 + 1
r

n

1  
with n repetitions of the number 1.
So, 

∑ n1 =
r

n

=1  

This apparently obvious result is important and you will often need to use it.

This means ‘The sum of 3, with r changing from 1 to 5’.

You can use the results r n n1
2 1

r

n

1
∑ ( )= +

=

 and n1
r

n

1

∑ =
=

 to find the sum of 
other series.

Example 2.1 For the series 2 + 5 + 8 + ... + 500:

(i) Find a formula for the r th term, ur.

(ii) How many terms are in this series?

(iii) Find the sum of the series using the reverse/add method.

(iv)  Express the sum using sigma notation, and use this to confirm your 
answer to part (iii).

➜
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Start with all the integers from 1 to 200, 
and subtract the integers from 1 to 99, 
leaving those from 100 to 200.

Solution

(i) The terms increase by 3 each time and start at 2. So u r3 1r = − . 

(ii) Let the number of terms be n. The last term (the nth term) is 500.

  un = 3n – 1

  3n – 1 = 500

  3n = 501

  n = 167

 There are 167 terms in this series.

(iii)  S = 2 + 5 + … + 497 + 500

  S = 500 + 497 + … + 5 + 2

  2S = 167 × 502

  S = 41 917

(iv) ∑

∑ ∑

∑ ∑

= −

= −

= −

=

= =

= =

S r

S r

S r

(3 1)

3 1

3 1

r

r r

r r

1

167

1

167

1

167

1

167

1

167

 

= × × × −

=

S

S

3 1
2 167 168 167

41917

Calculate the sum of the integers from 100 to 200 inclusive.

Solution

∑ ∑ ∑= −

= × × − × ×

= −
=

=

r r r

1
2 200 201 1

2 99 100

20100 4950

15150

r 100

200

1

200

1

99

Using the results 1
2

1
1

r n n
r

n

∑ ( )= +
=

 

and 1
1

n
r

n

∑ =
=

Example 2.2
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1 For each of the following definitions, write down the first five terms of 
the sequence and describe the sequence.

(i) = +u r5 1r

(ii) = −v r3 6r

(iii) = +p 2r
r 2

(iv) ( )= + × −q 10 2 1r
r

(v) = + =+a a a2 1, 2r r1 1

(vi) =u
r
5

r

2 For the sequence 1, 5, 9, 13, 17, …,

(i) write down the next four terms of the sequence

(ii) write down an inductive rule for the sequence, in the form 
u1 = …, ur +1 = … 

(iii) write down a deductive rule for the general term of the sequence, 
in the form ur = … .

3 For each of the following sequences,

(a) write down the next four terms of the sequence

(b) write down an inductive rule for the sequence

(c) write down a deductive rule for the general term of the 
sequence

(d) find the 20th term of the sequence.

(i) 10, 8, 6, 4, 2, …

(ii) 1, 2, 4, 8, 16, …

(iii) 50, 250, 1250, 6250, …

4 Find the sum of the series ur
1

5

∑  for each of the following.

(i) ur = 2 + r 

(ii) ur = 3 – 11r

(iii) ur = 3r

(iv) ur = 7.5 × (–1)r

5 For S = 50 + 44 + 38 + 32 + … + 14,

(i) express S in the form u
r

n

r
1

∑
=

 

 where n is an integer, and ur is an algebraic expression for the r th 
term of the series

(ii) hence, or otherwise, calculate the value of S.

6 Given ur = 6r + 2, calculate u
r

r
11

30

∑
=

. 

Exercise 2A
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7 The general term of a sequence is given by ur = (–1)r × 5. 

(i) Write down the first six terms of the sequence and describe it.

(ii) Find the sum of the series ur
r

n

1
∑

=(a) when n is even

(b) when n is odd.

(iii) Find an algebraic expression for the sum to n terms, whatever the 
value of n.

8 A sequence is given by

 br + 2 = br + 2, b1 = 0, b2 = 100.

(i) Write down the first six terms of the sequence and describe it.

(ii) Find the smallest odd value of r for which br  200.

(iii) Find the largest even value of r for which br  200.

9 A sawmill receives an order requesting many logs of various specific 
lengths, that must come from the same particular tree. The log lengths must 
start at 5 cm long and increase by 2 cm each time, up to a length of 53 cm. 

 The saw blade destroys 1 cm (in length) of wood (turning it to sawdust) 
at every cut. What is the minimum height of tree required to fulfil this 
order?

10 Find the sum of the integers from n to its square (inclusive). Express your 
answer in a fully factorised form.

11 Write down the first five terms of the following sequence:

=
+

=





+c

c c

c
c

c

3 1  if    is odd

2   if   is even
10r

r r

r
r

1 1

 

If you have access to the internet, you can find out more about this 
sequence by a web search for the Collatz conjecture.

 Try some other starting values (e.g. c1 = 6 or 13) and make a conjecture 
about the behaviour of this sequence for any starting value.

PS

PS

PS

2.2 Using standard results
In the previous section you used two important results:

  
n1

r

n

1

∑ =
=  

∑ ( )= +
=

r n n 11
2

r

n

1

There are similar results for the sum of the first n squares, and the first n 
cubes.

The sum of the integers.
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(i) Write out the first three terms of the sequence u r r2 1r
2= + − . 

(ii) Find ∑
=

u
r

n

r
1

. 

(iii)  Use your answers from part (i) to check that your answer to part (ii) 
works for n 3= .

Solution

(i) 2, 7, 14

(ii) u r r

r r

( 2 1)

2 1

r

n

r
r

n

r

n

r

n

r

n

1 1

2

1

2

1 1

∑ ∑

∑ ∑ ∑

= + −

= + −

= =

= = =

  

( )
( )

[ ]

( )( ) ( )

( )( ) ( )

= + + + × + −

= + + + + −

= + + + + −

= + +

n n n n n n

n n n n

n n n n

n n n

1 2 1 2 1

1 2 1 6 1 6

2 3 1 6 6 6

2 9 1

1
6

1
2

1
6

1
6

1
6

2

2

(iii) n 3=

 

( ) ( )+ + = × × + +

= ×

=
+ + =

n n n2 9 1 3 18 27 1

46

23

2 7 14 23

1
6

1
6

1
2

2

The sum of the squares:  ∑ = + +
=

r n n n( 1)(2 1)1
6

r

n
2

1

 

The sum of the cubes:    ∑ = +
=

r n n( 1)1
4

r

n
3

1

2 2

These are important results. You will prove they are true later in the chapter.

These results can be used to sum other series, as shown in the following 
examples.

It is a good idea to 
check your results like 
this, if you can.

Technology note
You could use a spreadsheet to verify these results for different values of n.

Example 2.3
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(i) Write the sum of this series using ∑ notation.

 (1 × 3) + (2 × 4) + (3 × 5) + … + ( )+n n 2

(ii) Hence find an expression for the sum in terms of n.

Solution

(i) r r( 2)
r

n

1

∑ +
=

 

(ii) ∑ ∑

∑ ∑

+ = +

= +

= + + + × +

= + + +

= + +

= =

= =

r r r r

r r

n n n n n

n n n

n n n

( 2) ( 2 )

2

( 1)(2 1) 2 ( 1)

( 1)[2 1 6]

( 1)(2 7)

1
6

1
2

1
6
1
6

r

n

r

n

r

n

r

n

1

2

1

2

1 1

1 (i) Write out the first three terms of the sequence u r2 1r = − . 

(ii) Find an expression for r2 1  
r

n

1

∑( )−
=

.

(iii) Use part (i) to check part (ii).

2 (i) Write out the first three terms of the sequence u r r3 1r ( )= + .

(ii) Find an expression for ∑ ( )+
=

r r3 1  
r

n

1

.

(iii) Use part (i) to check part (ii).

3 (i) Write out the first three terms of the sequence u r r1r
2( )= + .

(ii) Find an expression for r r1
r

n

1

2∑( )+
=

.

(iii) Use part (i) to check part (ii).

4 Find r r r(4 6 4 1)
r

n
3 2

1

∑ − + −
=

.

5 Find (1 × 2) + (2 × 3) + (3 × 4) + ... + n n( 1)+ .

6 Find (1 × 2 × 3) + (2 × 3 × 4) + (3 × 4 × 5) + ... + n n n( 1)( 2)+ + . 

7  Find the sum of integers above n, up to and including 2n, giving your 
answer in a fully factorised form.

8  Find the sum of the cubes of the integers larger than n, up to and 
including 3n, giving your answer in a fully factorised form.

Example 2.4

Exercise 2B
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9  On a particularly artistic fruit stall, a pile of oranges is arranged to form a 
truncated square pyramid. Each layer is a square, with the lengths of the 
side of successive layers reducing by one orange (as shown below).

 The bottom layer measures n n2 2×  oranges, and there are n layers. 

(i) Prove that the number of oranges used is n n n1
6 2 1 7 1( ) ( )+ + .

(ii)  How many complete layers can the person setting up the stall 
use for this arrangement, given their stock of 1000 oranges? How 
many oranges are left over? 

10  You have $20 000 to invest for one year. You put it in the following bank 
account:

‘Flexible Saver’: 1.5% interest APR

» Interest calculated monthly (i.e. 1.5
12 % of balance each month).

» Interest paid annually, into a separate account.

» No limits on withdrawals or balance.

Your bank then informs you of a new savings account, which you are 
allowed to open as well as the Flexible Saver.

‘Regular Saver’: 5% interest APR

» Interest calculated monthly (i.e. 5
12

% each month).

» Interest paid annually, into a separate account.

» Maximum $1000 balance increase per month.

(i) Assuming you initially have your money in the Flexible Saver, 
but transfer as much as you can into a Regular Saver each month, 
calculate how much extra money you will earn, compared to what 
would happen if you just left it in the Flexible Saver all year.

(ii) Generalise your result – given an investment of I (in thousands of 
dollars), and a time of n months – what interest will you earn?

 (Assume n I< , or you’ll run out of funds to transfer.)

M

MM
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11  It is given that

2 .2

1

S u n nn r
r

n

∑= = +
=

 Write down the values of S1, S2, S3, S4. Express ur in terms of r, 
justifying your answer.

 Find

∑
= +

.
1

2

ur
r n

n

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q3 October/November 2013

M

In fact, the sequence is  
ur = 5 × 2r −1 but you won’t need 
that here.

2.3 The method of differences
Sometimes it is possible to find the sum of a series by subtracting it from a 
related series, with most of the terms cancelling out. This is called the method 
of differences and is shown in the following example.

Calculate the value of the series: 5 10 20 40 2560 5120+ + + + … + +

Solution

Each term is double the previous one. 

Call the sum S.

S 5 10 20 2560 5120= + + + … + +  

Double it:

= + + + … + +S2 10 20 40 5120 10 240  

Subtract the first line from the second and notice that most terms cancel. In 
fact, only two remain.

− = −S S2 10240 5 

=S 10235

This example worked because of the doubling of the terms.

Calculating the sums of much more complicated series can also use this 
technique, if each term can be expressed as the difference of two (or more) 
terms. Look at the following examples carefully to see the idea, paying 
particular attention to the way the series are laid out to help find the 
cancelling terms.

(i) Show that 
r r r r
1 1

1
1

1( )− + = +
.

(ii) Hence find 1
1 2

1
2 3

1
3 4

1
30 31× + × + × + … + × .

This is the sum you needed.

Example 2.6

Example 2.5
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Solution

(i) LHS = 
( )

( )

( )

− + = + −
+

= +
=

r r
r r
r r

r r

1 1
1

1
1

1
1

RHS as required

 

(ii) r r

r r

1
1 2

1
2 3

1
3 4

1
30 31  1

1

1 1
1

r

r

1

30

1

30

∑

∑( )
( )× + × + × + … + × = +

= − +

=

=

1 1
2
1
2

1
3
1
3

1
4

1
29

1
30
1
30

1
31



= −

+ −

+ −

+

+ −

+ −

1 1
31

30
31

= −

=

Using the result from part (i)

start writing out the 
sum, but it is helpful 
to lay it out like this to 
see which parts cancel.

The terms in the 
red loops cancel 
out – so all the 
terms in the green 
box vanish.

Notice that the result in the example can easily be generalised for a sequence 
of any length. If the sequence has n terms, then the terms would still cancel 

in pairs, leaving the first term, 1, and the last term, n
1

1− + .

The sum of the terms would therefore be

n
n

n
n

n1 1
1

1 1
1 1− + = + −

+ = +
.

The cancelling of nearly all the terms is similar to the way in which the 
interior sections of a collapsible telescope disappear when it is compressed, so 
a sum like this is sometimes described as a telescoping sum. 

The next example uses a telescoping sum to prove a familiar result.

When a series converges you can use the sum to n terms to deduce the 
sum to infinity by considering what happens to the series as n approaches 
infinity.

 What 
happens to 
this series 
when n 
becomes 
very large?

?
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(i) Show that r r r2 1 2 1 82 2( ) ( )+ − − = .

(ii) Hence find r8
r

n

1

∑
=

.

(iii) Deduce that ∑ ( )= +
=

r n n 11
2

r

n

1

.

Solution

(i) r r r r r r

r

2 1 2 1 4 4 1 4 4 1

8

2 2 2 2( ) ( )( ) ( )+ − − = + + − − +
=

 

  as required.

(ii)          ∑ ∑ ( ) ( )= + − − 
= =

r r r8 2 1 2 1
r

n

r

n

1 1

2 2

     

= −

+ −

+ −
+

+ − + − − −

+ + − −

n n

n n

3 1

5 3

7 5

…

(2( 1) 1) 2( 1) 1)

(2 1) (2 1)

2 2

2 2

2 2

2 2

2 2

                     

n

n n

n n

2 1 1

4 4 1 1

4 4

2 2

2

2

( )= + −

= + + −

= +

(iii) Since ∑ = +
=

r n n8 4 4
r

n

1

2  

      so r n n

n n 1

1
2

1
2

1
2

r

n

1

2∑

( )

= +

= +

=

 

  as required.

(i) Show that − + + + = +
+ +r r r
r

r r r
2 3

1
1

2
4

( 1)( 2)
.

(ii) Hence find ∑ +
+ +

=

r
r r r

4
( 1)( 2)

r

n

1

.

(iii) Deduce the value of the sum to infinity of the series.

The only terms remaining 
are the 2nd and the 2nd 
from last.

This result was also 
proved on page 43 using a 
different method.

Example 2.7

Example 2.8

9781510421783.indb   52 02/02/18   4:01 PM



2.3 The m
ethod of differences

53

2

Answers to exercises are available at www.hoddereducation.com/cambridgeextras

Solution

(i) − + + + = + + − + + +
+ +

= + + − − + +
+ +

= +
+ +

r r r
r r r r r r

r r r

r r r r r r
r r r

r
r r r

2 3
1

1
2

2( 1)( 2) 3 ( 2) ( 1)
( 1)( 2)

2 6 4 3 6
( 1)( 2)

4
( 1)( 2)

2 2 2

(ii) ∑ ∑( )+
+ + = − + + +

= =

r
r r r r r r

4
( 1)( 2)

2 3
1

1
2

r

n

r

n

1 1

 

 

n n n

n n n

n n n

2 3
2

1
3

2
2

3
3

1
4

2
3

3
4

1
5

2
1

3
1

1

2
1

3 1
1

2 3
1

1
2

= − +

+ − +

+ − +

+ … − … + …
+ … − … + …

+ − − − +

+ − − + +

+ − + + +

 Most of the terms cancel, leaving

 

∑ +
+ + = − + + + − + + +

= − + + +

=

r
r r r n n n

n n

4
( 1)( 2) 2 3

2
2
2

1
1

3
1

1
2

3
2

2
1

1
2

r

n

1

(iii) As n → ∞

  + → 0 + →n n
2

1 and 1
2 0

  So the sum to infinity is 3
2 .

The terms in the red 
loops cancel out – so all 
the terms in the green 
box vanish.

› Show that the final expression in the previous example can be 

simplified to give 
( )

( )( )
n n
n n

3 + 7
2 + 1 + 2

.

› Show that this expression gives the same sum to infinity as found in 
part (iii).

?

Note
The terms 
which do not 
cancel form a 
symmetrical 
pattern, three 
at the start and 
three at the end.
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1 This question is about the series 1 + 3 + 5 + … + (2n – 1).

 You can write this as r(2 1)
r

n

1
∑ −

=

.

(i) Show that r r r1 2 12 2( )− − = − .

(ii) Write out the first three terms and the last three terms of 

r r( 1)
r

n
2 2

1
∑( )− −

=

.

(iii) Hence find r(2 1)
r

n

1
∑ −

=
.

(iv) Show that using the standard formulae to find r(2 1)
r

n

1
∑ −

=

 gives the 
same result as in (iii).

2 This question is about the series 2
1 3

2
3 5

2
5 7

2
19 21× + × + × + … + × .

(i) Show that the general term of the series is 
r r

2
(2 1)(2 1)− + , and 

find the values of r for the first term and the last term of the series.

(ii) Show that 
r r r r
1

2 1
1

2 1
2

2 1 2 1
.( )( )− − + = − +
 

(iii) Hence find 2
1 3

2
3 5

2
5 7

2
19 21× + × + × + … + × .

3 (i) Show that r r r r r r1 2 1 1 3 22 2( ) ( ) ( ) ( )( )+ + − + = + + .

(ii) Hence find n n2 5 3 8 4 11 1 3 2( ) ( ) ( ) ( )( )× + × + × + … + + + .

(iii) Show that you can obtain the same result by using the standard 
formulae to find the sum of this series.

(iv) Using trial and improvement, find the smallest value of n for which 
the sum is greater than one million.

4 (i) Show that 
r r

r
r r

1 1
1

2 1
12 2 2 2( ) ( )

−
+

= +
+

.

(ii) Hence find 
r

r r
2 1

1r

n

1
2 2∑ ( )

+
+=

.

5 (i) Show that r r r r
1
2

1
2 2

1
2( ) ( )− + = + .

(ii) Hence find 
r r

1
2

r

n

1
∑ ( )+=

.

(iii) Find the value of this sum for n = 100, n = 1000 and n = 10 000 
and comment on your answer.

6 (i) Show that 
r r r

r
r r r

1
2

3
3

2
4 2 3 4( )( )( )− + + + − + = + + +

.

(ii) Hence find r
r r r2 3 4

r 1

12

∑( )( )( )+ + +=

.

CP

CP

CP

CP

CP

CP

Exercise 2C
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7 (i) Show that r r r r r r
1
2

1
1

1
2 2

1
1 2( ) ( )( )− + + + = + + .

(ii) Hence find 
r r r

1
1 2

r

n

1
∑ ( )( )+ +=

.

(iii) Find the value of this sum for n = 100 and n = 1000, and comment 
on your answer.

In questions 8 and 9 you will prove the standard results for ∑r 2 and ∑r 3.

8 (i) Show that r r r2 1 2 1 24 23 3 2( ) ( )+ − − = + .

(ii) Hence find r24 2
r

n

1

2∑( )+
=

.

(iii) Deduce that r n n n1
6 1 2 1

r

n

1

2∑ ( )( )= + +
=

.

9 (i) Show that r r r r2 1 2 1 64 164 4 3( ) ( )+ − − = + .

(ii) Hence find r r64 16
r

n

1

3∑( )+
=

.

(iii) Deduce that r n n1
4 1

r

n

1

3 2 2∑ ( )= +
=

.

 (You may use the standard result for ∑r.)

10 (i) Show that 
r

2
12 −
 can be written as 

r r
1

1
1

1− − + .

(ii) Hence find the values of A and B in the identity

 r
A

r
B

r
1

1 1 12 −
= − + +

(iii) Find 
r

1
1r

n

2
2∑ −=

.

(iv) Find the sum to infinity of the series.

11 Given that

  1
(2 1)

1
(2 1)

=
−

−
+

u
k kk ,

 express 
13

∑
=

uk
k

n

in terms of n. 

 Deduce the value of 
13

∑
=

∞

uk
k

.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q1 October/November 2014 

12 The sequence , , ,...1 2 3a a a  is such that, for all positive integers n,

  5
( 1)

6
( 1)

.
2 2

a n
n n

n
n nn = +

− +
− +

+ +

 The sum 
1

∑
=

an
n

N

 is denoted by SN. 

CP

CP

CP

CP
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 Find

(i) the value of S30 correct to 3 decimal places,

(ii) the least value of N for which SN > 4.9.
Cambridge International AS & A Level Further Mathematics  

9231 Paper 11 Q4 October/November 2015

13 Let f(r) = r(r + 1)(r + 2). Show that

 f(r) − f(r − 1) = 3r(r + 1). 

 Hence show that ( 1) 1
3 ( 1)( 2)

1

r r n n n
r

n

∑ + = + +
=

. 

 Using the standard result for 
1

∑
=

r
r

n

, deduce that 1
6 ( 1)(2 1)2

1

r n n n
r

n

∑ = + +
= Find the sum of the series

 1 2 2 3 2 4 5 2 6 ... 2( 1)2 2 2 2 2 2 2 2+ × + + × + + × + + − +n n , 

 where n is odd.
Cambridge International AS & A Level Further Mathematics  

9231 Paper 11 Q4 October/November 2012

2.4 Proof by induction
The oldest person to have ever lived, with documentary evidence, is believed 
to be a French woman called Jeanne Calment who died aged 122, in 1997.

Aisha is an old woman who claims to have broken the record. A reporter 
asked her, ‘How do you know you’re 122 years old?’

She replied, ‘Because I was 121 last year.’

The sort of argument that Aisha was trying to use is called inductive 
reasoning. If all the elements are present it can be used in proof by induction. 
This is the subject of the rest of this chapter. It is a very beautiful form 
of proof but it is also very delicate; if you miss out any of the steps in the 
argument, as Aisha did, you invalidate your whole proof.

 Is this a valid argument?
?

ACTIVITY 2.1

Work out the first four terms of this pattern:

×

× ×

× × ×

× × × ×

1
1 2 =

1
1 2 + 1

2 3 =

1
1 2 + 1

2 3 + 1
3 4 =

1
1 2 + 1

2 3 + 1
3 4 + 1

4 5 =
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Activity 2.1 illustrates one common way of solving problems in mathematics. 
Looking at a number of particular cases may show a pattern, which can be 
used to form a conjecture (i.e. a theory about a possible general result). 

The conjecture can then be tested in further particular cases. 

In this case, the sum of the first n terms of the sequence can be written as

n n
1

1 2
1

2 3
1

3 4
1

1( )× + × + × + … + +
.

The activity shows that the conjecture

n n
n

n
1

1 2
1

2 3
1

3 4
1

1 1( )× + × + × + … + + = +
is true for n = 1, 2, 3 and 4. 

Try some more terms, say, the next two.

If you find a counter-example at any point (a case where the conjecture 
is not true) then the conjecture is definitely disproved. If, on the other hand, 
the further cases agree with the conjecture then you may feel that you are 
on the right lines, but you can never be mathematically certain that trying 
another particular case might not reveal a counter-example: the conjecture is 
supported by more evidence but not proved.

The ultimate goal is to prove this conjecture is true for all positive integers. 
But it is not possible to prove this conjecture by deduction from known 
results. A different approach is needed: mathematical induction.

In Activity 2.1 you established that the conjecture is true for particular cases 
of n (n = 1, 2, 3, 4, 5 and 6). 

Now, assume that the conjecture is true for a particular integer, n = k say, so that

  

1
1 2

1
2 3

1
3 4

1
1 1( )× + × + × + … + + = +k k

k
k

 

and use this assumption to check what happens for the next integer, n = k + 1.

If the conjecture is true then you should get

k k k k
k

k

k
k

1
1 2

1
2 3

1
3 4

1
1

1
1 2

1
1 1

1
2

( ) ( ) ( )
( )

( )× + × + × + … +
+

+
+ +

=
+

+ +

= +
+  

This is your target result. It is what you need to establish.

Look at the left-hand side (LHS). You can see that the first k terms are  
part of the assumption.

Conjectures are 
often written 
algebraically.

Replacing k with  

k + 1 in the result 

+ 1
k

k
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2 ( ) ( ) ( )× + × + × + … +
+

+
+ +k k k k

1
1 2

1
2 3

1
3 4

1
1

1
1 2

 (the LHS)

( ) ( )= + +
+ +

k
k k k1

1
1 2

 Using the assumption

k k
k k

2 1
1 2

( )
( )( )= + +

+ +  getting a common denominator

k k
k k

2 1
1 2

2

( )( )= + +
+ +

 expanding the top bracket

k
k k

1
1 2

2( )
( )( )= +

+ +
 factorising the top quadratic

k
k

1
2= +

+   cancelling the (k + 1) factor – since k ≠ –1

 which is the required result.

These steps show that if the conjecture is true for n = k, then it is true  
for n = k + 1.

Since you have already proved it is true for n = 1, you can deduce that  
it is therefore true for n = 2 (by taking k = 2).

You can continue in this way (e.g. take n = 2 and deduce it is true  
for n = 3) as far as you want to go. Since you can reach any positive  
integer n you have now proved the conjecture is true for every  
positive integer.

This method of proof by mathematical induction (often shortened to 
proof by induction) is a bit like the process of climbing a ladder:

If you can

1 get on the ladder (the bottom rung), and

2  get from one rung to the next, 

 then you can climb as far up the ladder as you like.

▲ Figure 2.2
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The corresponding steps in the previous proof are

1 showing the conjecture is true for n = 1, and 

2  showing that if it is true for a particular value (n = k say), then it is true for 
the next one (n = k + 1).

(Notice the if… then… structure to this step.)

You should conclude any argument by mathematical induction with a 
statement of what you have shown.

Steps in mathematical induction
To prove something by mathematical induction you need to state a 
conjecture to begin with. Then there are five elements needed to try to prove 
the conjecture is true.

» Proving that it is true for a starting value (e.g. n = 1).

» Finding the target expression: 
using the result for n = k to find the equivalent result 
for n = k + 1.

» Proving that:  
if it is true for n = k , then it is true for n = k + 1.

» Arguing that since it is true for n = 1, it is also true for n = 1 + 1 = 2, and 
so for n = 2 + 1 = 3 and for all subsequent values of n.

» Concluding the argument by writing down the result and stating that it 
has been proved.

To find the target 
expression you 
replace k with  
k + 1 in the result 
for n = k.

This can be done 
before or after 
finding the target 
expression, but you 
may find it easier 
to find the target 
expression first so 
that you know what 
you are working 
towards.

This ensures 
the argument is 
properly rounded 
off. You will often 
use the word 
‘therefore’.

(The sum of the squares of the first n integers)

Prove that, for all positive integers n:

+ + + + = + +n n n n1 2 3 ... ( 1)(2 1)1
6

2 2 2 2

Solution

When n = 1,  LHS = 12 = 1  RHS 1 2 3 11
6

= × × × =  

So it is true for n = 1.

Assume the result is true for n = k, so
( )( )+ + … + = + +k k k k1 2 1 2 11

6
2 2 2

 
Target expression:

k k k k k

k k k

1 2 3 ... ( 1) ( 1)[( 1) 1)][(2( 1) 1]

( 1)( 2)(2 3)

1
6
1
6

2 2 2 2 2+ + + + + + = + + + + +

= + + +

Example 2.9

Note
You have already had the opportunity to prove this result using the method of 
differences, in question 8 of Exercise 2C.

➜
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You want to prove that the result is true for n = k + 1
(if the assumption is true).

Look at the LHS of the result you want to prove:
+ + + + + +k k1 2 3 ... ( 1)2 2 2 2 2

Use the assumed result for n = k, to replace the first k terms.

= + + + +k k k k( 1)(2 1) ( 1)1
6

2

[ ]= + + + +k k k k( 1) (2 1) 6( 1)1
6

= + + +k k k( 1)(2 7 6)1
6

2

= + + +k k k( 1)( 2)(2 3)1
6

If the result is true for n = k, then it is true for n = k + 1.

Since it is true for n = k, it is true for all positive integer values of n.

Therefore the result that ( )( )+ + … + = + +n n n n1 2 1 2 11
6

2 2  is true.

ACTIVITY 2.2

Nita is investigating the sum of the first n even numbers.
She writes

n n2 + 4 + 6 + … + 2 = + 1
2

2( ) .

(i)  Prove that if this result is true when n = k, then it is true when n = k +1. 
Explain why Nita’s conjecture is not true for all positive integers n.

(ii)  Suggest a different conjecture for the sum of the first n even numbers, 
that is true for n = 1 but not for other values of n. At what point does 
an attempt to use proof by induction on this result break down?

1 (i)  Show that the result n n1 3 5 2 1 2( )+ + + … + − =  is true for the  
case n = 1.

(ii) Assume that k k1 3 5 2 1 2( )+ + + … + − =  and use this to prove that: 

k k k1 3   2 1 2 1 1 2( ) ( ) ( )+ + … + − + + = + .

(iii) Explain how parts (i) and (ii) together prove the sum of the first n 
odd integers is n2.

Exercise 2D

The (k + 1)th. term.

This is the same as 
the target expression, 
as required.

The first k terms.
Take out a factor 
1
6 k( )+ 1  . You can 
see from the target 
expression that this will 
be helpful.

CP
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2  (i)  Show that the result n n n1 5 9 4 3 2 1( ) ( )+ + + … + − = −  is true  
for the case n = 1.

(ii) Assume that k k k1 5 9 4 3 2 1( ) ( )+ + + … + − = −  
and use this to prove that: 

k k k k1 5     4 3 4 1 3 1 2 1 1( ) ( )( ) ( ) ( ) ( )+ + … + − + + − = + + − .

(iii) Explain how parts (i) and (ii) together prove that: 

n n n1 5 9 4 3 2 1( ) ( )+ + + … + − = −  
Prove the following results by induction.

3 n n n1 2 3 1
2 1( )+ + + … + = +  

(the sum of the first n integers)

4 ∑ ( )= +
=

r n n1
4 1

r

n

1

3 2 2  

(the sum of the first n cubes) 

5 2 2 2 2 2 2 2 1n n1 2 3 4 ( )+ + + + … + = −

6 x x
x x1

1   1
r

n
r

n

0

1

∑ ( )= −
− ≠

=

+

7 n n n n n n n1 2 3 2 3 4 1 2 1
4 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )× × + × × + … + + + = + + +

8 r n n3 1 1
2 3 5

r

n

1

∑( ) ( )+ = +
=

9 
n

n
n

1
3

1
15

1
35

1
4 1 2 12+ + + … +

−
= +

10 
n

n
n1 1

2
1 1

3
1 1

4
1 1 1

22 2 2 2( ) ( ) ( )( )− − − … − = +  for �n 2

11 ( )× + × + × + … + × = + −n n n1 1! 2 2! 3 3! ! 1 ! 1  

12 (i) Prove by induction that

r r n n n5 1
2 ( 1) (2 1)

r

n
4 2

1

2 2∑( )+ = + +
=

.

(ii) Using the result in part (i), and the formula for r
r

n
2

1

∑
=

, show that 

 r n n n n n1
30 ( 1)(2 1)(3 3 1)

r

n
4

1

2∑ = + + + −
=

.

You have already seen two 
proofs of this result, on pages 
43 and 52.

You have already had the 
opportunity to prove this 
result using the method of 
differences, in question 9 of 
Exercise 2C.

2.5 Other proofs by induction
So far, you have used induction to prove results involving the sums of series. 
It can also be used in other situations.
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You have seen that induction can be used to prove a given result for the sum 
of a series in which the terms have been given using a deductive definition. 
In the next example you will see how induction can be used to prove a given 
result for the general term of a sequence, when the terms of a sequence have 
been given inductively. 

A sequence is defined by u u4 3n n1 = −+ , u 21 = .

Prove that = +−4 11un
n .

Solution

For = 1n , = + = + =4 1 1 1 21
0u , so the result is true for = 1n .

Assume that the result is true for  
n = k, so that = +−4 11uk

k .

For n = k + 1, u u4 3

4 4 1 3

4 4 4 3

4 1

k k

k

k

k

1

1

1

( )
= −

= + −

= × + −

= +

+

−

−

If the result is true for n = k, then it is true for n = k + 1.

Since it is true for n = 1, it is true for all positive integer values of n. 
Therefore the result un = 4n–1 + 1 is true.

Target expression:  
= ++u 4 1k

k
1 .

Prove that n ! 2n>  for all positive integer n greater than 4.

Solution

When n = 4: 4! = 24 and 24 = 16, so 4! > 24 and the result is shown to be 
true for n = 4.

Assume that the result is true for n = k, so k ! > 2k

Now prove for n = k + 1, (k + 1)! > 2k + 1 
       (k + 1)! = (k + 1) × k! 

                     

k k k( 1) ! ( 1) 2

2 2

2

k

k

k 1

+ × > + ×

> ×

> +

So when n = k + 1 then k k( 1) ! 2k 1+ × > +  as required.

If the result is true for n = k, then it is true for n = k + 1.

Since it is true for n = 4, it is true for all positive integer values of n greater 
than 4.

Therefore the result n ! 2n>  is true.

Since k > 4 then  
k + 1 > 2

You assumed that 
when n = k, k! > 2k

Example 2.10

Example 2.11

In this proof you need to 
start with n = 4, not n = 1.
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Prove that, for every positive integer n,

x
x na a xd

d
( e ) e e

n

n
ax n ax n ax1= +−

 (where a is a constant).

Solution

Substituting n = 1 into 
x

x na a x

x
x a a x

ax

d
d

( e ) e e gives

d
d

( e ) 1 e e

e e

n

n
ax n ax n ax

ax ax ax

ax ax

1

0 1

= +  

= × +

= +

−

And when n = 1: x
x x ae

axe

n

d
d

( e ) 1 e

e , so the result is shown to

be true when = 1.

ax ax ax

ax ax

= × + ×

= +

Assume that the result is true for n = k, so

  
x

x ka a xd
d

( e ) e e
k

k
ax k ax k ax1= +−

Now prove for n = k +1, 
x

x
x

ka a xd
d

( e ) d
d

( e e )
k

k
ax k ax k ax

1

1
1= +

+

+
−

+ = × + × × + ×

= + +

= + +

− −

+

+

x ka a x ka a a a x a

ka a a x

k a a x

d
d ( e e ) e 1 e e

e e e

( 1) e e

k ax k ax k ax k ax k ax

k ax k ax k ax

k ax k ax

1 1

1

1

So when n = k + 1 then 
x

x k a a xd
d

( e ) ( 1) e e
k

k
ax k ax k ax

( 1)

( 1)
1= + +

+

+
+  as required.

If the result is true for n = k, then it is true for n = k + 1.

Since it is true for n = 1, it is true for all positive integer values of n. 

Therefore the result 
x

x na a xd
d

( e ) e e
n

n
ax n ax n ax1= +−  is true.

Using the 
product rule for 
differentiation.

Example 2.12

To find ( )
1

1x
xe

k

k
ax

+

+
d
d

 you need to 

differentiate ( )
x

xe
k

k
axd

d

Using the 
product rule for 
differentiation.

You can sometimes use induction to prove results involving powers of matrices.

Given A 4 1
3 2

=








 , prove by induction that

A 1
4

3 5 1   5 1 

3 5 3   5 3
n

n n

n n
= × + −

× − +









 .

Example 2.13

➜
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Solution

Let n = 1 ALHS  4 1
3 2

1= =








  

      

= × + −
× − +







=






=






=

RHS  1
4

3 5 1 5 1
3 5 3 5 3

1
4

16 4
12 8

4 1
3 2

LHS as required  

Assume true for n = k, i.e. 

=
× + −

× − +











A 1
4

3 5 1  5 1 

3 5 3  5 3

k
k k

k k

You want to prove it is true for n = k + 1.

=

= × + −
× − +

















= × + + × − × + + × −
× − + × + × − + × +











+A A A

1
4

3 5 1   5 1 

3 5 3  5 3
 

4 1
3 2

1
4

12 5 4 3 5 3 3 5 1 2 5 2

12 5 12 3 5 9 3 5 3 2 5 6

k k

k k

k k

k k k k

k k k k

1

 

1
4

15 5 1  5 5 1

15 5 3 5 5 3

1
4

3 5 1   5 1 

3 5 3   5 3

k k

k k

k k

k k

1 1

1 1

= × + × −
× − × +











= × + −
× − +











+ +

+ +

as required.

If it is true for n = k, then it is true for n = k + 1

Since it is true for n = 1, it is true for all n  1.

Therefore the result = × + −
× − +







A 1
4

3 5 1   5 1 
3 5 3   5 3

n
n n

n n
 is true.

Target expression: 

A 1
4

3 5 1   5 1 

3 5 3   5 3
k

k k

k k

1
1 1

1 1
= × + −

× − +











+
+ +

+ +

 

Multiplying matrices.

Using 15 = 3 × 5.

This is the target matrix.
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1 A sequence is defined by = ++ 3 21u un n , u1 = 2. 

 Prove by induction that u 3 1n
n= − .

2 A sequence is defined by u u2 1n n1 = −+ , u1 = 2.

 Prove by induction that u 2 1n
n 1= +− .

3 Given that M 2 0
0 3

=








 , prove by induction that Mn = 











2 0

0 3

n

n
.

4 A sequence is defined by u u4 6n n1 = −+ , u1 = 3.

 Prove by induction that u 4 2n
n 1= +− .

5 (i) Given that M 1 1
0 1

=








 , prove by induction that Mn = 







1
0 1

n
.

(ii) Describe the transformations represented by M and by Mn.

6 A sequence is defined by = ++ 11u
u

un
n

n
, u1 = 1.

(i) Find the values of u2, u3 and u4.

(ii) Suggest a general formula for un, and prove your conjecture by 
induction.

7 You are given the matrix A
1 4

1 3
= − −







 .

(i) Calculate A2 and A3.
(ii) Show that the formula n n

n n
A 1 2 4

1 2
n = − −

+








  is consistent 

with the given value of A and your calculations for n = 2 and n = 3.

(iii) Prove by induction that the formula for An is correct when n is a 
positive integer.

8 You are given the matrix = −





M
1 2

3 1
.

(i) Calculate M2, M3 and M4.

(ii) Write down separate conjectures for formulae for Mn, for even n  
(i.e. M2m) and for odd n (i.e. M2m+1)

(iii) Prove each conjecture by induction, and hence write down what 
Mn is for any n  1.

9 Let F 2 1n
(2 )n

= + . 

(i) Calculate F0, F1, F2, F3, and F4.

(ii) Prove, by induction, that F F F F F 2n n0 1 2 1× × × … × = −− .

(iii) Use part (ii) to prove that Fi and Fj are coprime (for i ≠ j ). 

(iv)  Use part (iii) to prove there are infinitely many prime numbers. 

Note
The Fn numbers are called Fermat Numbers. The first five are prime: the 
Fermat Primes. Nobody (yet) knows if any other Fermat Numbers are prime.

Exercise 2E
CP
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10 It is given that ur = r × r! for r = 1, 2, 3, …,.  

Let = + + + +1 2 3S u u u un n . Write down the values of

 − − − −S S S S2! , 3! , 4! , 5! .1 2 3 4

 Conjecture a formula for Sn. 

 Prove, by mathematical induction, a formula for Sn, for all positive 
integers n.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q3 October/November 2014

11 It is given that y = (1 + x)2 In (1 + x). Find y
x

d
d

3

3
.

 Prove by mathematical induction that, for every integer n  3

 

d
d ( 1)

2( 3)!
(1 ) .1

2

y
x

n
x

n

n
n

n= − = −
+

−
−

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q5 October/November 2015

12 Prove  by mathematical induction that, for all positive integers n,  
d
d

(e sin ) 2 e sin( 1
4 )

1
2

x
x x n

n

n
x n x π= + .

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q3 October/November 2011

KEY POINTS

1 The terms of a sequence are often written as a1, a2, a3, … or u1, u2, u3, … 

 The general term of a sequence may be written as ar or ur (sometimes 
the letters k or i are used instead of r). The last term is usually written as 
an or un.

2 A series is the sum of the terms of a sequence. The sum Sn of the first n 
terms of a sequence can be written using the symbol ∑ (the Greek capital 
S, sigma).

 
= + + + … + = ∑

=

S a a a a arn n
r

n

1 2 3
1  

 The numbers above and below the ∑ are the limits of the sum. They 
show that the sum includes all the terms ar from a1 to an. 

3 Some series can be expressed as combinations of these standard results: 

n n( + 1)r = 1
2

r

n

=1

∑
 

n n n+ 1 2 + 1r = 1
6

r

n

=1

2∑ ( )( )
 

3 n n= + 1r 1
4

2 2

r

n

=1

∑ ( )

4 Some series can be summed by using the method of differences. 
If the terms of the series can be written as the difference of terms 
of another series, then many terms may cancel out. This is called a 
telescoping sum.
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5 To prove by induction that a statement involving an integer n is true 
for all 0�n n , you need to:

● prove that the result is true for an initial value of n0, typically n = 1 

● find the target expression: 

 use the result for n = k to find the equivalent result for n = k + 1.

● prove that: 

 if it is true for n = k, then it is true for n = k + 1.

● argue that since it is true for n = 1, it is also true for n = 1 + 1 = 2, 
and so for n = 2 + 1 = 3 and for all subsequent values of n.

● conclude the argument with a precise statement about what has 
been proved.

LEARNING OUTCOMES

Now that you have finished this chapter, you should be able to
■ define what is meant by a sequence and a series

■ find the sum of a series using standard formulae for ∑r, ∑r2 and ∑r3 

■ find the sum of a series using the method of differences

■ use the sum to n terms, to find the sum to infinity of a convergent 
series

■ use proof by induction to prove given results for the sum of a series

■ use proof by induction to prove given results for the nth term of a 
sequence.
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3  Roots of polynomials

In mathematics 
it is new ways 
of looking at 
old things that 
seem to be the 
most prolific 
sources of 
far-reaching 
discoveries.
Eric Temple Bell 
(1883–1960)

A polynomial is an expression like 4x3 + x2 − 4x − 1. Its terms are all 
positive integer powers of a variable (in this case x ) like x 2, or multiples of 
them like 4x 3. There are no square roots, reciprocals, etc.

The order (or degree) of a polynomial is the highest power of the variable. 
So the order of 4x3 + x2 − 4x − 1 is 3; this is why it is called a cubic.

You often need to solve polynomial equations, and it is usually helpful to 
think about the associated graph.

The following diagrams show the graphs of two cubic polynomial functions. 
The first example (in Figure 3.1) has three real roots (where the graph of the 
polynomial crosses the x-axis). The second example (in Figure 3.2) has only 
one real root. In this case there are also two complex roots.
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In general a polynomial equation of order n has n roots. However, some of 
these may be complex rather than real numbers and sometimes they coincide 
so that two or more distinct roots become one repeated root.

3.1 Polynomials
The following two statements are true for all polynomials:

» A polynomial equation of order n has at most n real roots. 

» The graph of a polynomial function of order n has at most n – 1 turning 
points.

 How would you solve the polynomial equation 4x3 + x2 − 4x − 1 = 0?

 What about 4x3 + x2 + 4x + 1 = 0?

?

Here are some examples that illustrate these results.

Order 1 (a linear equation) 

Example: 2x − 7 = 0

x

y

3.50

−7

y = 2x − 7

▲  Figure 3.3 The graph is a straight  
line with no turning points. There  
is one real root at x = 3.5.

Order 2 (a quadratic equation) 

Example: x2 − 4x + 4 = 0

x

y

20

4 y = x2 − 4x + 4

▲  Figure 3.4 The curve has one turning 
point. There is one repeated root at x = 2. 

▲ Figure 3.1

x

y

1−1 20

−2

−1

1

f(x) = 4x3 + x2 − 4x − 1

▲ Figure 3.2

x

y

10−1 2

−2

−1

1

f(x) = 4x3 + x2 + 4x + 1
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Order 3 (a cubic equation)

Example: x3 − 1 = 0

x

y

10
−1

y = x3 − 1

▲  Figure 3.5 The two turning points of  
this curve coincide to give a point of 
inflection at (0, −1). There is one real  
root at x = 1 and two complex roots at 

x
i1 3

2
= − ± .

Order 4 (a quartic equation)

Example: x4 − 3x2 − 4 = 0

x

y

20−2

−4

y = x4 − 3x2 − 4

▲  Figure 3.6 This curve has three 
turning points. There are two real  
roots at x = −2 and x = 2 and two  
complex roots at x = ±i.

The same patterns continue for higher order  
polynomials.

The rest of this chapter explores some properties of  
polynomials, and ways to use these properties to avoid the difficulties of 
actually finding the roots of polynomials directly.

It is important that you recognise that the roots of polynomials may be 
complex. For this reason, in the work that follows, z is used as the variable 
(or unknown) instead of x to emphasise that the results apply regardless of 
whether the roots are complex or real.

You learned about 
complex roots of 
polynomial eqautions 
in Pure Mathematics 3
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3.2 Quadratic equations

ACTIVITY 3.1

Solve each of the following quadratic equations (by factorising or 
otherwise).
Also write down the sum and product of the two roots.
What do you notice? 

Equation Two roots Sum of roots Product of roots

(i) z2 − 3z + 2 = 0

(ii) z2 + z − 6 = 0

(iii) z2 − 6z + 8 = 0

(iv) z2 − 3z − 10 = 0

(v) 2z2 − 3z + 1 = 0

(vi) z2 − 4z + 5 = 0

Technology note
You could use the equation solver on a calculator.

 What is the connection between the sums and products of the roots, 
and the coefficients in the original equation?

?

The roots of polynomial equations are usually denoted by Greek letters such 
as α and β.

Always be careful to distinguish between: 
a – the coefficient of z2 and, 
α – one of the roots of the quadratic.

If you know the roots are α and β, you can write the equation

az2 + bz + c = 0

in factorised form as

a (z − α)(z − β) = 0.

α (alpha) and β (beta) are the first two letters of the Greek alphabet.

Assuming a ≠ 0
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This gives the identity,

az bz c a z z –   – 2 ( )( )+ + ≡ α β . 

az bz c a z z z

az a z a

–  –2 2

2

( )
( )

+ + ≡ +

≡ − + +

α β αβ

α β αβ
 

b = −a (α  + β ) ⇒  α  + β = − b
a

c a c
a = ⇒ =αβ αβ  

So the sum of the roots is

b
a + = −α β

and the product of the roots is

αβ = ca.

From these results you can obtain information about the roots without 
actually solving the equation.

 What happens if you try to find the values of α and β by solving the 

equations b
a + = −α β  and αβ = ca as a pair of simultaneous equations?

?

ACTIVITY 3.2

The quadratic formula gives the roots of the quadratic equation  
az2 + bz + c = 0 as

b b ac
a

b b ac
a

4
2 ,     4

2= − + − = − − −α β
2 2

. 

Use these expressions to prove that b
a + = −α β  and αβ = ca.

Multiplying out

Equating coefficients of z

Equating constant terms

Example 3.1

Solution

The sum of the roots is 5 + (−3) = 2   ⇒  b
a 2− =

The product of the roots is 5 × (−3) = −15  ⇒  c
a 15= −  

Taking a to be 1 gives 

b = −2 and c = −15

A quadratic equation with roots 5 and −3 is z2 − 2z − 15 = 0.

You could choose any value for a 
but choosing 1 in this case gives the 
simplest form of the equation.

Find a quadratic equation with roots 5 and −3. 
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Forming new equations
Using these properties of the roots sometimes allows you to form a new 
equation with roots that are related to the roots of the original equation. The 
next example illustrates this.

Solution

(i) α + β = 3
2−  and 

  αβ = 52

(ii) The sum of the new roots = 2α + 2β 

    = 2(α + β )

    = 2 × 3
2−

    = −3

The product of the new roots = 2α × 2β 
= 4αβ

= 4 × 52
= 10

Let a, b and c be the coefficients in the new quadratic equation, then 
b
a 3− = −  and c

a 10= .

Taking a = 1 gives b = 3 and c = 10. 
So a quadratic equation with the required roots is z z3 10 02 + + = .

These lines come from looking at the original 

quadratic, and quoting the facts b
a + = −α β   

and αβ = ca . 

It might be confusing to introduce a, b and c 
here, since you need different values for them 
later in the question.

The roots of the equation 2z2 + 3z + 5 = 0 are α and β.

(i) Find the values of α + β and αβ.

(ii) Find the quadratic equation with roots 2α and 2β.

Example 3.2

Example 3.3 The roots of the equation 3z2 − 4z − 1 = 0 are α and β. 
Find the quadratic equation with roots α + 1 and β + 1.

Solution
 43+ =α β  and 

    
1
3= −αβ  

➜
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The quadratic equation ax2 + bx + c = 0, where a, b and c are constants, has 
roots α and β.

Prove that 22 2
2

2
b ac

a
+ = −α β .

Example 3.4

The sum of the new roots  

The product of the new roots 

So 10
3 and 2.b

a
c
a− = =

Choose a = 3, then b = –10 and c = 6.

So a quadratic equation with the required roots is 3z2 − 10z + 6 = 0.

1 1

2

4
3 2

10
3

= + + +
= + +

= +

=

α β

α β

1 1

1

1
3

4
3 1

2

( )
( )

( )= + +
= + + +

= − + +

=

α β

αβ α β

Choosing a = 1 
would give a value 
for b which is not an 
integer. It is easier 
here to use a = 3. 

Solution

You do not know what α 2 + β 2 equals, but you do know (α + β )2, so start 
by expanding the brackets. 

(α + β )2 = α 2 + 2αβ + β 2

⇒ α 2 + β 2 = (α + β )2 − 2αβ 

b
a∑ = = −α α β+

Notice that α 2 + β 2 is a 
symmetric function of 
the roots.

Symmetric functions of the roots of a quadratic equation
If α and β are the roots of a quadratic equation then functions like:

and 

α β α β

α β α β

α β α β

= +

= +

= +

f ( , ) ,

f ( , ) ,

f ( , ) 1 1

2 2

are called symmetric functions of the roots because when you 
interchange α and β the function remains the same, i.e. f (α, β ) = f (β, α )

Functions like f(α, β ) = α − β or f(α, β ) = α 2 − β 2 are not symmetric functions, 
because the function changes when α and β are interchanged. (They would 
become f(β, α ) = β − α and f(β, α ) = β 2 − α 2 respectively).

All symmetric functions of the roots of a quadratic equation can be expressed 
in terms of α + β and α β.
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Substituting in and gives:b
a

c
a+ = − =α β αβ

2

2

2

2 2
2

2

2

2

2

b
a

c
a

b
a

c
a

b ac
a

( )+ = − − ×

= −

= −

α β

In the last example, you saw that the sum of the squares of the roots is:

22 2
2

2
b
a

c
a+ = −α β

ACTIVITY 3.3

Solve the quadratic equations from Examples 3.2 and 3.3 (perhaps using 
the equation solver on your calculator, or a computer algebra system):

(i) 2z2 + 3z + 5 = 0 z2 + 3z + 10 = 0 

(ii) 3z2 − 4z − 1 = 0  3z2 − 10z + 6 = 0

Verify that the relationships between the roots are correct.

1 Write down the sum and product of the roots of each of these quadratic 
equations.

(i) 2z2 + 7z + 6 = 0  (ii) 5z2 − z − 1 = 0

(iii) 7z2 + 2 = 0 (iv) 5z2 + 24z = 0

(v) z(z + 8) = 4 − 3z (vi) 3z2 + 8z − 6 = 0

2 Write down quadratic equations (in expanded form, with integer 
coefficients) with the following roots: 

(i) 7, 3 (ii) 4, –1

(iii) –5, –4.5 (iv) 5, 0

(v) 3 (repeated) (vi) 3 − 2i, 3 + 2i

3 The roots of 2z2 + 5z − 9 = 0 are α and β.

 Find quadratic equations with these roots.

(i) 3α and 3β (ii) −α and −β

(iii) α − 2 and β − 2 (iv) 1 − 2α and 1 − 2β

4 The roots of a quadratic equation z z4 2 02 − − =  are α and β.

 Find the quadratic equation with roots α 2 and β 2.

Exercise 3A
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 5 A quadratic equation has roots α and β.  Express the following symmetric 

functions in terms of α + β and α β.

(i) α 2 + β 2

(ii) 1 1
α β+

(iii) 
1 1

2 2α β
+

(iv) α 2 β + β 2 α

(v) α 3 + β 3

 6 Using the fact that b
a

c
a, and+ = − =α β αβ , what can you say about 

the roots, α and β, of az2 + bz + c = 0 in the following cases:

(i) a, b, c are all positive and b2 − 4ac > 0 

(ii) b = 0

(iii) c = 0

(iv) a and c have opposite signs

 7 One root of az2 + bz + c = 0 is twice the other. Prove that 2b2 = 9ac. 

 8 The quadratic equation x2 + px + q = 0, where p and q are constants, has 
roots α and β. Prove that α 2 + β 2 = p2 − 2q.

 9 The quadratic equation ax2 + bx + c = 0, where a, b and c are constants, 

has roots α and β. Prove that 1 1 .2 2 b
c+ = + = −α β α β

10 The roots of az2 + bz + c = 0 are, α and β. 
Find quadratic equations with the following  
roots:

(i)  kα and kβ 

(ii) k + α and k + β

11  (i)  A quadratic equation with real coefficients ax2 + bx + c = 0 has  
complex roots z1 and z2. Explain how the relationships between  
roots and coefficients show that z1 and z2 must be complex  
conjugates.

(ii)  Find a quadratic equation with complex coefficients that has roots  
2 + 3i and 3 – i.

3.3 Cubic equations
There are corresponding properties for the roots of higher order polynomials. 

To see how to generalise the properties you can begin with the cubics in a 
similar manner to the discussion of the quadratics. As before, it is conventional 
to use Greek letters to represent the three roots: α, β and γ (gamma, the third 
letter of the Greek alphabet). 

PS

CP

CP
CP

CP

PS
You may wish to introduce 
different letters (say p, q 
and r instead of a, b and c) 
for the coefficients of your 
target equation.

PS
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You can write the general cubic as
 az bz cz d 03 2+ + + =
or in factorised form as
 a z z z 0( )( )( )− − − =α β γ . 

This gives the identity
 az bz cz d a z z z3 2 ( )( )( )+ + + ≡ − − −α β γ . 

Multiplying out the right-hand side gives

 az bz cz d az a z a z a3 2 3 2( ) ( )+ + + ≡ − + + + + + −α β γ αβ βγ γα αβγ . 

Comparing coefficients of z2:

 b a b
a ( )= − + + ⇒ + + = −α β γ α β γ   

Comparing coefficients of z:

 c a c
a    ( )= + + ⇒ + + =αβ βγ γα αβ βγ γα   

     
Comparing constant terms:

 d a d
a= − ⇒ = −αβγ αβγ    

 

Note: Notation
It often becomes tedious writing out the sums of various combinations of 
roots, so shorthand notation is often used:

∑ = + +α α β γ   the sum of individual roots (however many there are)

∑ = + +αβ αβ βγ γα   the sum of the products of pairs of roots

∑ =αβγ αβγ     the sum of the products of triples of roots (in this 
case only one) 

Provided you know the degree of the equation (e.g. cubic, quartic, etc,) it will 
be quite clear what this means. Functions like these are called symmetric 
functions of the roots, since exchanging any two of α, β, γ  will not change the 
value of the function.
Using this notation you can shorten tediously long expressions. For example, 
for a cubic with roots α, β and γ,

  .2 2 2 2 2 2 2+ + + + + = ∑α β αβ β γ βγ γ α γα α β  

This becomes particularly useful when you deal with quartics in the next section.

Check this 
for yourself.

Sum of the roots: ∑α  

Sum of products of 
pairs of roots: ∑αβ

Product of the three roots: ∑αβγ
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The roots of the cubic equation x3 − 4x2 + x + 6 = 0, are α, β and γ. Find the 
values of:

(i) α 2 + β 2 + γ  2

(ii) α 3 + β 3 + γ  3.

Notice these are 
symmetric functions  
of the roots. 

Example 3.5

Example 3.6

The roots of the equation z z z2 9 27 54 03 2− − + =  form a geometric 

progression (i.e. they may be written as a
r a ar, , ). 

Solve the equation. 

Solution

( )
( )

= − ⇒ × × = −

⇒ = −
⇒ = −

∑ = − ⇒ + + =

⇒ − + + =

⇒ + + = −

⇒ + + = −

⇒ + + =
⇒ + + =

⇒ = − = −

αβγ

α

d
a

a
r a ar

a

a

b
a

a
r a ar

r r

r r

r r r

r r

r r

r r

54
2

27

3

9
2

3 1 1 9
2

2 1 1 3

2 2 2 3

2 5 2 0

(2 1)( 2) 0

2 or 1
2

3

2

2

Either value of r gives three roots: 3
2 , –3, 6.

Solution

(i) ( ) 2 2 2

( ) 2( )

2

4 2 1

14

2 2 2 2

2 2 2 2

2

2

γ γ

γ γ

( )

+ + = + + + + +

+ + = + + − + +

= ∑ − ∑

= − ×
=

α β α β αβ αγ βγ

α β α β αβ αγ βγ

α αβ

⇒   

Remember: ∑ =αβγ αβγ

You can also form symmetric functions roots of cubic equations. For 
example, f(α, β, γ ) = α 2 + β 2 + γ 2 is a symmetric function as when you 
interchange any two of α, β and γ the function remains the same. You can 
express symmetric functions in terms of ∑α, ∑αβ and α β γ.
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Solution 1

5
2

3
2

2
2 1

∑ = + + = −

∑ = + + = −

∑ = = =

α α β γ

αβ αβ βγ γα

αβγ αβγ

For the new equation:

Sum of roots 2 1 2 1 2 1

2( ) 3

5 3 2

= + + + + +
= + + +
= − + = −

α β γ

α β γ

Product of the roots in pairs  

(2 1)(2 1) (2 1)(2 1) (2 1)(2 1)

[4 2( ) 1] [4 2( ) 1] [4 2( ) 1]

4( ) 4( ) 3

4 3
2 4 5

2 3

13

= + + + + + + + +
= + + + + + + + + + + +
= + + + + + +

= × − + × − +
= −

α β β γ γ α

αβ α β βγ β γ γα γ α

αβ βγ γα α β γ

Example 3.7

(ii) α is a root of x3 − 4x2 + x + 6 = 0 ⇒ α 3 − 4α 2 + α + 6 = 0

 So 4 63 2= − −α α α  ①
 Likewise, 4 63 2= − −β β β  ②
 and 4 63 2= − −γ γ γ  ③

Adding equations ①, ② and ③ gives:

   

4( ) ( ) (6 6 6)

4( ) 3 6

4 14 4 18

34

3 3 3 2 2 2

2 2 2

+ + = + + − + + − + +

= + + − ∑ − ×
= × − −
=

α β γ α β γ α β γ

α β γ α

The roots of the cubic equation z z z2 5 3 2 03 2+ − − =  are α, β, γ.

Find the cubic equation with roots 2 1+α , 2 1+β , 2 1+γ .

 b
a ∑ = −α

c
a∑ =αβ

d
a−∑ = =αβγ αβγ

Forming new equations: the substitution method
In the next example you are asked to form a new cubic equation with roots 
related to the roots of the original equation. Using the same approach as in 
the quadratic example is possible, but this gets increasingly complicated as 
the order of the equation increases. A substitution method is often a quicker 
alternative. The following example shows both methods for comparison.

➜
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Product of roots (2 1)(2 1))(2 1)

8 4( ) 2( ) 1

8 1 4 3
2 2 5

2 1

2

= + + +
= + + + + + + +

= × + × − + × − +
= −

α β γ

αβγ αβ βγ γα α β γ

In the new equation, b
a 2− = − , c

a 13= − , d
a 2− = − .

The new equation is z z z2 13 2 03 2+ − + = .

Solution 2 (substitution method)

This method involves a new variable w z2 1= + .  
You write z in terms of w, and substitute into  
the original equation:

z w 1
2= −  α, β, γ are the roots of z z z2 5 3 2 03 2+ − − =

⇔ 2α + 1, 2β + 1, 2γ  + 1 are the roots of  

w w w

w w w

w w w w w w

w w w

2
8 ( 1) 5

4 ( 1) 3
2 ( 1) 2 0

( 1) 5( 1) 6( 1) 8 0

3 3 1 5 10 5 6 6 8 0

2 13 2 0

3 2

3 2

3 2 2

3 2

⇔ − + − − − − =

⇔ − + − − − − =

⇔ − + − + − + − + − =

⇔ + − + =
The substitution method can sometimes be much more efficient, although 
you need to take care with the expansion of the cubic brackets.

These are all 
integers, so choose  
a = 1 and this gives 
the simplest integer 
coefficients.

This is a transformation 
of z in the same way 
as the new roots are a 
transformation of the 
original z roots.

w w w2 1
2 5 1

2 3 1
2 2 0

3 2( ) ( ) ( )− + − − − − =

Technology note
If you have access to graphing software, use it to draw the graphs of  
y = 2x³ + 5x² − 3x − 2 and y = x³ + 2x² − 13x + 2. How do these graphs 
relate to Example 3.7? What transformations map the first graph on to the 
second one?

Check this for yourself.

Example 3.8 The roots of the cubic equation z z z2 5 2 03 2− + + =  are , ,α β γ .

Find the cubic equation with roots , , .2 2 2α β γThis equation has 
roots , ,2 2 2α β γ  , 
but it is not a 
cubic. You need 
to rearrange 
the equation 
to remove the 
square roots.

Solution

Let w z z w2= ⇒ =  

Substituting z w=  into z z z2 5 2 03 2− + + =  gives
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1 The roots of the cubic equation z z z2 3 7 03 2+ − + =  are α, β, γ.

 Find the following:
(i) ∑α (ii) ∑αβ (iii) ∑αβγ

2 Find cubic equations (with integer coefficients) with the following roots:

(i) 1, 2, 4
(iii) 0, –2, –1.5
(v) –2, –3, 5

(ii) 2, –2, 3
(iv) 2 (repeated), 2.5
(vi) 1, 2 + i, 2 − i

3 The roots of each of these equations are in arithmetic progression (i.e. 
they may be written as a − d, a, a + d ). 

 Solve each equation.
(i) z z z15 66 80 03 2− + − =
(ii) 9z3 − 18z2 − 4z + 8 = 0
(iii) z z6 16 03 2− + =
(iv) 54z3 − 189z2 + 207z − 70 = 0

4  The roots of the equation z3 + z2 + 2z − 3 = 0 are α, β, γ.

(i) The substitution w = z + 3 is made. Write z in terms of w.

(ii) Substitute your answer to part (i) for z in the equation 
z3 + z2 + 2z − 3 = 0

(iii) Give your answer to part (ii) as a cubic equation in w with integer 
coefficients.

(iv) Write down the roots of your equation in part (iii), in terms of α, β 
and γ.

5 The roots of the equation z3 − 2z2 + z − 3 = 0 are α, β, γ. Use the 
substitution w = 2z to find a cubic equation in w with roots:

 (i) 2α, 2β, 2γ

 (ii) α2, β 2, γ 2

Exercise 3B

2 5 2 0

2 5 2 0

3 2( ) ( )− + + =

⇒ − + + =

w w w

w w w w

Gather terms containing w :    w w w(2 1) 5 2+ = −  

Square both sides:                      w w w(2 1) 5 22 2( )+ = −    

w w w w w

w w w w w

w w w

(4 4 1) 25 20 4

4 4 25 20 4

4 21 21 4 0

2 2

3 2 2

3 2

⇒ + + = − +

⇒ + + = − +

⇒ − + − =
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6 The roots of the equation 2z3 + 4z2 − 3z + 1 = 0 are α, β, γ. 

Find cubic equations with these roots:

(i) 2 − α, 2 − β, 2 − γ
(ii) 3α − 2, 3β − 2, 3γ − 2
(iii) α2, β 2, γ 2

7 The roots of the equation 2z3 − 12z2 + kz − 15 = 0 are in arithmetic 
progression.

 Solve the equation and find k.

8 Solve 32z3 − 14z + 3 = 0 given that one root is twice another.

9 The equation z3 + pz2 + 2pz + q = 0 has roots α, 2α, 4α.

 Find all possible values of p, q, α.

10 The cubic equation 03 2ax bx cx d+ + + = , where a, b, c and d are 

constants, has roots α, β and γ. Prove that 1 1 1 c
d+ + = −α β γ

.

11 The cubic equation 03 2ax bx cx d+ + + = , where a, b, c and d are 

constants, has roots α, β and γ. Prove that 22 2 2
2

2
b
a

c
a+ + = −α β γ .

12 The roots of z3 + pz2 + qz + r = 0 are α, − α, β and r 0≠ .

 Show that r pq= , and find all three roots in terms of p and q. 

13 The cubic equation x px qx r8 03 2+ + + =  has roots α and 1
2α  and β.

(i) Express p, q and r in terms of α and β.

(ii) Show that r pr q2 4 162 − + = . 

(iii) Given that p = 6 and q = –23, find the two possible values of r and, 
in each case, solve the equation x x x r8 6 23 03 2+ − + = .

14 Show that one root of az bz cz d 03 2+ + + =  is the reciprocal of 
another root if and only if − = −a d ac bd2 2 .

 Verify that this condition is satisfied for the equation 
− − + =z z z21 16 95 42 03 2  and hence solve the equation.

15 Find a formula connecting a, b, c and d that is a necessary and sufficient 
condition for the roots of the equation az bz cz d 03 2+ + + =  to be in 
geometric progression.

 Show that this condition is satisfied for the equation 

z z z8 52 78 27 03 2− + − =  and hence solve the equation.

16 The cubic equation x3 + px2 + qx + r = 0, where p, q and r are integers, 
has roots α, β and γ, such that

 15,+ + =α β γ

 83.2 2 2+ + =α β γ

 Write down the value of p and find the value of q. 

 Given that α, β and γ are all real and that 36+ =αβ αγ , find α and hence 
find the value of r.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q5 October/November 2015

PS
PS

CP

CP

CP

CP

CP

CP
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17 The cubic equation x3 − px − q = 0, where p and q are constants, has 
roots α, β and γ. Show that

(i) 2 ,2 2 2 p+ + =α β γ

(ii) 3 ,3 3 3 q+ + =α β γ

(iii) 6( ) 5( )( ).5 5 5 3 3 3 2 2 2+ + = + + + +α β γ α β γ α β γ
Cambridge International AS & A Level Further Mathematics  

9231 Paper 11 Q2 October/November 2013

18 The equation 03x px q+ + =  has a repeated root. Prove that 
4 27 03 2p q+ = .

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q1 October/November 2011

3.4 Quartic equations
Quartic equations have four roots, denoted by the first four Greek letters: α, 
β, γ and δ (delta).

 By looking back at the two formulae for quadratics and the three 
formulae for cubics, predict the four formulae that relate the roots 
α, β, γ and δ to the coefficients a, b, c and d of the quartic equation 
az bz cz dz e 04 3 2+ + + + = . 

 You may wish to check/derive these results yourself before looking at 
the derivation on the next page.

?

Historical note
The formulae used to relate the coefficients of polynomials with sums and 
products of their roots are called Vieta’s Formulae after François Viète (a 
Frenchman who commonly used a Latin version of his name: Franciscus 
Vieta). He was a lawyer by trade but made important progress (while doing 
mathematics in his spare time) on algebraic notation and helped pave the 
way for the more logical system of notation you use today.

Derivation of formulae 
As before, the quartic equation 

az bz cz dz e 04 3 2+ + + + =

can be written is factorised form as

z z z z( )( )( )( ) 0a − − − − =α β γ δ .

This gives the identity

az bz cz dz e z z z z( )( )( )( )a4 3 2+ + + + ≡ − − − −α β γ δ .
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Multiplying out the right-hand side gives

az bz cz dz e az a z

a z a z a

( )

( ) ( ) .

4 3 2 4 3

2

+ + + + ≡ − + + +

+ + + + + + − + + + +

α β γ δ

αβ αγ αδ βγ βδ γα αβγ βγδ γδα δαβ αβγδ

Equating coefficients shows that

b
a

c
a

d
a

e
a

∑ = + + + = −

∑ = + + + + + =

∑ = + + + = −

∑ =

γ

γ

α α β γ δ

αβ αβ α αδ βγ βδ γδ

αβ αβγ βγδ γδα δαβ

αβγδ αβγδ =

az bz cz dz e az a z

a z a z a

( )

( ) ( ) .

4 3 2 4 3

2

+ + + + ≡ − + + +

+ + + + + + − + + + +

α β γ δ

αβ αγ αδ βγ βδ γα αβγ βγδ γδα δαβ αβγδ
az bz cz dz e az a z

a z a z a

( )

( ) ( ) .

4 3 2 4 3

2

+ + + + ≡ − + + +

+ + + + + + − + + + +

α β γ δ

αβ αγ αδ βγ βδ γα αβγ βγδ γδα δαβ αβγδ

The sum of the 
individual roots.

The sum of the products 
of roots in pairs.

The sum of the products 
of roots in threes.

Check this 
for yourself.

There are four roots so 
there is only one way to 
form a product of them all.

The roots of the quartic equation z pz qz z4 3 04 3 2+ + − + = are 
, , ,− + −α α α λ α λ where α and γ are real numbers.

(i) Express p and q in terms of α and λ.

(ii) Show that =α −
1
2
, and find the values of p and q.

(iii) Give the roots of the quartic equation. 

Solution

(i) 

q

q

q

( ) ( ) ( ) ( )
( )( ) 4

4
4

2

2

2

∑ = − + + + − − + − −
+ + − =

⇒ − =

⇒ = −

αβ α α α λ α α λ α α λ α α λ

α λ α λ

λ

λ

p

p

p

4

2 4
8

∑ = − + + + − = −

⇒ = −

⇒ = −

α α α α λ α λ

α

α

Use the sum of the individual 
roots to find an expression for p.

Use the sum of the product of the roots 
in pairs to find an expression for q.

Example 3.9
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(ii)

   

q

( )( ) 3
4

( ) 3
4

1
4

1
4

3
4

1
4 3

13
4

4 4 13
4 13

2

2 2 2

2

2

2

2

( )

= − + − =

⇒ − − =

⇒ − − =

⇒ − = −

⇒ =

= − = − × = −

αβγδ α α λ α λ

α α λ

λ

λ

λ

λ

(iii) The roots of the equation are 1
2 , 1

2 , 1
2

1
2 13, 1

2
1
2 13− − + − − . 

p

( ) ( )( ) ( )( ) ( ) 1
4

2 1
4

1
2

8 8 1
2 4

2 2

3

∑ = − + − + − + + − − − =

⇒ − =

⇒ = −

= − = − × − =

αβγ α α λ α α λ α λ α α λ α λ α α λ

α

α

α

Use the sum of the product of the 
roots in threes to find α (λ cancels 
out) and hence find p, using your 
answer to part (i).

Use the sum of the product 
of the roots and the value for 
α to find λ, and hence find q, 
using your answer to part (i).

Substitute the values for α 
and λ  to give the roots.

Exercise 3C 1 The roots of z z z z2 3 6 5 4 04 3 2+ + − + =  are α, β, γ and δ.

 Write down the following:

(i) ∑α 

(ii) ∑αβ 

(iii) ∑αβγ

(iv) ∑αβγδ

2 Find quartic equations (with integer coefficients) with the roots.

(i) 1, −1, 2, 4

(ii) 0, 1.5, −2.5, −4

(iii) 1.5 (repeated), −3 (repeated)

(iv) 1, −3, 1 + i, 1 − i.

3 The roots of the quartic equation z z z z2 4 3 6 04 3 2+ − − + =  are 
α, β, γ and δ.

 Find quartic equations with these roots:

(i) 2 , 2 , 2 , 2α β γ δ  

(ii) 1, 1, 1, 1− − − −α β γ δ .
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4 The roots of the quartic equation x x x   4     8     4 04 3+ − + =  are α, β, γ  

and δ.

(i) By making a suitable substitution, find a quartic equation with 
roots + + +α β γ1,  1,   1 and +δ 1 . 

(ii) Solve the equation found in part (i), and hence find the values of  
α, β, γ and δ.

5 The quartic equation x px x q         12  04 3+ − + = , where p and q are real, 
has roots α, 3α, β, −β.

(i) By considering the coefficients of x2 and x, find α and β, where  
β > 0.

(ii) Show that p = 4 and find the value of q.

(iii) By making the substitution y x k= − , for a suitable value of k, 
find a cubic equation in y, with integer coefficients, which has 

roots − − − −α β α β α2 , 3 , 3 .

6 (i)  Make conjectures about the five properties of the roots α, β, γ, δ and ε 
(epsilon) of the general quintic ax bx cx dx ex f 05 4 3 2+ + + + + = .

(ii)  Prove your conjectures.

Note
For question 6, you should try the algebra by hand, thinking about keeping 
good presentation habits for long algebraic expansions. You may want to 
check any long expansions using CAS (computer algebra software). You 
then might also like to consider whether a ‘proof’ is still valid if it relies on a 
computer system to prove it – look up the history of The Four Colour Theorem 
to explore this idea further.

7 The roots of the quartic equation 4 2 4 1 04 3 2x x x x+ + − + =  are α, β, γ 
and δ. Find the values of

(i) + + +α β γ δ

(ii) 2 2 2 2+ + +α β γ δ

(iii) 1 1 1 1+ + +α β γ δ

(iv) .+ + +α
βγδ

β
αγδ

γ
αβδ

δ
αβγ

 Using the substitution y = x + 1, find a quartic equation in y. Solve 
this quartic equation and hence find the roots of the equation 
x x x x+ + − + =4 2 4 1 0.4 3 2

Cambridge International AS & A Level Further Mathematics 
9231 Paper 11 Q11 October/November 2014

PS

CP
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8 The roots of the equation 3 5 2 04 2x x x− + − =  are α, β, γ , δ, and 
n n n n+ + +α β γ δ  is denoted by Sn.

 Show that
3 5 2 0.4 2 1S S S Sn n n n− + − =+ + +

 Find the values of

(i) S2 and S4

(ii) S3 and S5. 

 Hence find the value of

( ) ( ) ( ) ( ).2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3+ + + + + + + + + + +α β γ δ β γ δ α γ δ α β δ α β γ

Cambridge International AS & A Level Further Mathematics 
9231 Paper 11 Q11 October/November 2012

KEY POINTS

1 If α and β are the roots of the quadratic equation az bz c           02 + + = , 
then 

 
b
a

+ = −α β  and 
c
a

=αβ .

2 If α, β and γ are the roots of the cubic equation az bz cz d 03 2+ + + = , 
then 

 b
a

 ∑ = + + = −α α β γ ,

 c
a

∑ = + + =αβ αβ βγ γα  and,

 d
a

= −αβγ .

3 If α, β, γ and δ are the roots of the quaartic equation    
 az bz cz dz e 04 3 2+ + + + = , then

 

∑ = + + + = −

∑ = + + + + + =

∑ = + + + = −

=

α α β γ δ

αβ αβ αγ αδ βγ βδ γδ

αβγ αβγ βγδ γδα δαβ

αβγδ

and

b
a

c
a

d
a

e
a

,

,

.

4 All of these formulae may be summarised using the shorthand sigma 
notation for elementary symmetric functions as follows:

 

b
a
c
a

d
a

e
a

 ∑ = −

∑ =

∑ = −

∑ =

α

αβ

αβγ

αβγδ

 (using the convention that polynomials of degree n are labelled 
az bz 0n n 1+ + … =−  and have roots α, β, γ, …)
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3 LEARNING OUTCOMES

Now that you have finished this chapter, you should be able to
■ recall the relationships between the roots and coefficients of quadratic, 

cubic and quartic equations

■ form new equations whose roots are related to the roots of a given 
equation by a linear transformation

■ evaluate symmetric functions of the roots

■ understand that complex roots of polynomial equations with real 
coefficients occur in conjugate pairs.
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4  Rational functions and graphs

The purpose of 
visualisation 
is insight, not 
pictures.
Ben Shneiderman 
(1947–)

The graph in Figure 4.1 shows how the population of rabbits on a small 
island changes over time after a small group is introduced to the island.

Time (years)

N
um

be
r o

f r
ab

bi
ts

▲ Figure 4.1

 What can you conclude from the graph?
?

4 R
ational functions and graphs
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4
4.1 Graphs of rational functions
A rational number is defined as a number that can be expressed  

as 
p
q  where p and q are integers and q 0≠ .  

In a similar way, a rational function is defined as a function that can be 

expressed in the form y
x
x

f ( )
g( )= , where f(x) and g(x) are polynomials, and 

xg( ) 0≠ .

In this chapter you will learn how to sketch graphs of rational functions.

Think about the graph of y x
1=  (see Figure 4.2).

x40

4

y

y = 1
x

−4

−4

When x is positive and very
close to zero, y is close to +¥.

When x is negative and very
close to zero, y is close to       .

When x is positive and very
close to +¥, y is close to zero.

Remember you cannot divide
by zero so the function is
undefined at x = 0.

–¥

▲ Figure 4.2

Translating y x
1=  three units to the right and two units up gives the graph of 

y x
1

3 2= − +  which can be written as y x
x
2 5

3= −
−  (see Figure 4.3).

2

30 x

y

y = 2x − 5
x − 3

▲ Figure 4.3

Imagine yourself moving along the curve y x
x
2 5

3= −
−  from the left. As your 

x coordinate gets close to 3, your y coordinate tends to −∞, and you get 

closer and closer to the vertical line x = 3, shown dashed.

If you move along the curve again, letting your x coordinate increase without 
limit, you get closer and closer to the horizontal line y = 2, also shown 
dashed.

This chapter 
will only look 
at polynomials 
of degree 2 
(quadratics) or 
less.
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These dashed lines are examples of asymptotes. An asymptote is a straight 
line that a curve approaches tangentially as x and/or y tends to infinity.  The 
line x = 3 is a vertical asymptote; the line y = 2 is a horizontal asymptote. It 
is usual for asymptotes to be shown by dashed lines in books. In your own 
work you may find it helpful to use a different colour for asymptotes. 

Finding vertical asymptotes
To find any vertical asymptotes look for the values of x for which the 
function is undefined. 

The curve y
x
x

f ( )
g( )=  is undefined when g(x) = 0. 

So there is a vertical asymptote at x = a where g(a) = 0.

The signs of f(x) and g(x) when x is close to a, let you determine whether y tends 
to positive or negative infinity, as x tends to a from the left or from the right. 

y x
x
2 5

3= −
−  is undefined when x = 3, so x = 3 is a vertical asymptote  

(see Figure 4.3).

 What are the vertical asymptotes of the graphs of the following 
rational functions?

(i) y x
1

2= +   (ii) y x
x x

2
( 1)( 2)= −

− +   (iii) y
x x

2
(2 1)( 1)2= − +

?

Finding horizontal asymptotes
To find any horizontal asymptotes look at:

» the value of y as x → ∞
» the value of y as x → −∞.

For the curve y x
x
2 5

3= −
− , when x is numerically very large (either positive 

or negative) the −5 in the numerator and the −3 in the denominator become 
negligible compared to the value of x. 

So as x y x
x

x
x, 2 5

3
2 2→ ±∞ = −

− → = .

Hence the line y = 2 is a horizontal asymptote (see Figure 4.3). 

 What are the horizontal asymptotes of the graphs of the following 
rational functions?

(i) y x
1

2= +   (ii) y x
x 2= +   (iii) y x

x
1 2

2= −
+

?

Remember, you 
cannot divide by 0.

Look back at 
Figure 4.2 and see 
Step 2 in the next 
section.

Say ‘x tends to infinity’ this means as x 
becomes very large and positive.

When x is close to negative infinity.

Think about the 
value of y when 
x is:

» large and 
positive, e.g. 
+1000 and 
+10 000 

» ‘large’ and 
negative, e.g. 
−1000 and 
−10 000.

Technology note
If you have graphing software, you can use it to sketch graphs and check that 
you have found the asymptotes correctly.
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4
4.2  How to sketch a graph of a 

rational function
The five steps below show how to draw a sketch graph of y

x
x x

( 2)
( 2)( 1)= +

− + .

Step 1: Find where the graph cuts the axes
When x = 0: 

 y x
x x

( 2)
( 2)( 1)

2
2 1 1= +

− + = − × = −  

 ⇒ the y intercept is at (0, −1) 

When y = 0:

 
x

x x
( 2)

( 2)( 1) 0+
− + =

 
x

x

2 0

2

⇒ + =
⇒ = −

 ⇒ the x intercept is at (−2, 0)

Step 2: Find the vertical asymptotes and examine the 
behaviour of the graph either side of them

y x
x x

( 2)
( 2)( 1)= +

− +  has vertical asymptotes when x x( 2)( 1) 0− + =

⇒ the vertical asymptotes are at x = −1 and x = 2

On either side of the asymptote, y will either be large and positive (tending 
to +∞) or large and negative (tending to −∞). To find out which, you need to 
examine the sign of y on either side of the asymptote.  

Behaviour of the graph y
x

x x
( 2)

( 2)( 1)= +
− +  either side of the asymptote x = 2:

When x is slightly less than 2 then

y
ve number

ve number close to zero ve number
is

( )
( )( )

+
− +

.

So y is large and negative.
For example, when x = 1.999

1.999 2

1.999 2 1.999 1
3.999

0.001 2.999
1333.44...y ( )

( )( )
=

+
− +

=
− ×

= −
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When x is slightly more than 2 then

y
ve number

ve number close to zero ve number
is

( )
( )( )

+
+ + . 

So y is large and positive.

x

y

20−1
−1

−2

y ® +¥ as x ® 2 from
the right.

y ® –¥ as x ® 2 from
the left.

▲ Figure 4.4

Behaviour of the graph y
x

x x
( 2)

( 2)( 1)= +
− +  either side of the asymptote x = −1:

x

y

20−1
−1

−2

When x is slightly less than −1 then:

so y is large and positive. 

y is
(+ve number)

(–ve number)(–ve number close to zero)

When x is slightly more than −1 then:

so y is large and negative. 

y is
(+ve number)

(–ve number)(+ve number close to zero)

Step 3: Find the horizontal asymptotes and examine 
the behaviour of the graph either side of them
Examine the behaviour as x tends to infinity.

As x → ±∞, y x
x x

x
x x

( 2)
( 2)( 1)

1 02= +
− + → = →

This means that the line y = 0 is a horizontal  
asymptote.

For example, when x = 2.001

y =
2.001 2

2.001 2 2.001 1
4.001

0.001 3.001
1333.22...

( )
( )( )

+
− +

=
×

=

▲ Figure 4.5

When x is very large 
(either positive or 
negative) the 2 in 
the numerator and 
the −2 and the 1 in 
the denominator 
become negligible 
compared to the 
vaxlues of x, so you 
can ignore them.
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 What are the signs of (x + 2), (x − 2) and (x + 1) for:

 (i) large, positive values of x

 (ii) large, negative values of x?

 What is the sign of y
x

x x= +
− +
( 2)

( 2)( 1)  for:

 (iii) large, positive values of x

 (iv) large, negative values of x?

?

From the discussion point above, you now know that y → 0 from above as 
x → ∞, and y → 0 from below as x → −∞. This additional information is 
shown in Figure 4.6.

x

y

2−1
−1

0−2

The x-axis is a horizontal
asymptote.

▲ Figure 4.6

Step 4: Identify any stationary points
At a stationary point, 

y
x

d
d 0= .

 Show that y
x

x x
( 2)

( 2)( 1)= +
− +  has stationary points at ( 4, 1

9)− −  and (0, 1)− .

?

Step 5: Complete the sketch
The sketch is completed in Figure 4.7. 

x

y

−2

x = −1

−1
0

x = 2

(−4, −    )1
9

y = (x + 2)
(x − 2)(x + 1)

(0,–1) is a local
maximum.

(−4,−    ) is a local
minimum.

1
9

▲ Figure 4.7
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Notice that, in this case, you can conclude that there is a local minimum 
at ( 4, 1

9)− −  and a local maximum at (0,−1) without the need for further 
differentiation.

So the range of the function x x
x xf ( ) ( 2)

( 2)( 1)= +
− +  is xf ( ) 1

9≥ −  and  
f(x)  −1.

You can use the sketch to solve inequalities. 

For example: x
x x

( 2)
( 2)( 1) 0≤+

− +  when x  −2 or � �x1 2− .

Using the discriminant to find the range of a function
You can use the discriminant to find the range of the function instead 
of using differentiation. This method is often more straightforward than 
differentiation.

Look at Figure 4.7, this graph meets the horizontal line y = k where 

k x
x x

2
( 2)( 1)= +

− + . The range of the function x x
x xf ( ) 2

( 2)( 1)= +
− +  will be 

the values of k for which this equation has real roots.

k x
x x

k x x x

kx kx k x

kx k x k

2
( 2)( 1)

( 2)( 1) 2

2 2

( 1) 2 2 0

2

2

= +
− +

⇒ − + = +

⇒ − − = +

⇒ − + − − =

This equation has real roots when the discriminant, −b ac42 , is positive or zero.

So �

�

�

�

k k k

k k k k

k k

k k

( 1) 4 ( 2 2) 0

2 1 8 8 0

9 10 1 0

( 1)(9 1) 0

2

2 2

2

+ − − −

+ + + +

+ +
+ +

                 
� �k k1 or 1

9⇒ − −

So the function x x
x xf ( ) 2

( 2)( 1)= +
− +  cannot take any values between −1  

and − 1
9

, and the range of the function is �xf ( ) 1−  and �xf ( ) 1
9−  as found 

before.

Using symmetry
Recognising symmetry can help you to draw a sketch.

» If f(x) = f(−x) the graph of y = f(x) is symmetrical about the y-axis.

» If f(x) = −f(−x) the graph of y = f(x) has rotational symmetry of order 2 
about the origin.

For these values 
of x, the curve is 
below the x-axis.
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Note

A function is an even function if its graph has the y-axis as a line of 
symmetry.
So when f(x) = f(−x) the function is even.
A function is an odd function if its graph has rotational symmetry of order 
2 about the origin.
So when f(x) = −f(−x) the function is odd.

(i)  Sketch the graph of y = f(x), where f(x) = x
x

1
2

2

2
+
+ .

(ii)  State the range of f(x).

(iii)  The equation f(x) = k has no real solutions.

 Find the values of k.

Solution

(i)  Step 1:

 When x = 0, y = 1
2
, so the graph passes through 0, 1

2( ).
 No (real) value of x makes x2 + 1 = 0, so the graph does not cut the  

x-axis.

 Step 2:

 No (real) value of x makes x2 + 2 = 0, so there are no vertical 
asymptotes.

 Step 3:

 As x → ±∞, y = x
x

x
x

1
2

1
2

2

2

2
+
+ → =

 So y = 1 is a horizontal asymptote.

 The denominator is larger than the numerator for all values of x, so  
y  1 for all x.

 So y → 1 from below as x → ±∞.

 Step 4:

 Differentiate to find the stationary points.

y x
x

y
x

x x x x

x

x x x x
x

x
x

1
2

d
d

2 2 1 2

2

2 4 2 2
2

2
2

2

2

2 2

2 2

3 3

2 2

2 2

( ) ( )
( )

( )

( )

= +
+

⇒ = + × − + ×
+

= + − −
+

=
+

  

Example 4.1
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 At a stationary point, y
x x x

d
d 0 2 0 0= ⇒ = ⇒ = .

 When x = 0 then 
1
2y = , so there is a stationary point at 0, 12( ).

 Step 5:

 f(x) contains only even powers of x, so f(x) = f(−x) and the graph is

 symmetrical about the y-axis (see Figure 4.8).

x

y

(0,    ) is a minimum since x = 1
is an asymptote and the curve
approaches this from below.

1
21

2

1

0

▲ Figure 4.8

(ii)  From the sketch the range is � �x1
2 f ( ) 1.

(iii)  Solutions of the equation f(x) = k occur where the horizontal line y = k 
meets the curve y = f(x).

 From the sketch of y = f(x), you can see that when �k 1
2 or k  1, the 

line y = k will not meet the curve and so there are no solutions to the 
equation f(x) = k.

Follow the steps below for each of questions 1 to 12.
Step 1:  Find the coordinates of the point(s) where the graph cuts the axes.
Step 2:  Find the vertical asymptote(s).
Step 3:  State the behaviour of the graph as x → ±∞.
Step 4:  Sketch the graph.
Step 5: Find the range.

1 y x
2

3= −  

2 y
x

2
3 2( )

=
−

3 y
x

1
12= +

4 y x
x 42= −

5 y x
x
2

3= −
+

6 y x
x x

5
( 2)( 3)= −

+ −

Exercise 4A

Show that you get the same answer when you use the discriminant 
method to find the range.
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4
  7 y x

x x
3

(2 )(4 )= −
− −

  8 y x
x 32= +

  9 y x
x

3
( 4)2= −

−

10 y x x
x x

(2 3)(5 2)
( 1)( 4)= − +

+ −

11 y x x
x

6 9
1

2

2= − +
+

12 y x x
x x

5 6
( 1)( 4)

2
= − −

+ −

13  (i) Sketch the graph of y x
x

4
4

2

2= −
+ .

(ii) The equation x
x

k4
4

2

2
−
+ =  has no real solutions.

 Find the possible values of k.

14  (i) Sketch the graph of y x x
1

( 1)(3 )= + − .

(ii) Write down the equation of the line of symmetry of the graph 
and hence find the coordinates of the local minimum point.

(iii) For what values of k does the equation x x k1
( 1)(3 )+ − =  have

(a) two real distinct solutions

(b) one real solution

(c) no real solutions?

15 Solve these inequalities, by first sketching one or more appropriate 
curve(s).

(i) �x
x

2
1 0+

−

(ii) �x
x
2 3

2 1+
−

(iii) �x
x x

−
+ −

5
1

1
3

(iv) �x
x

3
2 1 2+

−

(v) �x
x
2 1

3
1
2

−
+

(vi) �x x
1

6
2

2 3+ −

4.3 Oblique asymptotes
In general, when the numerator of any rational function is of lower degree 

than the denominator (e.g. y x
x x

( 2)
( 2)( 1)= +

− +  ), then y = 0 is a horizontal 
asymptote.

When the numerator has the same degree as the denominator (e.g. y x
x
2 5

3= −
− ),  

then as x → ±∞, y tends to a fixed rational number. So there is a horizontal 
asymptote of the form y = c.

PS

PS

PS
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When the degree of the numerator is one greater than that of the 

denominator (e.g. y x x
x

2 4 1
3

2
= − −

−  ), then as x → ±∞ then y tends to an 

expression in the form ax + b. So the asymptote is a sloping line, you say 

there is an oblique asymptote. 

To find the equation of the oblique asymptote of  y x x
x

2 4 1
3

2
= − −

−  you need 
to rewrite the equation using long division.

)x x x
x

x x

x

x

( 3) 2 4 1
2 2

2 6

2 1

2 6

5

2

2

− − −
+

− −
−

− −

So y x x
x x x

2 4 1
3 2 2 5

3
2

= − −
− = + + −

As x increases then x
5

3 0− →  and y x2 2→ + , so the equation of the 

oblique asymptote is y x2 2= + .

In order to sketch the graph of y x x
x

2 4 1
3

2
= − −

−  you need to consider any 

vertical asymptotes and then examine the behaviour of the function on either 
side of the asymptotes.

The vertical asymptote is at x = 3.

Examine the behaviour of y x x
x

2 4 1
3

2
= − −

−  on either side of the vertical 
asymptote.

» When x is slightly less than 3 then y → −∞.

» When x is slightly more than 3 then y → +∞.

Examine the behaviour on either side of the oblique asymptote:

» When x is slightly more than 3 then �y x x x2 2 5
3 2 2= + + − +  so the 

curve lies above the asymptote.

» When x is slightly less than 3 then �y x x x2 2 5
3 2 2= + + − +  so the 

curve lies below the asymptote.

Notice you didn’t 
need to complete 
the division. 

You cannot divide 
by 0, so x = 3 is an 
asymptote.

When x is slightly 
less than 3 then

y ve
ve ve= +

− = −
When x is slightly 
more than 3 then 

y ve
ve ve= +

+ = +

For x  3, x
5

3−  is 
positive so  
y  2x + 2.

For x  3,  x
5

3−  
is negative so  
y  2x + 2.
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4

x

y
x = 3

y = 2x + 2

O

y = 2x2 − 4x − 1
x − 3

Notice that the curve
‘hugs’ the asymptotes.

▲ Figure 4.9

Note

Rewriting the equation as y x x2 2 5
3= + + −  makes it easier to differentiate 

and find the turning points. 

y x x
y
x x

2 2 5
3

d
d 2 5

( 3)2

= + + −

⇒ = − −

 

y
x x

d
d 0 2 5

( 3)
02= ⇒ − − =

 
So 5

( 3)
2 ( 3) 5

2

( 3) 5
2

3 5
2

2
2

x
x

x

x

− = ⇒ − =

⇒ − = ±

⇒ = ±

 

So there are turning points at x 3 5
2= ± .

The turning points are at x = 1.42 and x = 4.58 (to 3 significant figures). 
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For each of the curves given in questions 1 to 3:

(a) find the coordinates of any point(s) where the graph cuts the axes

(b) find the equations of the asymptotes 

(c) find the coordinates of the turning points 

(d) sketch the graph.

1 (i) y x x2 1 2
4= − + −   (ii) y x x2 1 2

4= − + −

2 (i) y x x
x

4 6
1

2
= − +

−    (ii) y x x
x

4 6
1

2
= − +

−

3 (i) y x x
x

(2 1)( 4)
( 3)= − −

−   (ii) y x x
x

(2 1)( 4)
(3 )= − −

−
4 A curve C has equation y x x

x
2 1

1
2

= + −
− . Find the equations of the 

asymptotes of C. 

 Show that there is no point on C for which 1  y  9.
Cambridge International AS & A Level Further Mathematics  

9231 Paper 11 Q4 October/November 2014 

5 The curve C has equation y
x px

x
1

2

2

= + +
− , where p is a constant. Given 

that C has two asymptotes, find the equation of each asymptote. 

 Find the set of values of p for which C has two distinct turning points. 

 Sketch C in the case p = −1. Your sketch should indicate the coordinates 
of any intersections with the axes, but need not show the coordinates of 
any turning points.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q7 October/November 2011 

6 The curve C has equation y x kx
x

2
1

2
= +

+ , where k is a constant. Find the 

set of values of k for which C has no stationary points. 

 For the case k = 4, find the equations of the asymptotes of C and sketch 
C, indicating the coordinates of the points where C intersects the 
coordinate axes.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q8 October/November 2015 

7 The curve C has equation

 y
px x

x
4 1
1

2

= + +
+ ,

 where p is a positive constant and p ≠ 3.

(i) Obtain the equations of the asymptotes of C. 

(ii) Find the value of p for which the x-axis is a tangent to C, and 
sketch C in this case.

(iii) For the case p = 1, show that C has no turning points, and sketch 
C, giving the exact coordinates of the points of intersection of C 
with the x-axis.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q10 October/November 2013 

Exercise 4B
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4
8 The curve C has equation

 y x x
x 2λ= + − ,

 where λ is a non-zero constant. Find the equations of the asymptotes of C. 

 Show that C has no turning points if λ  0. 

 Sketch C in the case λ = −1, stating the coordinates of the intersections 
with the axes.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q7 October/November 2012 

4.4 Sketching curves related to y = f (x)

The curve y = |f (x)|
The function xf ( )  is the modulus of xf ( ). xf ( )  always takes the positive 

numerical value of xf ( ) . For example, when f(x) = −2, then xf ( ) 2= . 

x

y

2

2

x

y

20 0

–2

y = |x – 2|

y = x – 2

▲ Figure 4.10 (i) y x 2= −  (ii) y x 2= −

The graph of y = xf ( ) can be obtained from the graph of y = f(x) by 
replacing values where f(x) is negative by the equivalent positive values.  
This is the same as reflecting that part of the curve in the x-axis.

To draw the curve y xf ( )=  you should:

» draw y xf ( )=
» reflect the part(s) of the curve where y  0 in the x-axis.
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The curve y = |f (x)|
Remember that x  always takes the positive numerical value of x.

When x = 2 then f ( 2 ) f (2)= , and when x = −2 then f ( 2 ) f (2)− =

x

y

20

−2

y  =  x – 2

x

y

20

−2

y = |x| – 2

▲ Figure 4.11 (i)y x 2= −  (ii) y x 2= −

To draw the curve y xf ( )=  you should:

» draw y xf ( )=  for x  0

» reflect the part of the curve where x  0 in the y axis.

x

y

O

Q(3, 5)

P(−1, −10)

▲ Figure 4.12

The diagram shows the curve y = f(x). The curve has stationary points at 
P and Q.

Sketch the curves

(i) y = xf ( )  (ii) y = xf ( ).

Example 4.2

➜
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4
Solution

(i) 

x

y

O

Q′(3, 5)

P′(–1, 10)

Reflect any parts of the original
curve that were below the x-axis
in the x-axis.  

y = |f(x)|

▲ Figure 4.13

(ii) 

x

y

O

Q(3, 5)Q′(−3, 5)

Reflect the parts of the original
curve where x > 0 in the y-axis.  

y = f(|x|)

▲ Figure 4.14

The curve 11
ff( )

=y
x

 

You can use the following points to help you sketch y x
1

f ( )=  given the graph 
of y xf ( )= .

» When f(x) = 1, then x
1

f ( ) 1= . 

Also when f(x) = −1, then x
1

f ( ) 1= − . 

So the curves y xf ( )=  and y x
1

f ( )=  intersect when y = 1 and y = −1.

» f(x) and x
1

f ( )  have the same sign.

» x
1

f ( ) is undefined when f(x) = 0.

 So y x
1

f ( )=  has a discontinuity at any point where f(x) = 0 (i.e. the x 

intercept). This is usually an asymptote.  
For example, if x = 3 is a root of y xf ( )= then x = 3 is an asymptote  

of x
1

f ( ).

The points (x, 1) 
and (x, −1) are 
fixed points; they 
are the same on 
both curves.

When f(x) is above 
the x-axis then so 

is x( )
1

f .

Similarly, when 
f(x) is below the 
x-axis then so is 

x( )
1

f .

Roots become 
asymptotes.
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» If f(x) has a vertical asymptote at x = a, then f(x) → ±∞ as x → a.

 As f(x) → ∞, x
1

f ( )  → 0 so x
1

f ( )  approaches the x-axis as x → a.

 However, since f(a) is not defined, a
1

f ( )  is not defined either, so y x
1

f ( )=  
has a discontinuity at x = a.

 For example, if x = 3 is an asymptote of y = f(x) then x = 3 is a 

discontinuity of x
1

f ( ) .

» x x
x

x
d
d

1
f ( )

f '( )
[f ( )]2( ) = −

Hence:

● when f(x) is increasing, x
1

f ( )  is decreasing 

● when f(x) is decreasing, x
1

f ( )  is increasing 

● when xf '( ) 0= then x x
d
d

1
f ( )( ) =  0.

 Prove that x x
x

x
d
d

1
f ( )

f '( )
[f ( )]2( ) = − .

?

Given 

  x xf ( ) cos=  

 and  x xg( ) tan= , x 90, 270≠ ± ± , 

sketch the graphs of

(i) y x
1

f ( )=  (ii) y x
1

g( )=

for x360 360− ° °� � . 

Solution

(i) Start by drawing the graph of y = cos x. This is the curve shown in red 
in Figure 4.15. 

Asymptotes 
become 
discontinuities. 
You should show 
these ‘apparent 
roots’ with a small 
open circle on the 
x-axis.

The gradient of 

x( )
1

f  at a given 

point has the 
opposite sign to 
f(x).

… and where f(x) is 

a minimum, 
1
xf ( )

 

is a maximum

Example 4.3

So where f(x) is a 

maximum, 
1
xf ( )

 is 

a minimum…

➜
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4

x

y

360 −270 270 360−180 180−90 0 90

−1

1

y = 1
f(x)

y = f(x) = cos x

Roots become
asymptotes.

▲ Figure 4.15

(ii) Start by drawing the graph of y = tan x. This is the curve shown in red 
in Figure 4.16.

x

y

360 −270 270 360−180 180−90 90

−1

0

1

−2

−3

y = 1
g(x)

y = g(x) = tan x

Note the asymptotes for y = tan θ
have been omitted for clarity.

▲ Figure 4.16

Note
You met the graphs of the reciprocal trigonometric functions in Pure 
Mathematics 2 and 3.

In part (ii) of Example 4.3, the points where x = ± 90, ± 270 were excluded 

because the function xg( ) was not defined for x = ± 90, ± 270 and so 
x
1

g( )
 is 

also not defined for these values this is shown by the small open circles on 
the x-axis.
Note when you draw y = cot x, then there will be roots at x = ± 90, ± 270 …
(where cos x = 0) and asymptotes where sin x = 0 since x x

x
=cot cos

sin
.

Notice y = f (x) and 

y = 1
xf ( )

 meet at the 

points where y = 1 
and when y = −1

… and where 
y = f(x) is a 
minimum, 

y = 1
xf ( )

 is a 

maximum.

When y = f(x) 
is a maximum, 

then y = 1
xf ( )

 is a 
minimum…

When y = g(x) is increasing, 

y = 1
g x( )

 is decreasing.

y = 1
g x( )

 is 

undefined 
when  
tan x = 0 
and where 
tan x has an 
asymptote.

The curves 
meet at y = 1 
and y = −1.
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The diagram shows the curve y = f(x). The lines x = 1 and y = 2 are 
asymptotes to the curve and the curve intercepts the axes at (0, 4) and (2, 0).

Sketch the curve y = x
1

f ( ).

x

y

4

0 21

y = 2

x = 1

▲ Figure 4.17

Solution

From the graph you can see that:

» x = 2 is a root of y = f(x) ⇒ x = 2 is an asymptote of y x
1

f ( )= .

» y = 2 is an asymptote of y = f(x) y 1
2⇒ =  is an asymptote of y x

1
f ( )= .

» x = 1 is an asymptote of y = f(x) ⇒ x = 1 is a discontinuity of y x
1

f ( )= .

x

y

4

x = 2

10 2

y = 1
f(x)

y = 1
2

The curves meet at y = 1
and y = –1.

▲ Figure 4.18

Use an open circle 
to show that x = 1 
is not part of the 
curve.

Example 4.4

When f(x) is decreasing 

then y = 1
xf ( )

 is 

increasing.

When f(x) is increasing 

then y = 1
xf ( )

 is 

decreasing.
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4  Let x x
x xf ( ) 4

1 , 1= −
− ≠   and  g(x) = xx x1

4 , 4−
− ≠ .

 Are the graphs of y x= 1
f ( ) and y x= g( ) the same? Explain your 

answer fully.

?

The curve y2 = f(x)
You can think of y2 = f (x) as two curves:

f( )y x=  and f( )y x= −  

You can use the following points to help you sketch y2 = f (x) given the graph 
of y = f(x).

» y2 = f(x) is symmetrical about the x-axis.

» y2 = f(x) is undefined where f(x)  0.

 So any parts of y = f(x) that are below the x-axis will not be part of  
y2 = f(x).

» y = f (x) and y2 = f(x) intersect where y = 0 or y = 1.

» f( ) 2
d
d

f '( )
d
d

f '( )
2 .2y x y

y
x

x
y
x

x
y= ⇒ = ⇒ =

 So when y  0, the gradients of y = f(x) and y2 = f(x) have the same sign 
for a given value of x. 

 Also y = f(x) and y2 = f(x) have stationary points located at the same 
x values.

» When y = f(x) has a root then, provided f ′(x) ≠ 0, y2 = f(x) passes vertically 
through the x-axis.

(i)  Given f( ) 3 2x x( )= − , sketch y = f(x) and y2 = f(x) on the same axes.

(ii) Given f(x) = cos x for x2 2− π π� � , sketch y = f(x) and y2 = f(x) on 
the same axes.

Solution 

(i)  y = (x − 3)2 is a translation of y = x2 by the vector 
3
0









 .  

y2 = (x − 3)2 y x( 3)⇒ = ± −

f( )y x= −  is 
a reflection of 

f( )y x=  in the 
x-axis.

Since the square 
root of a negative 
number is not real.

02 = 0 and 12 = 1.

So when y = f(x) is 
increasing so is  
y2 = f(x)…

…and when y = f(x)
is decreasing so is 
y2 = f(x).

Provided the root is not 
at a stationary point.

Example 4.5
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x

y

3

0

(2, 1) (4, 1)

−3

3

y = (x − 3)2

y2 = (x − 3)2

Draw y = x – 3 and then
reflect it in the x-axis.

The curves meet at the minimum
of y = (x – 3)2 as the point where
y = 0 is the same on both curves.

▲ Figure 4.19

(ii) Draw y xcos=  first

−2π −π π 2π

−1

1

x

y

Since y = 1 at the
maximum points of
y = cos x, both curves
will have a maximum
at the same point.

When y = f( x) is below the
x-axis then there is no
corresponding curve
for y2 = f( x).

▲ Figure 4.20

Reflect the curve y xcos=  in the x-axis to give y xcos= ± .

The curves meet where y = 1.
x x

x x

3 1 4

( 3) 1 2

− = ⇒ =
− − = ⇒ =

Since cos x is less than 1, then 

y xcos=  will be ‘pulled’ up. 

(When n n n0 1 .< < >then )

➜

9781510421783.indb   109 02/02/18   4:04 PM

http://www.hoddereducation.com/cambridgeextras


4 
R

AT
IO

N
A

L 
FU

N
CT

IO
N

S 
A

N
D

 G
R

A
P

H
S

110

4

−1

1

0 x

y

−2π −π π 2π

▲ Figure 4.21

x

y

3

−2

(−1, 4)

10 4

y = f(x)

▲ Figure 4.22

The diagram shows the curve y = f(x). 

The curve has a maximum point at (−1, 4). It crosses the x-axis at (−2, 0),  
(1, 0) and (3, 0) and the y-axis at (0, 3).

Sketch the curve y2 = f(x), showing the coordinates of any turning points and 
where the curve crosses the axes.

Example 4.6
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Solution

Think about the curve y xf ( )=  first.

y = f(x) has a maximum at (−1, 4) so y xf ( )=  has a maximum at (−1, 2).

y = f(x) has a y intercept at (0, 3) so y xf ( )=  has a y intercept at (0, 3) 

The x intercepts remain the same.

Draw y xf ( )=  first and then reflect the curve in the x-axis to complete the 
sketch.

x

y

(−2, 0)

(−1, −2)

3
(−1, 2)

(−1, 4)
y = f(x)

y2 = f(x)

(3, 0)

(1, 0)

0

The two curves
meet when y = 1
and when y = 0.

−√3

√3

▲ Figure 4.23

Square root the y 
coordinate to find 
the corresponding 

point on y x( )= f .

Exercise 4C For each of questions 1 to 5:

Sketch the following curves, showing the coordinates of any turning points and 
where the curve crosses the axes. Label any asymptotes with their equations.

(i) y xf ( )=
(ii) y xf ( )=

(iii) y xf ( )=

(iv) y x
1

f ( )=

(v) y xf ( )2 =
1 x xf ( ) 42= −   

2 x xf ( ) sin= , for x2π 2π− � � .

3 x xf ( ) e=   

4 x x x xf ( ) (2 )( 1)(2 1)= − + −   

5 x x
x xf ( ) 3

1, 1= +
+ ≠ −

When 1 < f(x) 
then x xf ( ) f ( )< , 
so the curve is 
‘pulled’ towards 
the x-axis.

When f ( )y x=  is below 
the x-axis then there is 
no corresponding curve 
for f ( )2y x= .
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4
6 

x

y

6

−4 0

(−2, 9)

(6, −9)

2 8

The diagram shows the curve y = f(x). 

The curve has turning points at (−2, 9) and (6, −9). It crosses the x-axis at 
(−4, 0), (2, 0) and (8, 0) and the y-axis at (0, 6).

Sketch the following curves, showing the coordinates of any turning 
points and where the curve crosses the axes. Include the equations of any 
asymptotes on your diagrams.

(i)  y xf ( )=  (ii) y xf ( )=  (iii) y x
1

f ( )=  (iv) y2 = f(x)

7 x x
x x x xf ( ) ( 3)

( 2)( 1), 1 and 2= +
− + ≠ − ≠  

(i) (a) Sketch the curve y = f(x).

(b)  Solve the inequality x
x x

( 3)
( 2)( 1) 0+

− + < . 

(ii) (a) Sketch the curve y xf ( )= .

(b) Solve the inequality 
x

x x
( 3)

( 2)( 1)
0

+
− + < .

8 x ax
x a

f ( ) 4
2 2= + .

(i)  For the curve with equation y = f(x), find

(a)  the equation of the asymptote 

(b) the range of values that y can take. 

(ii)  For the curve with equation y2 = f(x), write down

(a) the equation of the line of symmetry  

(b)  the maximum and minimum values of y  

(c)  the set of values of x for which the curve is defined. 

9 x x
x x= −

+ ≠ −f ( ) 9 2
3 , 3

(i)  Sketch the curve with equation y = f(x).

(ii) State the values of x for which y x
1

f ( )=  is undefined. 

 Sketch the curve with equation y x
1

f ( )= .

 State the coordinates of any points where each curve crosses the 
axes, and give the equations of any asymptotes.

PS
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10 The curve C has equation y
x

x a
p( )= + , x ≠ −a where p(x) is a polynomial 

of degree 2 and a is an integer.

 The asymptotes of the curve are x = 1 and y = 2x + 5, and the curve 
passes through the point (2, 12).

(i)  Express the equation of the curve C in the form y
x

x a
p( )= + .

(ii)  Find the range of values that y can take.

(iii)  Sketch the curve with equation y
x

x a
p( )2 = +  where p(x) and a are as 

found in part (i).

PS

KEY POINTS

1 A rational function is defined as a function that can be expressed in 

the form y
x
x

f ( )
g( )= , where f(x) and g(x) are polynomials, and g(x) ≠ 0.

2  To sketch the graph of y = f(x) follow these steps.

 Step 1  Find the intercepts (where the graph cuts the axes).

 Step 2   Examine the behaviour of the graph near the vertical 
asymptotes; these are the lines x = a if g(a) = 0 and f(a) ≠ 0.

 Step 3  Examine the behaviour as x → ±∞.

 Step 4 Find the coordinates of any stationary points.

 Step 5 Sketch the graph.

 Remember: 

● when the order of g(x) is less than the order of f(x) then y = 0 is a 
horizontal asymptote

● when the order of g(x) equals the order of f(x) then y = c, for a 
constant c, is a horizontal asymptote

● when the order of g(x) is greater than the order of f(x) then there 
is an oblique asymptote. (Use long division to find it.)

3  You can use the discriminant to find the range of a rational function.

4  The graph of y = f(x) can be used to help you solve inequalities and 
equations.

5 To sketch the graph of y xf ( )=  given the graph of y = f(x) reflect the 
part of the curve where y  0 in the x-axis.

6 To sketch the graph of y xf ( )=  given the graph of y = f(x) reflect the 
part of the curve where x  0 in the y-axis.
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4 7 To sketch the graph of y x
1

f ( )=  given the graph of y = f(x) remember:

● the curves y = f(x) and y x
1

f ( )=  intersect at y = 1 and y = −1

● f(x) and x
1

f ( ) have the same sign 

● any roots of y = f(x) become asymptotes of y x
1

f ( )=
● as xf ( ) → ±∞  then x

1
f ( ) 0→  

● there are no x intercepts (roots) for y x
1

f ( )= ; any apparent ‘roots’ 

(from vertical asymptotes of y = f(x)) are discontinuities and should 
be shown by a small open circle

● when f(x) is increasing then x
1

f ( ) is decreasing 

● when f(x) is decreasing then x
1

f ( ) is increasing 

● where f(x) has a maximum then x
1

f ( ) is a minimum 

● where f(x) has a minimum then x
1

f ( ) has a maximum. 

8 When using the graph of y = f(x) to sketch the graph of y2 = f(x) 
remember:

● y2 = f(x) can be thought of as two curves y xf ( )= ± ; sketch 

y xf ( )=  first and reflect the result in the x-axis to complete the 
sketch

● y2 = f(x) has a line of symmetry in the x-axis

● all y values above the x-axis are replaced by their positive square roots

● if y  1, then the points get ‘pulled down’ towards the x-axis  
( 4 2= )

● if 0  y  1, then the points get ‘pulled up’ from the x-axis  
( 1

4
1
2= )

● if y = 1 the point is invariant (stays the same) ( 1 1= )

● at a root (when y = 0) the point is invariant (stays the same) 
and the new curve passes vertically through this point

● any vertical asymptotes stay the same

● any horizontal asymptotes, x = k, above the x-axis become the 
horizontal asymptotes x k=

● any turning point, e.g. (2, 5), above the x-axis remain the same 
type (i.e. maxima remain as maxima) and the square root of the  
y coordinate is taken, e.g. (2, 5).
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LEARNING OUTCOMES

Now that you have finished this chapter, you should be able to
■ sketch the graph of a rational function, where the numerator and the 

denominator are polynomials of degree two or less, including finding

■ equations of vertical and horizontal asymptotes

■ the equation of an oblique asymptote (should it exist)

■ intersections with the x- and y-axes

■ turning points

■ the set of values taken by the function (range)

■ use differentiation or the discriminant to determine the range of a 
function

■ use the graph of y xf ( )= to sketch the graph of

■ y xf ( )=
■ y xf ( )=

■ y x
1

f ( )=

■ y xf( )2 =
■ use sketch graphs to help you solve inequalities and equations.
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5  Polar coordinates

Let no-one 
ignorant of 
geometry 
enter my door.
Inscription over 
the entrance to 
the Academy of 
Plato,
c.430–349bc

5.1 Polar coordinates
This nautilus shell forms a shape called an equiangular spiral. 

› How could you describe this mathematically?
?

You will be familiar with using Cartesian coordinates (x, y) to show the 
position of a point in a plane. 

Figure 5.1, on the next page, shows an alternative way to describe the 
position of a point P by giving:

» its distance from a fixed point O, known as the pole;

» the angle θ between OP and a line called the initial line.
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The numbers (r, θ) are called the polar coordinates of P. 

The length r is the distance of the point P from the origin.

The angle θ is usually measured in radians, in an anticlockwise direction from 
the initial line, which is drawn horizontally to the right. 

 Is it possible to provide more than one set of polar coordinates (r, θ) 
to define a given point P? 

 If so, in how many ways can a point be defined?

?

At the point O, r = 0 and θ is undefined. 
Each pair of polar coordinates (r, θ)  
gives a unique point in the plane.

You may have noticed that adding or 
subtracting any integer multiple of  
2π to the angle θ does not change the 
point P.

For example, the point in Figure 5.2  
could be expressed as 

( ) ( ) ( ) ( )−π π π π3, 3 ,  3, 7
3 ,  3, 13

3 ,  3, 5
3   

and so on.

This means that each point 
P can be written in an 
infinite number of ways.

ACTIVITY 5.1

Check by drawing a diagram that the polar coordinates ( ) ( ) ( )−π π π5, 6 ,  5, 13
6   5, 11

6 

and ( ) ( ) ( )−π π π5, 6 ,  5, 13
6   5, 11

6  all describe the same point. 

Give the polar coordinates for the point ( )π6, 3
4  in three other ways.

Initial line

P

r

O
θ

▲ Figure 5.1

▲ Figure 5.2

1−1−2−3−4 2 3 4

−1

0

−2

−3

−4

1

2

3

4

x

y
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If you need to specify the polar coordinates of a point uniquely, you use 
the principal polar coordinates, where r > 0 and −π < θ  π. This is 
similar to the convention used when writing a complex number in modulus 
argument form.

Converting between polar and Cartesian coordinates
It is easy to convert between polar coordinates (r, θ ) and Cartesian 
coordinates (x, y). 

From Figure 5.3 you can see:

� � �x r y r r x y
y
xcos          sin                   tan2 2= = = + =

You need to be careful to choose the right quadrant when finding θ, as the 
equation =�

y
xtan  always gives two values of θ that differ by π. Always draw 

a sketch to make sure you know which angle is correct.

y

xO

r
y

x
θ

▲ Figure 5.3

Example 5.1 (i) Find the Cartesian coordinates of the following points:

 (a) ( )π4, 2
3

 (b) ( )− π12, 6

(ii) Find the polar coordinates of the following points:

 (a) 3, 1)(−  (b) (4, −4)

Solution

First draw a diagram to represent the coordinates of the point:

(i) (a) 

4

x

y

2�
3–�3

P

O

▲ Figure 5.4

 =π4cos 3 2  so x = −2

 =π4 sin 3 2 3  so y 2 3=

 ( )π4, 2
3

 has Cartesian coordinates 2, 2 3 )(− .
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 (b) 

12

x

y

–�6
P

0

▲ Figure 5.5

  =π12 cos 6 6 3 so x 6 3=

  
=π12 sin 6 6       so y 6= −

  ( )−π12, 6  has Cartesian coordinates 6 3, 6( )− .

(ii) (a)  

x

y

1

0
α

θ

–   3√

▲ Figure 5.6

  r 3 1 2
2 2( )= + =

  =αtan 1
3

  so =α π
6  and = π

�
5
6

  3, 1)(−  has polar coordinates ( )π2, 5
6 .

 (b) 

x

y

α

–4

40

▲ Figure 5.7

  r 4 4 4 22 2= + =

  =αtan 4
4   so =α π

4  so = −θ π
4 .

  (4, –4) has polar coordinates (( ))−−π4 2, 4 .

Since θ is negative, 
P is below the 
x-axis.
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Converting equations between polar and Cartesian 
forms
You will be familiar with using Cartesian equations such as y = 2x2 + 5 to 
represent the relationship between the coordinates (x, y) of points on a curve. 
Curves can also be represented using the relationship between polar coordinates 
(r, θ) of points on the curve. The polar equation r = f (θ) is sometimes simpler 
than the Cartesian equation, especially if the curve has rotational symmetry. Polar 
equations have many important applications, for example in the study of orbits.

Coordinates of points can be converted from polar to Cartesian form and 
vice versa. Similarly the Cartesian equation of a curve can be converted from 
one form to the other.

Use x = r cosθ and y = r sinθ, to convert from Cartesian form, and use 

= +2 2r x y  and =θtan
y
x  to convert from polar form.

Equations that appear quite simple in one form may be quite complicated in 
the other.

Example 5.2 Find the polar equations of the following curves.

20 0

2

−2−2−4

−4

−6 −2−4−6−8

−6

−2

−4

−6

4

4

(i) (ii)

6 2 4 6 8x

y

x

y
6

2

4

6

▲ Figure 5.8 (i) x2 − y2 = 9    (ii) y = x + 4

Solution 

(i) Substitute for x and y.

 

cos sin 9

cos sin 9

2 2

2 2 2

r r

r ( )
( ) ( )− =

− =

θ θ

θ θ

 The bracket is the double angle formula for cos2θ

 

cos 2 9

9 sec2

2

2

r

r

=

=

θ

θ
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(ii) Substitute for y and x

 sin cos 4r r= +θ θ

 sin cos 4r ( )− =θ θ

 Rewriting 

 ( )( )− =θ π2 sin 4 4r

 ( )= −θ π2 2cosec 4r

sin θ − cos θ  = R sin (θ − α)  
= R(sin θ cos α − cos α sin α)

So 1 = R cos α and 1 = R sin α 

Squaring and adding ⇒ R2 = 2 so R 2= . 

Dividing ⇒ tan α = 1 so =α π
4 . 

So sin θ − cos θ = 2 sin(θ − α). 

Find the Cartesian equations of the curves.

(i) r = 5 (ii) r2 = 4 sinθ

50 0

2

50 0

2

▲ Figure 5.9

Example 5.3

Solution

(i) Substitute for r.

 + = 52 2x y

 + = 252 2x y

(ii) Multiply both sides by r.
 = θ4 sin3r r

 
( )
( )

+ =

+ =

4

16

2 2
3

2 2 3 2

x y y

x y y

1 Find the Cartesian coordinates of the following points:

(i) ( )− π8, 2  (ii) ( )− π8, 3
4  (iii) ( )π8, 3  (iv) ( )π8, 5

6

2 Find the principal polar coordinates of the following points, giving 
answers as exact values or to three significant figures as appropriate: 

(i) (5, 12)−  (ii) ( 5, 0)−  (iii) 3, 1)(− −  (iv) (3, 4)

Exercise 5A
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3 Plot the points with polar coordinates A ( )π5, 5

6 , B ( )− π3, 3
4 , C ( )− π5, 6   

and D ( )π3, 4 .

 Write down the name of the quadrilateral ABCD. Explain your answer.

4 Plot the points with polar coordinates A ( )π3, 5 , B ( )π2, 7
10 , C ( )− π3, 4

5   

and D ( )− π4, 3
10 .

 Write down the name of the quadrilateral ABCD. Explain your answer.

5 
205

12
9

14
11

8
16

7
19 3 17

2
15

10

13
4

18
1

6

 The diagram shows a dartboard made up of six concentric circles. The 
radii of the six circles are 6, 16, 99, 107, 162 and 170 mm respectively.

  The smallest circle at the centre is called the inner bull and the next 
circle is called the outer bull. If a dart lands in either of these two regions 
it scores 50 or 25 points respectively. 

 The areas that get a double score or treble score are labelled. If a dart 
lands in one of these two rings it doubles or trebles the sector number.

 The initial line passes through the middle of the sector labelled 6 and  
angles θ are measured in degrees from this line.

(i) Find the score in the region for which < <r16mm 99mm and 
27 45° < < °θ .

(ii) Give conditions for r and θ that define the boundary between 
sectors 10 and 15.

(iii) Give conditions for r and θ for which the score is:

(a) treble 14     (b) 17    (c) double 18.

6 One vertex of an equilateral triangle has polar coordinates A( )π4, 4 . 

 Find the polar coordinates of all the other possible vertices B and C of 
the triangle, when:

(i) the origin O is at the centre of the triangle

(ii) B is the origin

(iii) O is the midpoint of one of the sides of the triangle.

Double score

Treble score

M

PS
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 7 The diagram shows a regular pentagon OABCD in which A has 
Cartesian coordinates (5, 2).

 
5O

5

C

D

B

A

x

y

(i) Show that OB = 8.71, correct to 2 decimal places.

(ii) Find the polar coordinates of the vertices A, B, C and D, giving 
angles in radians.

(iii) Hence find the Cartesian coordinates of the vertices B, C and D.

 In parts (ii) and (iii) give your answers correct to 2 decimal places.

 8 Convert these Cartesian equations into polar form.

(i) y = 2

(iv) xy = 9
(ii) = 3y x  

(v) y2 = x

(iii) x2 + y2 = 3

(vi) (x − y)2 = 5

 9 Convert these polar equations into Cartesian form.

(i) r cosθ = 5

(iv) r = 4cosθ

(ii) r = 5

(v) r 2 = sin 2θ

(iii) r = 4cosecθ

(vi) r = 2 − 2cosθ

10 Prove that r = a secθ and r = b cosecθ, where a and b are non-zero 
constants, are the polar equations of two straight lines. Find their 
Cartesian equations.

Note
For AS & A Level Further Mathematics you need to be familiar with using 
radians to represent an angle. You also need to know the definitions of the 
reciprocal trigonometric functions: 

sec 1
cos

cosec 1
sin

≡

≡

θ
θ

θ
θ

and the double angle formulae: 

≡θ θ θsin2 2sin cos 
cos2θ ≡ cos2θ − sin2θ

PS

9781510421783.indb   123 02/02/18   4:04 PM

http://www.hoddereducation.com/cambridgeextras


5 
P

O
LA

R
 C

O
O

R
D

IN
AT

ES

124

5

Example 5.4 Sketch the graphs of the following.

(i) r = 3 (ii) =θ π
4

Solution

(i)  The distance from the origin is constant so this is a circle centre the 
origin and radius 3. (Notice this is x2 + y2 = 9.)

 

210 3

It is good practice to
label the point where the
curve crosses the initial
line (the positive x-axis).

▲ Figure 5.10

(ii)  θ is constant so the graph is a half-line 
from the pole at an angle of π

4  to the 
initial line. (It is not the same as the line 
y = x, which extends in both directions 
from the pole.)

 

ACTIVITY 5.2

Sketch the curves with polar equations:

r = 7
=θ π

3

210 3

�
4

▲ Figure 5.11

5.2  Sketching curves with polar 
equations

The polar equation of a curve is usually written in the form r = f (θ). The 
curve can be plotted or sketched without converting to Cartesian form.
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Example 5.5 A curve is defined by the polar equation r = 5cos2θ. 

(i) Create a table of values for 0 � �θ π .

(ii) Plot the curve for 0 2� �θ π.

(iii) State the minimum and maximum values of r and the values of θ for 
which they occur.

Solution

(i)  Create a table of values for 0 2� �θ π. This table has values of θ that 

increase in intervals of π
12 , which gives a convenient number of points. 

 

θ 0 π
12

π
6

π
4

π
3

π5
12

π
2

r 5 4.67 3.75 2.5 1.25 0.34 0

  For values of θ from π
2
 to π, the values for r are repeated as the value of 

cosθ is squared.

θ 0 π
12

π
6

π
4

π
3

π5
12

π
2

π7
12

π2
3

π3
4

π5
6

π11
12

π

r 5 4.67 3.75 2.5 1.25 0.34 0 0.34 1.25 2.5 3.75 4.67 5

(ii)  Plotting these points gives this graph. Use the symmetry of the cosine 
function to reduce the number of calculations needed. The values of 
r for negative values of θ are the same as those for the corresponding 
positive values. The initial line is a line of symmetry. 

 

5

Label the point
where the curve
crosses the initial
line.

0

▲ Figure 5.12

(iii)  The maximum value for r = 5cos2θ is 5 and occurs when cos θ = ±1; 
i.e. when θ = 0 or π. 

  The minimum value of r = 5cos2 θ is 0 and occurs when cos θ = 0; 

i.e. when =θ π π
2 or 3

2 .
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Example 5.6 Find the minimum and maximum values of r for the curve θ= +3 2cos4r  

and the values of θ  for which they occur.

Hence sketch the graph.

Solution

Minimum value is − =3 2 1 and occurs when cos4 1= −θ , giving 

= ± ±θ π π
4 , 3

4 .

Maximum value is + =3 2 5  and occurs when cos4 1=θ , giving 0, 2 .= ±θ π

The function is periodic with period 
2
π  so the graph is repeated in each 

quadrant and the graph has rotational symmetry order 4.

5 642

Remember to label the 
point where the curve 
crosses the initial line.

0

Step 1: As θ increases from 0 to    ,

r decreases from 5 to 1.

�
4

Step 2: As θ increases from 
r increases from 1 to 5.

�
4

�
2

to    ,

▲ Figure 5.13

A curve is given by the equation r ( )= π −θ θ . 

(i) Plot the curve for � �0 πθ , where r is positive.

(ii) Create a table of values for the parts of the graph � � 3
2π πθ  and 

� �2 0− π θ .

(iii) Sketch the curve for � �2
3
2− π πθ .

Example 5.7

9781510421783.indb   126 02/02/18   4:04 PM



5.2 Sketching curves w
ith polar equations

127

5

Answers to exercises are available at www.hoddereducation.com/cambridgeextras

Solution

(i) � �0 πθ

θ 0 π
6  

π
3  

π
2  

π2
3

π5
6

π

r 0 π5
36

2 π2
9

2 π
4

2 π2
9

2 π5
36

2
0

210 3

▲ Figure 5.14

(ii) � � 3
2π πθ

θ π π7
6  

π4
3  

π3
2  

r 0 − π7
36

2
− π4

9
2

− π3
4

2

 
� �2 0− π θ

θ − π
2 − π

3 − π
6 0

r − π3
4

2

− π4
9

2

− π7
36

2

0

(iii) There are three conventions for dealing with negative values for r. 
➜
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Convention 1: The curve is only taken to exist for positive values of r, 
using the convention that � 0r  and no curve would be drawn outside 
the range � �0 πθ .

210 3

▲ Figure 5.16

 Convention 2: The point 7
36 , 7

6

2

− π π





  is plotted at 7

36 , 6

2π π







 The curve then appears above the initial line, as shown.

6 8420

▲ Figure 5.15

Think of this as r 
being measured 
in the opposite 
direction from 
the origin.
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Convention 3: The curve is drawn with the negative values shown using 
a broken line.

6 8420

▲ Figure 5.17

Summary: Sometimes an equation gives negative values of r, for example  
r = πθ – θ 2.

There are three conventions for dealing with this. 

1 The curve is only taken to exist for positive values of r.

2 Think about the distance as being measured in the opposite direction. 

3 The curve is drawn with the negative values using a broken line.

In this course, Convention 1 is used.

ACTIVITY 5.3

If you have graphing software, find out how to use it to draw a curve from 
its polar equation by drawing the curve used in Example 5.7, r ( )= π −θ θ . 
Which convention does your software use?
Extension question:
Investigate the curve for other values of θ .
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ACTIVITY 5.4

This is the curve r = 2 cos3θ.

(i)  How do the constants 2 and 3 in 
the equation relate to the shape 
of the curve?

(ii)  Copy the sketch of the curve. 
Use arrows to show how a point 
would move around the curve as 
the value of θ varies from 0 to π.

(iii) If you have graphing software, 
use it to investigate the curve 
r = k sin nθ where k and n are positive and n is an integer. Using 
the convention for this course, only include the parts of the graph 
for which r is positive.

2

▲ Figure 5.18

1 Sketch the curve given by the equations:

(i) r 5=                             (ii) 3π
4= −θ

(iii) r 3cos= θ                           (iv) r 2 sin= θ

(v) r 3= θ  for the interval � �0 2πθ

2 Make a table of values of r 8 sinθ=  for θ from 0 to π in intervals of 
π
12 , 

giving answers to two decimal places where appropriate.

 Explain what happens when � �π 2πθ .

 By plotting the points, confirm that the curve r 8 sin= θ  represents a 
circle that is symmetrical about the y-axis.

 Write down the Cartesian equation of the circle.

3 Sketch the curves with equations 3cos 2r = θ  and θ= 3cos3r  for the values 
of θ from 0 to 2π. Only include the parts of the graph for which �r 0.

 State the number of petals on each curve. Generalise this result.

 Extension question: Investigate how the result for the number of petals is 
different when negative values of r are also used.

4 The curve r 4
π= θ  for � �0 4πθ  is called the spiral of Archimedes.

 Draw the curve.

5 A curve with polar equation r a(1 cos= + θ ) is called a cardioid. 

(i) Draw the curve when a 8= . How do you think the curve got its 
name?

(ii) Sketch the curve with polar equation r a(1 cos= − θ ) when a 8= .

 How does the shape of your graph compare to that in part (i)?

Technology 
note

If you have graphing 
software, you may 
wish to use it to 
check your graphs 
in this exercise. 
Remember that the 
scales used on the 
axes can affect how 
the shape of the 
graph appears.

The type of curve shown in Activity 5.4 is called a rhodonea (rose curve).

Exercise 5B
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6 (i) If available, use graphing software to draw the curves r k 3cos= + θ  
for k 2, 3, 4, 5, 6= , 7. For each graph note the minimum and 
maximum values of r.

(ii) Investigate the shape of the curve r a b cos= + θ  for other values 
of a and b and use this to define the shape of the curve when:

 (a) a  2b (b) 2b > a > b (c) a = b

(iii) In the case <a b, find the range of values of θ for which �r 0.

(iv) Investigate how the shape of the curve differs for polar curves of 
the form r a b sinθ= + .

7 A lemniscate has the equation r a cos 22 2= θ  or r a sin 22 2= θ .

 Taking r 0> , sketch these curves for � �0 2πθ  explaining clearly 

what happens in each interval of π4  radians.

8 The straight line L passes through the point A with polar coordinates 
p,( )α  and is perpendicular to OA.

(i) Prove that the polar equation of L is r pcos ( )− =θ α .

(ii) Use the identity cos cos cos sin sin( )− ≡ +θ α θ α θ α  to find the 
Cartesian equation of L.

9 The curves C1 and C2 have polar equations

  =: 1
21C r ,    for � �0 2θ π, 

  : sin 1
22C r ( )= θ ,    for � �0 θ π .

 Find the polar coordinates of the point of intersection of C1 and C2.  
 Sketch C1 and C2 on the same diagram.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q5 (part question) May/June 2015

5.3  Finding the area enclosed by a 
polar curve

Look at the region in Figure 5.19 bounded 
by the lines OU and OV and the curve 
UV. To find the area of this region, start by 
dividing it up into smaller regions OPQ. 
Let OU and OV have angles θ α=  and 
θ β=  respectively. If the curve has equation 

r f θ( )= , P and Q have coordinates r,θ( ) and 
r r,( )+ +δ θ δθ . 

CP

CP

Note
You need to be 
able to integrate 
polynomial 
functions and 
trigonometric 
functions of the 
form a bxsin  and 
a bxcos . θ

U

O

P

Q

V

P′
Q′

r

δθ

δr

θ = 0
αα ββ

▲ Figure 5.19
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Let the area of OUV be A and the area of OPQ be Aδ . 

The area Aδ  lies between the circular sectors OPP′ and OQQ′, so:

 
r A r r1

2
1
2

2 2( )< < +δθ δ δ δθ

therefore

 
r A r r1

2
1
2

2 2( )< < +δ
δθ

δ

As 0→δθ , r 0→δ  and so r r r1
2

1
2

2 2( )+ →δ . Therefore Aδ
δθ

 must also tend 

to r1
2

2  as 0→δθ .

But as 0→δθ , A Ad
d

→δ
δθ θ

Therefore A rd
d

1
2

2=
θ

. 

Integrating both sides with respect to θ shows the result for the area of a 
region bounded by a polar curve and two straight lines =θ α  and =θ β  is:

A r d1
2

2∫= θ
α

β

Remember that the area 
of a sector of a circle is 
given by 1

2
r 2θ , where θ  

is in radians.

Example 5.8 The diagram below shows the graph of 1 2cosr = + θ . Find the area enclosed.

1 2 30

−2π
3θ = 

2π
3θ = 

▲ Figure 5.20

Solution

The area is formed with values of θ from 2
3− π  to 2

3
π  (the values of θ for 

which r = 0).

The shape is symmetrical, so the area is given by 2 1
2 1 2cos 2

0

2
3 d∫ ( )+







θ θ

π
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1 4cos 4 cos2

0

2
3 d∫ ( )+ + =θ θ θ
π

1 4cos 2 cos 2 1
0

2
3 d∫ ( )( )+ + + =θ θ θ
π

3 4cos 2cos 2
0

2
3 d∫ ( )+ + =θ θ θ
π

3 4 sin sin 2 0

2
3[ ]+ + =θ θ θ
π

( )× + + − =π π π3 4 sin sin 02
3

2
3

4
3

π + −



 − = π +2 2 3 3

2 0 2 3 3
2

Exercise 5C 1 Check that the integral r d1
2

2∫ θ  correctly gives the area of the circle 

r 10cosθ=  when it is evaluated from 
2− π  to 

2
π .

2 A curve has equation r 5cos4= θ .
(i) Sketch the curve for the interval � �0 2θ π.

(ii) Find the area of one loop of the curve.

3 A curve has equation r 3 3sin= + θ .
(i) Sketch the curve for the interval 0 to 2π .

(ii) Find the area enclosed by the curve.

4 Find the area bounded by the spiral r 4= θ
π

 from 0=θ  to 2=θ π  and 
the initial line.

5 Find the exact areas of the two portions into which the line 2=θ π  
divides the upper half of the cardioid r 8(1 cos= + θ ).

6 Sketch the lemniscate r a cos 22 2= θ  and find the area of one of its loops.

7 The diagram shows the equiangular spiral r aek= θ  where a and k are 
positive constants and e is the exponential constant 2.71828…

 

θ = 0

θ =

A B
C

–�4

 Prove that the areas A, B and C formed by the lines 0=θ  and 4=θ π  

and the spiral form a geometric sequence and find its common ratio.

CP

CP
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8 Find the area enclosed between the curves r 3 3cos= − θ  and 

r 4cos= θ . Give your final answer to three significant figures.

9 The curve C has polar equation 1 sinr a ( )= + θ , where a is a positive 
constant and �0 2<θ π . Draw a sketch of C.

 Find the exact value of the area of the region enclosed by C and the 

half-lines 1
3= πθ  and 2

3=θ π . 
Cambridge International AS & A Level Further Mathematics  

9231 Paper 11 Q5 May/June 2014

10 The curve C has polar equation 2 2cosr = + θ , �0 <θ π . Sketch the 
graph of C.

 Find the area of the region R enclosed by C and the initial line. 

 The half-line 1
5= πθ  divides R into two parts. Find the area of each 

part, correct to 3 decimal places.
Cambridge International AS & A Level Further Mathematics  

9231 Paper 11 Q4 May/June 2012

LEARNING OUTCOMES

Now that you have finished this chapter, you should be able to
■ understand the relations between Cartesian and polar coordinates and 

be able to

■ convert from Cartesian to polar coordinates

■ convert from polar to Cartesian coordinates

■ sketch simple polar curves showing significant features

■ the value where the curve intersects the initial line

■ symmetry

■ the form of the curve at the pole

■ the greatest and least values of r

■ find the area enclosed by a polar curve using the formula d1
2 .2A r∫= θ

KEY POINTS

1 To convert from polar coordinates to Cartesian coordinates  
 x r y rcos sin, .= =θ θ

2 To convert from Cartesian coordinates to polar coordinates 

r x y2 2= + , 
y
xarctan=θ  ( π±  if necessary).

3 The principal polar coordinates r,( )θ  are those for which r 0>  and 
�π π− < θ .

4 The area of a sector is r d1
2

2∫ θ
α

β
.
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6  M
atrices and their inverses

6  Matrices and their inverses

The grand 
thing is to be 
able to reason 
backwards.
Arthur Conan 
Doyle  
(1859–1930)

The diagram in Figure 6.1 is called a Sierpinsky triangle. The pattern can be 
continued with smaller and smaller triangles.

▲ Figure 6.1 Sierpinsky triangle.

 What is the same about each of the triangles in the diagram? 

 How many of the yellow triangles are needed to cover the large purple 
triangle?

?
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6
6.1 The determinant of a 2 × 2 matrix
Figure 6.2 shows the unit square, labelled OIPJ, and the parallelogram 

OIPJ formed when OIPJ is transformed using the matrix 






5 4
1 2 .

1

1

2

3

2 3 4 5 6 7 8 9

y

xO

J′

P′

I′
J P

I

6.5 units2

4 units2

2.5 units2

8 units2

▲ Figure 6.2

What effect does the transformation have on the area of OIPJ?

The area of OIPJ is 1 unit2.

To find the area of OIPJ, a rectangle has been drawn surrounding it. The 
area of the rectangle is 9 × 3 = 27 units2. The part of the rectangle that is not 
inside OIPJ has been divided up into two triangles and two trapezia and their 
areas are shown on the diagram.

So, area OIPJ = 27 − 2.5 − 8 − 6.5 − 4 = 6 units2.

The interesting question is whether you could predict this answer from the 

numbers in the matrix 






5 4
1 2

.

You can see that 5 × 2 − 4 × 1 = 6. Is this just a coincidence? 

To answer that question you need to transform the unit square by the general 

2 × 2 matrix 






a b
c d  and see whether the area of the transformed figure is 

(ad − bc) units2. The answer is, ‘Yes’, and the proof is left for you to do in the 
activity below. 

ACTIVITY 6.1

The unit square is transformed by the matrix 






a b
c d .

Prove that the resulting shape is a parallelogram with area (ad − bc) units2.

It is now evident that the quantity (ad − bc) is the area scale factor associated with 

the transformation matrix 






a b
c d . It is called the determinant of the matrix.

You are advised 
to use the same 
method as the 
example above but 
replace the numbers 
by the appropriate 
letters.

Note
You need to have 
covered the work 
on matrices and 
transformations 
from Chapter 1.
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(i)  Draw a diagram to show the image of the unit square OIPJ under the 

transformation represented by the matrix M = 






2 3
4 1

.

(ii) Find det M.

(iii) Use your answer to part (ii) to find the area of the transformed shape.

Solution

(i) 












=






2 3
4 1

0 1 1 0
0 0 1 1

0 2 5 3
0 4 5 1

 

O x

y

1 2 3 4 5 6 7 8

1

2

4

5

3

P

I

I ′

J

P ′

J ′

▲ Figure 6.4

Solution

−





= × − − × = + =det
1 2
3 0

(1 0) ( 2 3) 0 6 6

Area of  T = ×

=

8 6

48cm2

The area scale 
factor of the 
transformation 
is 6 ...

… and so the area of the original 
shape is multiplied by 6.

A shape S has area 8 cm2. S is mapped to a shape T under the transformation 

represented by the matrix M = −





1 2
3 0

. 

Find the area of shape T.

x

y

T

S

▲ Figure 6.3

Note
In Example 6.1, it does not matter what 
shape S looks like; for any shape S with 
area 8 cm², the area of the image T will 
always be 48 cm².

Example 6.1

Example 6.2

➜
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6

Given that =






P
2 1
0 1

 and =






Q
2 1
1 2

, find

(i) det P

(ii) det Q

(iii) det PQ.

What do you notice? 

Solution

(i) det P = − =2 0 2  

(ii) det Q = − =4 1 3  

(iii) PQ 2 1
0 1

2 1
1 2

5 4
1 2

=


















 =









  det PQ = − =10 4 6  

The determinant of PQ is given by det P × det Q.

(ii) 






= × − × = − = −det
2 3
4 1

(2 1) (3 4) 2 12 10

(iii) The area of the transformed shape is 10 square units. 

Notice that the determinant is negative. Since area 
cannot be negative, the area of the transformed shape 
is 10 square units.

The sign of the determinant does have significance. If you move 
anticlockwise around the original unit square you come to vertices O, I, P, J 
in that order. However, moving anticlockwise about the image reverses 
the order of the vertices, i.e. O, J, P, I. This reversal in the order of the 
vertices produces the negative determinant.

› Which of the following transformations reverse the order of the 
vertices?

(i) rotation

(ii) reflection

(iii) enlargement

 Check your answers by finding the determinants of matrices 
representing these transformations.

?

Example 6.3
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Remember that a transformation MN means ‘apply N, then apply M’.

Example 6.3 (iii) illustrates the general result that MN M Ndet det det= × .

This result makes sense in terms of transformations. In Example 6.3, applying 
Q involves an area scale factor of 3, and applying P involves an area scale 
factor of 2. So applying Q followed by P, represented by the matrix PQ, 
involves an area scale factor of 6.

Matrices with determinant zero
Figure 6.5 shows the image of the unit square OIPJ under the transformation 

represented by the matrix =






T
6 4
3 2

.

O x

y

2−2 4 6 8 10

2

4

6

I

I′

J P

P′

J′

Notice that the image points
all lie on the line y =   x.1

2

▲ Figure 6.5

The determinant of  T = × − × = − =(6 2) (4 3) 12 12 0.

This means that the area scale factor of the transformation is zero, so any 
shape is transformed into a shape with area zero. 

In this case, the image of a point (p, q) is given by 

p

q

p q

p q

p q

p q
6 4
3 2

6 4

3 2

2(3 2 )

3 2



















 =

+
+









 =

+
+









 .

You can see that for all the possible image points, the y coordinate is half the 
x coordinate, showing that all the image points lie on the line y x.1

2=

In this transformation, more than one point maps to the same image point. 

For example,  (4, 0) → (24, 12)

   (0, 6) → (24, 12)

   (1, 4.5) → (24, 12). 
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1 For each of the following matrices:

(a)  draw a diagram to show the image of the unit square under 
the transformation represented by the matrix

(b) find the area of the image in part (a)
(c) find the determinant of the matrix.

(i) −





3 2
4 1

(iii) −
−







4 8
1 2

(ii) 
−







4 0
1 4

(iv) 
−

−






5 7
3 2

 

2 The matrix − −
−







x
x

3 3
2 5

 has determinant 9.

 Find the possible values of x.

3 (i) Write down the matrices A, B, C and D which represent:

A – a reflection in the x-axis

B – a reflection in the y-axis

C – a reflection in the line =y x 

D – a reflection in the line = −y x

(ii) Show that each of the matrices A, B, C and D has determinant 
of –1.

(iii) Draw diagrams for each of the transformations A, B, C and D to 
demonstrate that the images of the vertices labelled anticlockwise 
on the unit square OIPJ are reversed to a clockwise labelling.

4 A triangle has area 6 cm2. The triangle is transformed by means of the 

matrix 
−







2 3
3 1

.

 Find the area of the image of the triangle.

5 The two-way stretch with matrix 






a
d
0

0
 preserves the area (i.e. the 

area of the image is equal to the area of the original shape).

 What is the relationship connecting a and d?

6 The diagram below shows the unit square transformed by a shear.

−1

O x

y

1 2 3 4

1
P

I
I′

J J′ P′

Exercise 6A

(i) Write down the matrix that 
represents this transformation.

(ii) Show that under this 
transformation the area of the 
image is always equal to the area 
of the object.
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 7 M = 






5 3
4 2

 and N = −






3 2
2 1

.

(i) Find the determinants of M and N.

(ii) Find the matrix MN and show that det MN = det M × det N.

 8 The plane is transformed by the matrix M = 
−
−







4 6
2 3

.

(i) Draw a diagram to show the image of  
the unit square under the transformation represented by M.

(ii) Describe the effect of the transformation and explain this with 
reference to the determinant of M.

 9 The plane is transformed by the matrix N = 
−

−






5 10
1 2

.

(i) Find the image of the point (p, q).

(ii) Hence show that the whole plane is mapped to a straight line and 
find the equation of this line.

(iii) Find the determinant of N and explain its significance.

10 A matrix T maps all points on the line + =x y2 1  to the point (1, 3).

(i) Find the matrix T and show that it has determinant of zero.

(ii) Show that T maps all points on the plane to the line =y x3 .

(iii) Find the coordinates of the point to which all points on the line 
+ =x y2 3  are mapped.

11 The plane is transformed using the matrix 






a b
c d

 where − =ad bc 0.

 Prove that the general point P(x, y) maps to P on the line − =cx ay 0.

12 The point P is mapped to P on the line =y x3  so that PP is parallel to 
the line =y x3 .

(i) Find the equation of the line parallel to =y x3  passing through 
the point P with coordinates (s, t).

(ii) Find the coordinates of P, the point where this line meets =y x3 .

(iii) Find the matrix of the transformation that maps P to P and show 
that the determinant of this matrix is zero.

CP

CP

PS

CP

6.2 The inverse of a matrix
The identity matrix

Whenever you multiply a 2 × 2 matrix M by 






1 0
0 1

 the product is M. 

It makes no difference whether you pre-multiply, for example,

1 0
0 1

4 2
6 3

4 2
6 3









 −







 = −
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or post-multiply

4 2
6 3

1 0
0 1

4 2
6 3

−

















 = −







 .

ACTIVITY 6.2

(i) Write down the matrix P that represents a reflection in the x-axis.

(ii) Find the matrix P².

(iii) Comment on your answer.

The matrix 






1 0
0 1

 is known as the 2 × 2 identity matrix. 

Identity matrices are often denoted by the letter I.

For multiplication of matrices, I behaves in the 
same way as the number 1 when dealing with 
the multiplication of real numbers.

The transformation represented by the identity 
matrix maps every points to itself.

Similarly, the 3 × 3 identity 

matrix is 
1 0 0
0 0 1
0 1 0















.

(i) Write down the matrix A that represents a rotation of 90° 
anticlockwise about the origin.

(ii) Write down the matrix B that represents a rotation of 90° 
clockwise about the origin.

(iii) Find the product AB and comment on your answer.

Solution

(i) = −





A
0 1
1 0

 

(ii) =
−







B
0 1
1 0

(iii) AB 0 1
1 0

0 1
1 0

1 0
0 1

= −







 −









 =











AB represents a rotation of 90° clockwise followed by a rotation of 
90° anticlockwise. The result of this is to return to the starting point.

Example 6.4
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To undo the effect of a rotation through 90° anticlockwise about the origin, 
you need to carry out a rotation through 90° clockwise about the origin. 
These two transformations are inverses of each other.

Similarly, the matrices that represent these transformations are inverses of 
each other.

In Example 6.4, =
−







B
0 1
1 0

 is the inverse of = −





A
0 1
1 0

, and vice 
versa.

Finding the inverse of a 2 × 2 matrix
If the product of two square matrices, M and N, is the identity matrix I, then 
N is the inverse of M. You can write this as N = M−1.

Generally, if M = 






a b
c d

 you need to find an inverse matrix 






p q

r s
 

such that a b
c d

p q

r s
1 0
0 1



















 =









 .

ACTIVITY 6.3

Multiply 






a b
c d

 by 
−

−






d b
c a

.

What do you notice?

Use your result to write down the inverse of the general matrix  

M = 






a b
c d

.

How does the determinant |M| relate to the matrix M−1?

You should have found in the activity that the inverse of the matrix 

M = 






a b
c d

 is given by 

M–1 = −
−

−




ad bc

d b
c a

1
.

If the determinant is zero then the inverse matrix does not exist and the matrix 
is said to be singular. If det M ≠ 0 the matrix is said to be non-singular.

If a matrix is singular, then it maps all points on the plane to a straight line. 
So an infinite number of points are mapped to the same point on the straight 
line. It is therefore not possible to find the inverse of the transformation, 
because an inverse matrix would map a point on that straight line to just one 
other point, not to an infinite number of them.

Finding the inverse 
of 3 × 3 matrices is 
covered in Section 6.3.

A special case is the zero matrix, which maps all points to the origin.
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As matrix multiplication is generally non-commutative, it is interesting to 
find out if MM–1 = M–1M. The next activity investigates this.

ACTIVITY 6.4

(i)  In Example 6.5 you found that the inverse of A = 






11 3
6 2

 is  

A–1 = 





1
4

2 –3
–6 11

. 

 Show that AA–1 = A–1A = I.

(ii)  If the matrix M = 






a b
c d

, write down M–1 and show that  

MM–1 = M–1M = I.

The result MM−1 = M−1M = I is important as it means that the inverse of a 
matrix, if it exists, is unique. This is true for all square matrices, not just 2 × 2 
matrices.

 How would you reverse the effect of a rotation followed by a reflection? 

 How would you write down the inverse of a matrix product MN in 
terms of M−1 and N−1?

?

A = 






11 3
6 2

 

(i) Find A–1.

(ii) The point P is mapped to the point Q (5, 2) under the transformation 
represented by A. Find the coordinates of P.

Solution

(i) det A = (11 × 2) – (3 × 6) = 4 

A–1 = 






1
4

2 –3
–6 11

 

(ii) 
5
2

1
4

2 3
6 11

5
2

1
4

4
8

1
2

1 





= −
−













=
−







=
−







−A  

The coordinates of P are (1, –2).

A maps P 
to Q, so A–1 
maps Q to P.

Example 6.5
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The inverse of a product of matrices
Suppose you want to find the inverse of the product MN, where M and N 
are non-singular matrices. This means that you need to find a matrix X such 
that

X(MN) = I.

X(MN) = I ⇒ XMNN−1 = IN−1 

⇒ XM = IN−1 

⇒ XMM−1 = N−1M−1 

⇒ X = N–1M−1 

So (MN)–1 = N–1M–1 for matrices M and N of the same order. This means 
that when working backwards, you must reverse the second transformation 
before reversing the first transformation.

Technology note
Investigate how to use a calculator to find the inverse of 2 × 2 and 3 × 3 
matrices. 
Check using a calculator that multiplying a matrix by its inverse gives the 
identity matrix.

Post multiply by N–1

Post multiply by M–1

Using MM–1 = I

Using NN–1 = I

1 For the matrix −
−







5 1
2 0

(i) find the image of the point (3, 5)

(ii) find the inverse matrix

(iii) find the point that maps to the image (3, −2).

2 Determine whether the following matrices are singular or non-singular.  
For those that are non-singular, find the inverse.

(i) 

−






6 3
4 2

(ii) 





6 3
4 2

(iii) 





11 3
3 11

(iv) 





11 11
3 3

(v) −





2 7
0 0

 

(vi) −
−







a a
b b
2 4

4 8

 (vii) −
−







a
b
2 4

4 8

Exercise 6B
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3 M = 







5 6
2 3

 and N = 
− −







8 5
2 1

.

 Calculate the following:
(i) M−1

(iv) NM

(vii) M−1N−1

(ii) N−1

(v) (MN)−1

(viii) N−1M−1

(iii) MN

(vi) (NM)−1

4 The diagram shows the unit square OIPJ 
mapped to the image OIPJ under a 
transformation represented by a matrix M.

(i) Find the inverse of M.

(ii) Use matrix multiplication to show 
that M−1 maps OIPJ back to OIPJ.

5 The matrix 
−
− −







k
k

1 2
1 4

 is singular.

 Find the possible values of k.

6 Given that M = 
−







2 3
1 4

 and MN = 7 2 9
2 1 12

10
17

−
− −









 , find the 

matrix N. 

7 Triangle T has vertices at (1, 0), (0, 1) and (−2, 0).

 It is transformed to triangle T by the matrix M = 






3 1
1 1

.

(i) Find the coordinates of the vertices of   T.
 Show the triangles T and T on a single diagram.
(ii) Find the ratio of the area of   T to the area of  T. 
 Comment on your answer in relation to the matrix M.
(iii) Find M–1 and verify that this matrix maps the vertices of  T to the 

vertices of  T.

8 M = 






a b
c d

  is a singular matrix.

(i) Show that M² = +a d M( ) .
(ii) Find a formula that expresses Mn  in terms of M, where n is a 

positive integer.
 Comment on your results.

9 Given that PQR = I, show algebraically that

(i) Q = P–1 R–1 (ii) Q–1 = RP.

 Given that P = 






3 1
1 2

 and R = −
−







12 3
2 1

(iii) use part (i) to find the matrix Q
(iv) calculate the matrix Q–1

(v)  verify that your answer to part (ii) is correct by calculating RP and 
comparing it with your answer to part (iv).

1

2

3

4

5

–1 O 1 2 3–2–3 x

y

I

J P
J′

P′

I′

PS

CP
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6.3  Finding the inverse of a 3 × 3 
matrix

In this section you will find the determinant and inverse of 3 × 3 matrices 
using the calculator facility and also using a non-calculator method. 

Finding the inverse of a 3 × 3 matrix using  
a calculator

ACTIVITY 6.5

Using a calculator, find the determinant and inverse of the matrix

A
3 2 1
0 1 2
4 0 1

.=
−











  

Still using a calculator, find out which of the following matrices are non-
singular and find the inverse in each of these cases.

B C D
5 5 5
2 2 2
2 4 3

         
1 3 2
1 0 1

2 1 4
         

0 3 2
1 1 2
3 0 3

=
−













 = −













 =

−
−















Finding the inverse of a 3 × 3 matrix without  
using a calculator
It is also possible to find the determinant and inverse of a 3 × 3 matrix 
without using a calculator. This is useful in cases where some of the elements 
of the matrix are algebraic rather than numerical.

If M is the 3 × 3 matrix 

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

















 then the determinant of M is 
defined by 

 

a
b c

b c
a

b c

b c
a

b c

b c
Mdet ,1

2 2

3 3
2

1 1

3 3
3

1 1

2 2

= − +

The determinant of a  
3 × 3 matrix is 
sometimes denoted  
| a b c |.
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which is sometimes referred to as the expansion of the determinant by 
the first column. 
For example, to find the determinant of the matrix  

A 
3 2 1
0 1 2
4 0 1

=
−













 from Activity 6.5:

 det A = 3 1 2
0 1

0 2 1
0 1

4 2 1
1 2

− − + −

 = 3(1 − 0) − 0(−2 − 0) + 4(−4 − 1)
 = 3 − 20 
 = −17

This is the same answer as you will have obtained earlier using your 
calculator. 

The 2 × 2 determinant 
b c

b c
2 2

3 3

 is called the minor of the 

element a1. It is obtained by deleting the row and column containing a1: 

 

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

Other minors are defined in the same way, for example the minor of a2 is 

 

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

 = 
b c

b c
1 1

3 3

You may have noticed that in the expansions of the determinant, the signs on 
the minors alternate as shown:

 

+ − +
− + −
+ − +

A minor, together with its correct sign, is known as a cofactor and is 
denoted by the corresponding capital letter; for example, the cofactor of a3 is 
A3. This means that the expansion by the first column, say, can be written as

 a1 A1 + a2 A2+ a3 A3.

Notice that you do not 
really need to calculate 

2 1
0 1

−
 as it is going

to be multiplied by zero. 
Keeping an eye open 
for helpful zeros can 
reduce the number of 
calculations needed. 
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Note
As an alternative to using the first column, you could use the expansion of 
the determinant by the second column:

 = − + −b
a c

a c
b

a c

a c
b

a c

a c
Mdet 1

2 2

3 3
2

1 1

3 3
3

1 1

2 2

,

or the expansion of the determinant by the third column:

 = − +c
a b

a b
c

a b

a b
c

a b

a b
Mdet 1

2 2

3 3
2

1 1

3 3
3

1 1

2 2

It is fairly easy to show that all three expressions above for det M simplify to:
 a b c a b c a b c a b c a b c a b c1 2 3 2 3 1 3 1 2 3 2 1 1 3 2 2 1 3+ + − − −

Example 6.6

Find the determinant of the matrix M
3 0 4
7 2 1
2 1 3

=
−
−

−














.

To find the determinant you can also expand by rows. So, for example, 
expanding by the top row would give:

3 2 1
1 3

0 7 1
2 3

4 7 2
2 1

( )− − −
−

+ −
−

which also gives the answer −23.

Solution
Expanding by the first column using the expression:

= − +a
b c

b c
a

b c

b c
a

b c

b c
Mdet 1

2 2

3 3
2

1 1

3 3
3

1 1

2 2

gives:

( )= − − − + − −
−

Mdet 3
2 1
1 3

7
0 4
1 3

2
0 4
2 1

3 6 –  1  – 7 0 – 4   2 0  8( ) ( ) ( )( ) ( ) ( )= − − − − −

21 28 16= − −
= −23

Notice that 
expanding 
by the top 
row would 
be quicker 
here as it 
has a zero 
element. 

Earlier you saw that the determinant of a 2 × 2 matrix represents the area 
scale factor of the transformation represented by the matrix. In the case 
of a 3 × 3 matrix the determinant represents the volume scale factor. For 

example, the matrix 
2 0 0
0 2 0
0 0 2














 has determinant 8; this matrix represents 
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6
an enlargement of scale factor 2, centre the origin, so the volume scale factor 
of the transformation is 2 × 2 × 2 = 8. 

For the matrix M = 
2 0 0
0 2 0
0 0 2

,














 the matrix 
A A A

B B B

C C C

1 2 3

1 2 3

1 2 3

















 is known as the 

adjugate or adjoint of M, denoted adj M. 

The adjugate of M is formed by 

» replacing each element of M by its cofactor;

»  then transposing the matrix (i.e. changing rows into columns and columns 
into rows). 

The unique inverse of a 3 × 3 matrix can be calculated as follows:

A A A

B B B

C C C

M
M

M
M

M1
det adj  1

det , det 01

1 2 3

1 2 3

1 2 3

= =

















≠−

The steps involved in the method are shown in the following example.

Example 6.7 Find the inverse of the matrix M without using a calculator, where

M
2 3 4
2 5 2
3 6 3

= −
− −














.

Solution

Step 1: Find the determinant ∆ and check ∆ ≠ 0.

Expanding by the first column

2 5 2
6 3

2 3 4
6 3

3 3 4
5 2

2 3 2 33 3 26 6

( )

( ) ( ) ( )

∆ = −
−

−
−

+ −
−

= × − × − − × = −

Therefore the inverse matrix exists.

Step 2: Evaluate the cofactors.

A 5 2
6 3

31 = −
−

=
 

A 3 4
6 3

332 = −
−

=
 

A 3 4
5 2

263 =
−

=

Recall that a 
minor, together 
with its correct 
sign, is known as 
a cofactor and is 
denoted by the 
corresponding 
capital letter; 
for example the 
cofactor  
of a3 is A3.
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B 2 2
3 3

01 = −
− −

=
 

B 2 4
3 3

62 =
− −

=
 

B 2 4
2 2

43 = − =

C 2 5
3 6

31 = −
−

= −
 

C 2 3
3 6

212 = −
−

= −
   

C 2 3
2 5

163 =
−

= −

Step 3: Form the matrix of cofactors and transpose it, then multiply by 
1
∆

= −

−
−
−















−M 1
6

3 0 3
33 6 21
26 4 16

T

1

        

1
6

3 33 26
0 6 4
3 21 16

= −
− − −















        

1
6

3 33 26
0 6 4
3 21 16

=
− − −

− −














The final matrix could then be simplified  
and written as

M

1
2

11
2

13
3

0 1 2
3

1
2

7
2

8
3

1 =

− − −

− −





















−

Check: = −
− −















− − −
− −















=














=














−
2 3 4
2 5 2
3 6 3

1
6

3 33 26
0 6 4
3 21 16

1
6

6 0 0
0 6 0
0 0 6

1 0 0
0 1 0
0 0 1

1MM

Multiply by 1∆.

You can evaluate the determinant ∆ using these cofactors to check 
your earlier arithmetic is correct:

2nd column:  
∆ = 3B1 − 5B2 + 6B3 = (3 × 0) − (5 × 6) + (6 × 4) = −6

3rd column:  
∆ = 4C1 + 2C2 − 3C3 = (4 × −3) + (2 × −21) − (3 × −16) = −6

Matrix of cofactors.

The capital T indicates the 
matrix is to be transposed.
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This adjugate method for finding the inverse of a 3 × 3 matrix is reasonably 
straightforward but it is important to check your arithmetic as you go along, 
as it is very easy to make mistakes. You can use your calculator to check that 
you have calculated the inverse correctly. 

As shown in Example 6.7, you might also multiply the inverse by the original 
matrix and check that you obtain the 3 × 3 identity matrix.

1 Evaluate these determinants without using a calculator. Check your 
answers using your calculator.

(i)  (a) 
1 1 3
1 0 2

3 1 4
−  (b) 

1 1 3
1 0 1
3 2 4

−

(ii)  (a) 

1 5 4
2 3 3
2 1 0

− −

−
 (b) 

1 2 2
5 3 1
4 3 0

−
−
−

(iii)  (a) 
2 1 2
3 5 3
1 1 1−

 (b) 
1 5 0
1 5 0
2 1 2−

 What do you notice about the determinants?

2 Find the inverses of the following matrices, if they exist, without using a 
calculator. 

(i) 
1 2 4
2 4 5
0 1 2















 (ii) 
3 2 6
5 3 11
7 4 16















(iii) 
5 5 5
9 3 5
4 6 8

−
− −
− −















 (iv) 
6 5 6
5 2 4
4 6 5

− −
− − −















3 Find the inverse of the matrix kM
1 3 2

0 4
2 1 4

=
−

−















 where k ≠ 0.

 For what value of k is the matrix M singular?

4 (i) Investigate the relationship between the matrices

   

A B C
0 3 1
2 4 2
1 3 5

      
1 0 3
2 2 4
5 1 3

      
3 1 0
4 2 2
3 5 1

=
−















=
−















=
−















(ii) Find det A, det B and det C and comment on your answer.

PS

Exercise 6C
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 5 Show that x = 1 is one root of the equation 
x

x
x

2 2
1 1

1 4
0=  and find 

the other roots.

 6 Find the values of x for which the matrix x
x

3 1 1
2 4

1 3

−












 is singular.

 7 Given that the matrix 
k

k
k

M
2 1

0 2
2 1 3

= −













 has determinant greater

 than 5, find the range of possible values for k.

 8 (i) P and Q are non-singular matrices. Prove that (PQ)−1 = Q−1P−1.

(ii) Find the inverses of the matrices P
0 3 1
2 2 2
3 0 1

=
−

−
−















 and 

Q
2 1 2
1 0 1
4 3 2

=
−















.

  Using the result from part (i), find (PQ)−1.

 9 (i)   Prove that 

ka b c

ka b c

ka b c

k

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

= , where k is a constant.

(ii) Explain in terms of volumes, why multiplying all the elements 
in the first column by a constant k multiplies the value of the 
determinant by k.

(iii) What would happen if you multiplied a different column by k?

10 Given that 
1 2 3
6 4 5
7 5 1

43= , write down the values of the determinants:

(i) 
10 2 3
60 4 5
70 5 1

 (ii) 
4 10 21
24 20 35
28 25 7

−
−
−

(iii) 

x y

x y

x y

4 3

6 8 5

7 10

 (iv) 

x x y

x x y

x x y

1 12

6 2 20

7 5
2 4

4

4

4

CP
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KEY POINTS

1 If 






a b
c d

M =  then the determinant of M, written det M or |M|, 

is given by det M = ad − bc.

2 The determinant of a 2 × 2 matrix represents the area scale factor of 
the transformation.

3 If  






a b
c d

M =  then M−1 = −
−

−




ad bc

d b
c a

1
 .

4 The determinant of a 3 × 3 matrix =

















M
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 is given by 

= − +Mdet 1
2 2

3 3
2

1 1

3 3
3

1 1

2 2

a
b c

b c
a

b c

b c
a

b c

b c .

 5 For a 3 × 3 matrix 

















1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 the minor of an element is formed by

 crossing out the row and column containing that element and finding 
the determinant of the resulting 2 × 2 matrix.

 6 A minor, together with its correct sign, given by the matrix 
+ − +
− + −
+ − +

 is known as a cofactor and is denoted by the  corresponding capital 
letter; for example the cofactor of a3 is A3.

 7 The inverse of a 3 × 3 matrix =

















1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

M  can be found using a 

calculator or using the formula 

 

= =

















∆ ≠−M M M M
1

det adj 1
det , 01

1 2 3

1 2 3

1 2 3

A A A

B B B

C C C
 

.

 The matrix 

















1 2 3

1 2 3

1 2 3

A A A

B B B

C C C

 is the adjoint or adjugate matrix, denoted

 adj M, formed by replacing each element of M by its cofactor and then 
transposing (i.e. changing rows into columns and columns into rows).
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LEARNING OUTCOMES

Now that you have finished this chapter, you should be able to
■ find the determinant of 2 × 2 and 3 × 3 matrices using the notation 

det M

■ recall the meaning of the terms

■ singular

■ non-singular, as applied to square matrices

■ recall how the area scale factor of a transformation is related to the 
determinant of the corresponding 2 × 2 matrix

■ understand the significance of a zero determinant in terms of 
transformations

■ recognise the identity matrix

■ find the inverses

■ of non-singular 2 × 2 matrices

■ of non-singular 3 × 3 matrices

■ understand that for non-singular matrices (AB)−1 = B−1A−1 and this 
can be extended to the product of more than two matrices

■ understand the relationship between the transformations represented  
by A and A−1.

 8 (MN)−1 = N−1M−1

 9 A matrix is singular if the determinant is zero. If the determinant is 
non-zero the matrix is said to be non-singular.

10 If the determinant of a matrix is zero, all points are mapped to either a 
straight line (in two dimensions) or to a plane (three dimensions).

11 If A is a non-singular matrix, AA−1 = A−1A = I.
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7  Vectors

Why is there 
space rather 
than no 
space? Why is 
space three-
dimensional? 
Why is space 
big? We have a 
lot of room to 
move around 
in. How come 
it’s not tiny? 
We have no 
consensus 
about these 
things. We’re 
still exploring 
them.
Leonard 
Susskind 
(1940–)

 Are there any right angles in the building shown above?
?

Note
From the work on vectors in Pure Mathematics 2, you should be able to 
use the language of vectors, including the terms magnitude, direction and 
position vector. You should also be able to find the distance between two 
points represented by position vectors and be able to add and subtract 
vectors and multiply a vector by a scalar. You should know how to find the 
scalar product of two vectors and use it to find the angle between vectors. You 
should also understand the significance of the terms in the equation of a line 
in vector form r = a + λb.
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7.1 The vector equation of a plane

 Which balances better, a three-legged stool or a four-legged stool? Why? 

 What information do you need to specify a particular plane?

?

There are various ways of finding the equation of a plane and these are 
given in this book. Your choice of which one to use will depend on the 
information you are given.

Finding the equation of a plane given three points on it

There are several methods used to find the equation of a plane through 
three points. The shortest method involves the use of vector products 
which can be found in Section 7.7, later in this chapter.

Vector form

To find the vector form of the equation of the plane through the points A, B 

and C (with position vectors O
→

A = a, O
→

B = b, O
→

C = c), think of starting at 
the origin, travelling along OA to join the plane at A, and then any distance 
in each of the directions A

→
B and A

→
C to reach a general point R with position 

vector r, where

r = O
→

A + λA
→

B + µA
→
C.

O

A
B

C

R

y
x

z

O
→

R = O
→

A + λA
→

B + µA
→

C

▲ Figure 7.1

This is a vector form of the equation of the plane. Since O
→

A = a, A
→

B = b − a 
and A

→
C = c − a, it may also be written as 

r = a + λ(b − a) + µ(c − a).
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Example 7.1 Find the equation of the plane through A(4, 2, 0), B(3, 1, 1) and C(4, −1, 1).

Solution

O
→

A 
4
2
0

=














A
→

B = O
→

B − O
→

A =












−












=
−
−













3
1
1

4
2
0

1
1
1

A
→

C = O
→

C − O
→

A = −












−












= −












4
1
1

4
2
0

0
3
1

So the equation r = O
→

A + λA
→

B + µA
→

C becomes

r 
4
2
0

1
1
1

0
3
1

=














+
−
−















+ −














λ µ .

This is the vector form of the equation, written using components.

You can convert this equation into Cartesian form by writing it as

λ µ












=












+
−
−













+ −












4
2
0

1
1
1

0
3
1

x
y
z

and eliminating λ and µ. The three equations contained in this vector equation 
may be simplified to give

λ      = −x + 4 1    

λ + 3µ = −y + 2 2    

λ + µ   = z 3    

Substituting 1  into 2  gives

−x + 4 + 3µ = −y + 2

3µ = x − y − 2

µ = 13(x − y − 2)

Substituting this and 1  into 3  gives

−x + 4 + 
1
3(x − y − 2) = z

  −3x + 12 + x − y − 2 = 3z

                  2x + y + 3z = 10

and this is the Cartesian equation of the plane through A, B and C.
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Note
In contrast to the equation of a line, the equation of a plane is more neatly 
expressed in Cartesian form. The general Cartesian equation of a plane is 
often written as either

ax + by + cz = d         or         n1x + n2y + n3z = d.

Finding the equation of a plane using the direction 
perpendicular to it

 Lay a sheet of paper on a flat horizontal table and mark several 
straight lines on it. Now take a pencil and stand it upright on the 
sheet of paper (see Figure 7.2). 

▲ Figure 7.2

(i) What angle does the pencil make with any individual line?

(ii) Would it make any difference if the table were tilted at an angle 
(apart from the fact that you could no longer balance the pencil)?

?

The discussion above shows you that there is a direction (that of the pencil) 
which is at right angles to every straight line in the plane. A line in that 
direction is said to be perpendicular to the plane or normal to the plane.

This allows you to find a different vector form of the equation of a plane, 
which you use when you know the position vector a of one point A in the 
plane and the direction n = n1i + n2 j + n3k perpendicular to the plane.
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What you want to find is an expression for the position vector r of a general 
point R in the plane (see Figure 7.3). Since AR is a line in the plane, it 
follows that AR is at right angles to the direction n.

A
→

R . n = 0

y

n

A R

x

z

The point R has 
position vector r.

The point A has 
position vector a.

The vector AR is 
→

r − a.

▲ Figure 7.3

The vector A
→

R is given by

 A
→

R = r − a
and so (r − a) . n = 0.

This can also be written as

        r . n − a . n = 0

or  
1

2

3

x
y
z

n
n
n

..




























 − a . n = 0

⇒              

1

2

3

x

y

z

n

n

n

..































  = a . n

⇒  n1x + n2y + n3z  = d

where d = a . n.

Notice that d is a constant scalar.

Write down the equation of the plane through the point (2, 1, 3) given that

the vector 
4
5
6














 is perpendicular to the plane.

Solution

In this case, the position vector a of the point (2, 1, 3) is given by a = 
2
1
3









 .

The vector perpendicular to the plane is

n = 
4
5
6

1

2

3















=














n
n
n

.

Example 7.2

For example, the plane through A (2, 0, 0) 
perpendicular to n = (3i − 4j + k) can be 
written as (r − 2i) . (3i − 4j + k) = 0, which 
simplifies to 3x − 4y + z = 6.
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The equation of the plane is

nlx + n2y + n3z = a . n
   4x + 5y + 6z = 2 × 4 + 1 × 5 + 3 × 6
   4x + 5y + 6z = 31

Look carefully at the equation of the plane in Example 7.2. You can see at once 

that the vector 
4
5
6















, formed from the coefficients of x, y and z, is 

perpendicular to the plane.

The vector 
n
n
n

1

2

3













  is perpendicular to all planes of the form

nlx + n2y + n3z = d

whatever the value of d (see Figure 7.4). Consequently, all planes of that form 
are parallel; the coefficients of x, y and z determine the direction of the plane, 
the value of d its location.

n 1
n 2
n 3

n1x + n2 y + n3z = d1

n1x + n2 y + n3z = d2

n1x + n2y + n3z = d3

▲ Figure 7.4
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7.2  The intersection of a line and a 

plane
There are three possibilities for the intersection of a line and a plane.

1 The line and plane are not
parallel and so they intersect
in one point

2 The line and plane are
parallel and so do not
intersect

3 The line and plane
are parallel and the
line lies in the plane

▲ Figure 7.5

The point of intersection of a line and a plane is found by following the 
procedure in the next example.

Find the point of intersection of the line r = 












+
−













λ
2
3
4

1
2
1

 with the plane  
5x + y − z = 1.

Solution

The line is

r = 












=












+
−













λ
x
y
z

2
3
4

1
2
1

and so for any point on the line

x = 2 + λ        y = 3 + 2λ      and      z = 4 − λ.

Substituting these into the equation of the plane 5x + y − z = 1 gives

 5(2 + λ) + (3 + 2λ) − (4 − λ) = 1

 8λ = −8  

 λ  = −1.

Substituting λ = −1 in the equation of the line gives

r = 
2
3
4

1
2
1

1
1
5

x
y
z















=














−
−















=














so the point of intersection is (1, 1, 5).

As a check, substitute (1, 1, 5) into the equation of the plane:

5x + y − z = 5 + 1 − 5 

  = 1 as required.

Example 7.3
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Example 7.4

When a line is parallel to a plane, its direction vector is perpendicular to the 
plane’s normal vector.

Show that the line r = 















+














t

2

1

0

3

1

–2

 is parallel to the plane 2x + 4y + 5z = 8.

Solution

The direction of the line is 















3

1

–2

 and of the normal to the plane is 














2

4

5

.

If these two vectors are perpendicular, then the line and plane are parallel.

To prove that two vectors are perpendicular, you need to show that their 
scalar product is 0.

3

1

–2

.

2

4

5

































 = 3 × 2 + 1 × 4 + (−2) × 5 = 0

So the line and plane are parallel as required.

To prove that a line lies in a plane, you need to show the line and the plane 
are parallel and that any point on the line also lies in the plane.

Does the line r = t

2

1

0

3

1

–2















+














 lie in the plane 2x + 4y + 5z = 8?

Solution

You have already seen that this line and plane are parallel in Example 7.4.

Find a point on the line r = t

2

1

0

3

1

–2















+













 by setting t = 1.

So the point (5, 2, −2) lies on the line.

Now check that this point satisfies the equation of the plane, 2x + 4y + 5z = 8.

2 × 5 + 4 × 2 + 5 (−2) = 8 ✓

The line and the plane are parallel and the point (5, 2, −2) lies both on the 
line and in the plane. Therefore the line must lie in the plane.

Example 7.5
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Note

The previous two examples showed you that the line r = 















+














t

2

1

0

3

1

–2

 lies in 

the plane 2x + 4y + 5z = 8. This line is parallel to all the planes in the form  
2x + 4y + 5z = d but in the case when d = 8 it lies in the plane; for other values 
of d the line and the plane never meet.

7.3 The distance of a point from a plane
The shortest distance of a point, A, from a plane is the distance AP, where P is 
the point where the line through A perpendicular to the plane intersects the 
plane (see Figure 7.6). This is usually just called the distance of the point from 
the plane. The process of finding this distance is shown in the next example.

A

P

▲ Figure 7.6

A is the point (7, 5, 3) and the plane π has the equation 3x + 2y + z = 6. Find 

(i) the equation of the line through A perpendicular to the plane π 

(ii) the point of intersection, P, of this line with the plane 

(iii) the distance AP.

Solution

(i) The direction perpendicular to the plane 3x + 2y + z = 6 is 













3
2
1

 so the 

line through (7, 5, 3) perpendicular to the plane is given by

r = 












+












λ
7
5
3

3
2
1

.

(ii) For any point on the line

x = 7 + 3λ        y = 5 + 2λ        and        z = 3 + λ.

 Substituting these expressions into the equation of the plane  
3x + 2y + z = 6 gives 

Example 7.6
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3(7 + 3λ) + 2(5 + 2λ) + (3 + λ) = 6
 14λ = −28
  λ = −2.

 So the point P has coordinates (1, 1, 1).

(iii) The vector A
→

P is given by













−












=
−
−
−













1
1
1

7
5
3

6
4
2

 and so the length AP is (–6) (–4) (–2) 562 2 2+ + = .

Note
In practice, you would not usually follow the procedure in Example 7.6 
because there is a well-known formula for the distance of a point from a 
plane. You are invited to derive this in the following activity.

ACTIVITY 7.1

Generalise the work in Example 7.6 to show that the distance of the point             
(α, β, γ) from the plane n1x + n2y + n3z = d is given by

–
.1 2 3

1
2

2
2

3
2

n n n d

n n n

+ +
+ +

α β γ

7.4  The angle between a line and a plane
You can find the angle between a line and a plane by first finding the angle 
between the normal to the plane and the direction of the line. A normal to a 
plane is a line perpendicular to it. 

n

l
A

B

Angle B is the angle 
between the line and 
the plane.

▲ Figure 7.7

The angle between the normal, n, and the plane is 90°.

Angle A is the angle between the line l and the normal to the plane, so the 
angle between the line and the plane, angle B, is 90° – A.
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Example 7.7

Find the angle between the line =
−

−















+
−













r t

1

2

3

1

2

5

 and the plane 2x + 3y + z = 4. 

Solution

The normal, n, to the plane is 














2

3

1

. The direction, d, of the line is 

−













1

2

5

.

The angle between the normal to the plane and the direction of the line is 
given by:

 cos A = 
n d

n d

.

 cos A = 9
14 30×

⇒  A = 63.95°
⇒  B = 26.05°

So the angle between the line and the plane is 26° to the nearest degree.

1 Determine whether the following planes and lines are parallel.

 If they are parallel, show whether the line lies in the plane.

(i) r = 















+














t

3

1

2

1

–1

2

 and 3x + y − z = 8

(ii) r = 















+














t

2

1

–5

1

–4

3
 and x − 2y − 3z = 2

(iii)  r = 















+














t

2

0

7

–3

2

–5

 and 2x − 3y + z = 5

(iv) r = 














+














t

–2

1

4

3

–4

0

 and 4x + 3y + z = −1

(v) r = 















+














t

2

1

0

–5

4

7

 and x + 2y − 6z = 0

(vi) r = 















+














t

2

3

5

–1

2

5

 and 3x + 4y − z = 7

n . d = 2 × (−1) + 3 × 2 + 1 × 5 = 9

Since A + B = 90° = 9

Exercise 7A
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2 The points L, M and N have coordinates (0, −1, 2), (2, 1, 0) and (5, 1, 1).

(i) Write down the vectors L
→
M and L

→
N.

(ii) Show that L
→
M . −

−













1
4
3

 = L
→
N. −

−













1
4
3

 = 0.

(iii) Find the equation of the plane LMN.

3 (i)  Show that the points A (1, 1, 1), B (3, 0, 0) and C (2, 0, 2) all lie in 
the plane 2x + 3y + z = 6.

(ii) Show that A
→

B .
2
3
1

2
3
1





























 = A
→
C .

2
3
1

2
3
1





























 = 0

(iii) The point D has coordinates (7, 6, 2). D lies on a line perpendicular 
to the plane through one of the points A, B or C. 

 Through which of these points does the line pass?

4 The lines l, r = λ












+












2
1
0

1
1
1

, and m, r = µ












+












4
0
2

1
0
1

, lie in the same 

plane π.

(i) Find the coordinates of any two points on each of the lines.

(ii) Show that all the four points you found in part (i) lie on the plane 
x − z = 2.

(iii) Explain why you now have more than sufficient evidence to show 
that the plane π has equation x − z = 2.

(iv) Find the coordinates of the point where the lines l and m intersect.

5 Find the points of intersection of the following planes and lines.

(i) x + 2y + 3z = 11 and r = λ












+












1
2
4

1
1
1

(ii) 2x + 3y − 4z = 1 and λ=
−
−
−













+












3
r

2
3
4

4
5

(iii) 3x − 2y − z = 14 and  r = λ












+












8
4
2

1
2
1

(iv) x + y + z = 0 and r = λ












1
1
2

(v) 5x − 4y − 7z = 49 and = −












+ λ
−













r
3
1
2

2
5
3

CP
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6 In each of the following examples you are given a point A and a plane π. Find

(a) the equation of the line through A perpendicular to π 

(b) the point of intersection, P, of this line with π

(c) the distance AP.

(i) A is (2, 2, 3);  π is x − y + 2z = 0

(ii) A is (2, 3, 0);  π is 2x + 5y + 3z = 0

(iii) A is (3, 1, 3);  π is x = 0

(iv) A is (2, 1, 0);  π is 3x − 4y + z = 2

(v) A is (0, 0, 0);  π is x + y + z = 6

7 The points U and V have coordinates (4, 0, 7) and (6, 4, 13). 
The line UV is perpendicular to a plane and the point U lies in the plane.

(i) Find the equation of the plane in Cartesian form.

(ii) The point W has coordinates (−1, 10, 2).  
Show that (WV)2 = (WU)2 + (UV)2.

(iii) What information does this give you about the position of W?  
Confirm this information by a different method.

 8 (i) Find the equation of the line through (13, 5, 0) parallel to the line

r = 
2
1
4

3
1
2

−












 +

−













λ .

(ii) Where does this line meet the plane 3x + y − 2z = 2? 

(iii) How far is the point of intersection from (13, 5, 0)?

 9 (i)  Find the angle between the line r = i + 2j + t(3i + 2j − k) and the 
plane 2x − 3y − z = 1.

(ii)  Find the angle between the line r = t
1
0
2

1
3
2

−











+
−












 and the plane 

 4x − 3z = −2.

(iii)  Find the angle between the line r = i + 2j + t(3i + 2j − k) and the 
plane 7x − 2y + z = 1.

10 A is the point (1, 2, 0), B is (0, 4, 1) and C is (9, −2, 1).

(i) Show that A, B and C lie in the plane 2x + 3y − 4z = 8.

(ii) Write down the vectors A
→

B and A
→
C and verify that they are at right 

 angles to 
2
3
4−














.

(iii) Find the angle BAC.

(iv) Find the area of triangle ABC (using area = 
1
2bc sin A).
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11 P is the point (2, −1, 3), Q is (5, −5, 3) and R is (7, 2, −3). Find 

(i) the lengths of PQ and QR 

(ii) the angle PQR 

(iii) the area of triangle PQR

(iv) the point S such that PQRS is a parallelogram.

12 P is the point (2, 2, 4), Q is (0, 6, 8), X is (−2, −2, −3) and Y is (2, 6, 9).

(i) Write in vector form the equations of the lines PQ and XY.

(ii) Verify that the equation of the plane PQX is 2x + 5y − 4z = −2.

(iii) Does the point Y lie in the plane PQX?

(iv) Does any point on PQ lie on XY? (That is, do the lines intersect?)

13 The line l has equation r = 4i + 2j − k + t(2i − j − 2k). It is given that 
l lies in the plane with equation 2x + by + cz = 1, where b and c are 
constants.

(i) Find the values of b and c.

(ii) The point P has position vector 2j + 4k. Show that the 
perpendicular distance from P to l is √5.

 Cambridge International AS & A Level Mathematics  
9709 Paper 3 Q9 May/June 2009

14 With respect to the origin O, the points A and B have position vectors 
given by

O
→

A = 2i + 2j + k        and        O
→

B = i + 4j + 3k.

 The line l has vector equation r = 4i − 2j + 2k + s(i + 2j + k).

(i) Prove that the line l does not intersect the line through A and B.

(ii) Find the equation of the plane containing l and the point A, giving 
your answer in the form ax + by + cz = d.

 Cambridge International AS & A Level Mathematics  
9709 Paper 3 Q10 May/June 2005

15 The points A and B have position vectors, relative to the origin O, given by

O
→

A = 
1
3
5

−











         and        O

→
B = 

3
1
4

−
−













 .

 The line l passes through A and is parallel to OB. The point N is the foot 
of the perpendicular from B to l.

(i) State a vector equation for the line l.

(ii) Find the position vector of N and show that BN = 3.

(iii) Find the equation of the plane containing A, B and N, giving your 
answer in the form ax + by + cz = d.

 Cambridge International AS & A Level Mathematics  
9709 Paper 3 Q10 May/June 2006

CP
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16 The straight line l has equation r = i + 6j − 3k + s(i − 2j + 2k). The 

plane p has equation (r − 3i) . (2i − 3j + 6k) = 0. The line l intersects the 
plane p at the point A.

(i) Find the position vector of A.

(ii) Find the acute angle between l and p.

(iii) Find a vector equation for the line which lies in p, passes through A 
and is perpendicular to l.

 Cambridge International AS & A Level Mathematics  
9709 Paper 3 Q10 October/November 2007

7.5 The intersection of two planes
If you look around you, you will find objects that can be used to represent 
planes − walls, floors, ceilings, doors, roofs, and so on. You will see that the 
intersection of two planes is a straight line.

Find l, the line of intersection of the two planes

3x + 2y − 3z = −18  and  x − 2y + z = 12.

Solution 1

This solution depends on finding two points on l.

You can find one point by arbitrarily choosing to put y = 0 into the 
equations of the planes and solving simultaneously:

3x − 3z = −18
     x + z = 12           } ⇔ {x − z = −6

x + z = 12 } ⇔ x = 3, z = 9.

So P with coordinates (3, 0, 9) is a point on l.

(You could run into difficulties putting y = 0 as it is possible that the line has 
no points where y = 0. In this case your simultaneous equations for x and z 
would be inconsistent; you would then choose a value for x or z instead.)

In the same way, arbitrarily choosing to put z = 1 into the equations gives

3x + 2y = −15
  x − 2y = 11 } ⇔ {4x = −4

2y = x − 11 } ⇔ x = −1, y = −6

so Q with coordinates (−1, −6, 1) is a point on l.

P
→
Q =

−
−













−












=
−
−
−













= −












1
6
1

3
0
9

4
6
8

2
2
3
4

 

Example 7.8
Q

P
l

▲ Figure 7.8

l

Removing factor −2  
makes the arithmetic 
simpler.
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Use 
2
3
4













  as the direction vector for l.

The vector equation for l is r = t
1
6
1

2
3
4

−
−













 +













 .

Solution 2

In this solution the original two equations in x, y and z are solved, expressing 
each of x, y and z in terms of some parameter.

Put x = λ   into {3x + 2y − 3z = −18
   x − 2y + z = 12  and solve simultaneously for y and z :

{ 2y − 3z = −18 − 3λ
 −2y + z = 12 − λ } ⇒ −2z = −6 − 4λ ⇒ z = 2λ + 3

so that 2y = 3z − 18 − 3λ ⇒ 2y = 3(2λ + 3) − 18 − 3λ ⇒ 2y = 3λ − 9  

⇒ y = 3
2 λ = 9

2.

Thus the equations for l are

  x = λ{ y = 3
2λ − 9

2  or  















= −














+














λ

x

y

z

0

3

1

2

9
2

3
2 .

  z = 2λ + 3

Note
This set of equations is different from but equivalent to the equations in 
Solution 1. The equivalence is most easily seen by substituting 2µ − 1 for λ, 
obtaining

  x  = 2µ − 1{y  = 3
2(2µ − 1)− 9

2 = 3µ − 6

  z = 2(2µ − 1) + 3 = 4µ + 1
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π1 π2

θ

n2n1

▲ Figure 7.9

π2π1

θ

θ

n2

‘Edge on’ view

n1

▲ Figure 7.10

Find the acute angle between the planes π1: 2x + 3y + 5z = 8 and  
π2: 5x + y − 4z = 12.

Solution

The planes have normals n1 = 












2
3
5

 and n2 = 
5
1
4−













 , so n1. n2 = 10 + 3 − 20 = −7.

The angle between the normals is θ, where

 cos θ  = 7
38 42

1 2

1 2

= −
×

..n n

n n   
⇒  θ  = 100.1°      (to 1 decimal place)

Therefore the acute angle between the planes is 79.9°.

Sheaf of planes
When several planes share a common line the  
arrangement is known as a sheaf of planes 
(Figure 7.11). The next example shows how 
you can find the equation of a plane that 
contains the line l common to two given 
planes, π1 and π2, without having to find the 
equation of l itself, or any points on l.

▲ Figure 7.11

Example 7.9

7.6 The angle between two planes
The angle between two planes can be found by using the scalar product. As 
Figures 7.9 and 7.10 make clear, the angle between planes π1 and π2 is the 
same as the angle between their normals, n1 and n2.
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Find the equation of the plane that passes through the point (1, 2, 3) and contains 
the common line of the planes π1: 2x + 2y + z + 3 = 0 and 
π2: 2x + 3y + z + 13 = 0.

Solution

The equation

p(2x + 2y + z + 3) + q(2x + 3y + z + 13) = 0 1  

can be rearranged in the form n1x + n2y + n3z = d, where not all of a, b, c, d 
are zero provided p and q are not both zero. Therefore equation 1  represents 
a plane. Further, any point (x, y, z) that satisfies both π1 and π2 will also satisfy 
equation 1 . Thus equation 1  represents a plane containing the common line 
of planes π1 and π2. Substituting (1, 2, 3) into 1  gives

12p + 24q = 0  ⇔  p = −2q.

The required equation is

−2q(2x + 2y + z + 3) + q(2x + 3y + z + 13) = 0
⇔  −q(2x + y + z − 7) = 0

so that the required plane has equation 2x + y + z = 7.

 Planes π1 and π2 have equations a1x + b1y + c1z − d1 = 0 and  
a2x + b2y + c2z − d2 = 0 respectively. Plane π3 has equation 

p(a1x + b1y + c1z − d1) + q(a2x + b2y + c2z − d2) = 0.

 How is π3 related to π1 and π2 if π1 and π2 are parallel?

?

Find the equation of the common perpendicular to the lines 

=
−















+














αr

1

0

1

1

1

0

 and =
−













+
−

−















βr

2

1

4

3

0

1

.

Solution

Let P be a general point on the first line =
+

−















α
αOP

1

1

Let Q be a general point on the second line =
− −

+















β

β
OQ

2 3
1

4

When you are writing the vector 
equation of a line you can use any 
letter for the parameter. It does 
not have to be λ or µ. In these 
two equations α and β are used.

Example 7.11

Example 7.10

➜
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− − −

−
+

















α β

α
β

PQ
3 3

1
5

 and is perpendicular to both lines

( ) ( )⋅














=
− − −

−
+

















⋅














= − − − + − =
α β

α
β

α β αPQ
1
1
0

3 3
1
5

1
1
0

3 3 1 0

 

giving 

2 3 2 0− − − =α β

and ( ) ( )⋅
−













=
− − −

−
+

















⋅
−













= − − − − + + =
α β

α
β

α β βPQ
3
0
1

3 3
1
5

3
0
1

3 3 3 5 0  

giving 3 10 14 0+ + =α β .

Solving simultaneously gives α = 2 and β = −2.

Substituting into the equations of the lines gives 

=
−















OP
3
2
1

 and =














OQ
4
1
2

= −














PQ
1
1
3

 so the equation of the line is r
3
2
1

1
1
3

λ=
−















+ −














1  Find the vector equation of the line of intersection of each of these pairs 
of planes.

(i) x + y − 6z = 4,  5x − 2y − 3z = 13

(ii) 5x − y + z = 8,  x + 3y + z = − 4

(iii) 3x + 2y − 6z = 4,  x + 5y − 7z = 2

(iv) 5x + 2y − 3z = − 2,  3x − 3y − z = 2

2 Find the acute angle between each pair of planes in question 1.

3 Find the vector equation of the line that passes through the given point 
and that is parallel to the line of intersection of the two planes.

(i) (−2, 3, 5),  4x − y + 3z = 5,  3x − y + 2z = 7

(ii) (4, −3, 2),  2x + 3y + 2z = 6,  4x − 3y + z = 11

4 Find the equation of the plane that goes through (3, 2, −2) and that 
contains the common line of x + 7y − 2z = 3 and 2x − 3y + 2z = 1.

Exercise 7B
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5 Find the equation of the plane that contains the point (1, −2, 3) and that 
is perpendicular to the common line of 5x − 3y − 4z = 2 and  
2x + y + 5z = 7.

6 Find the equation of the line that goes through (4, −2, −7) and that is 
parallel to both 2x− 5y − 2z = 8 and x + 3y − 3z = 12.

7 The diagram shows the coordinates of the corners of parts of the roof of 
a warehouse.

 

(–2, 20, 8)

(12, 20, 8)

(10, 0, 9)

(5, 0, 6)
(0, 0, 9) P

Q

 Find the equations of both roof sections, and the vector equation of the 
line PQ. Assuming that the z-axis is vertical, what angle does PQ make 
with the horizontal?

8 Test drilling in the Namibian desert has shown the existence of gold 
deposits at (400, 0, −400), (−50, 500, −250), (−200, −100, −200), where 
the units are in metres, the x-axis points east, the y-axis points north, 
and the z-axis points up. Assume that these deposits are part of the same 
seam, contained in plane π.

(i) Find the equation of plane π.

(ii) Find the angle at which π is tilted to the horizontal.

The drilling positions (400, 0, 3), (−50, 500, 7), (−200, −100, 5) are on 
the desert floor. Take the desert floor as a plane, ∏.

(iii) Find the equation of ∏.

(iv) Find the equation of the line where the plane containing the gold 
seam intersects the desert floor.

(v) How far south of the origin does the line found in part (iv) pass?

9 The plane p has equation 3x + 2y + 4z = 13. A second plane q is 
perpendicular to p and has equation ax + y + z = 4, where a is a constant.

(i)  Find the value of a.

(ii)  The line with equation r = j − k + λ(i + 2j + 2k) meets the plane p 
at the point A and the plane q at the point B. Find the length of AB. 

 Cambridge International AS & A Level Mathematics  
9709 Paper 32 Q9 May/June 2010
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 10 The diagram shows a set of rectangular axes Ox, Oy and Oz, and three points 

A, B and C with position vectors O
→
A = 















2

0

0

, O
→
B = 















1

2

0

 and O
→
C = 















1

1

2

.

z

y

A

O

B

C

x

(i) Find the equation of the plane ABC, giving your answer in the 
form ax + by + cz = d.

(ii) Calculate the acute angle between the planes ABC and OAB.
 Cambridge International AS & A Level Mathematics  

9709 Paper 3 Q9 May/June 2007

11 Two planes have equations 2x − y − 3z = 7 and x + 2y + 2z = 0.

(i) Find the acute angle between the planes.

(ii) Find a vector equation for their line of intersection.
 Cambridge International AS & A Level Mathematics  

9709 Paper 3 Q7 October/November 2008

12 The plane p has equation 2x − 3y + 6z = 16. The plane q is parallel to p 
and contains the point with position vector i + 4j + 2k.

(i) Find the equation of q, giving your answer in the form ax + by + cz = d.

(ii) Calculate the perpendicular distance between p and q.

(iii) The line l is parallel to the plane p and also parallel to the plane 
with equation x − 2y + 2z = 5. Given that l passes through the 
origin, find a vector equation for l.

 Cambridge International AS & A Level Mathematics  
9709 Paper 32 Q10 October/November 2009

13  The lines l1 and l2 have equations r i j k i j8 2 3 2λ ( )= + + + −  and 
r i j k j k5 3 14 2 3µ ( )= + − + − −  respectively. The point P on l1 and the 
point Q on l2 are such that PQ is perpendicular to both l1 and l2. Find 
the position vector of the point P and the position vector of the point Q.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q11 (part question) May/June 2015
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7.7 The vector product
The vector product is a different method for ‘multiplying’ two vectors. As the 
name suggests, in this case the result is a vector rather than a scalar. The vector 
product of a and b is a vector perpendicular to both a and b and it is written a × b.

It is given by

× = θ a b a b nsin

where θ is the angle between a and b and n is a unit vector that is 
perpendicular to both a and b. 

There are two unit vectors perpendicular to both a and b, but they point in 
opposite directions. 

The vector n is chosen such that a, b and n (in that order) form a right-
handed set of vectors, as shown in Figure 7.12. If you point the thumb of your 
right hand in the direction of a, and your index finger in the direction of  b, then 
your second finger coming up from your palm points in the direction a × b as 
shown below.

θ

b

a

a × b a × b

b

a

▲ Figure 7.12

In component form, the vector product is expressed as follows:

a
a
a

b
b
b

a b a b
a b a b
a b a b

a b
1

2

3

1

2

3

2 3 3 2

3 1 1 3

1 2 2 1

× = × =
−
−
−

















































You will have the opportunity to prove this result in Exercise 7C.

Notice that the first component of a × b is the value of the 2 × 2 determinant 

a b

a b
2 2

3 3
 obtained by covering up the top row of 

a
a
a

b
b
b

1

2

3

1

2

3

×































; the second 

component is the negative of the 2 × 2 determinant obtained by covering up 
the middle row; and the third component is the 2 × 2 determinant obtained 
by covering up the bottom row. 

This is often 
described as 
having opposite 
senses.
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Notice that the value of the determinant 

a b

a b
2 2

3 3

 is the same as the value of  
a a

b b
2 3

2 3

. They are both (a2b3 − a3b2). This means that the formula for the 

vector product can be expressed as a determinant:

1 2 3

1 2 3

    a a a

b b b

a b

i j k

× =

Expanding this determinant by the first column gives:

× = − +
a a

b b

a a

b b

a a

b b
2 3

2 3

1 3

1 3

1 2

1 2

a b i j k

(i) Calculate a × b when a = 3i + 2j + 5k and b = i – 4j + 2k.

(ii) Hence find n, a unit vector that is perpendicular to both a and b. 

Solution 

(i)  There are two possible methods:

Method 1

Using determinants: 

2 5
4 2

3 5
1 2

3 2
1 4

24 14

i j k

i j k

=
−

− +
−

= − −

× =
−

  3 2 5
1 4 2

a b

i j k

Method 2

Using the result 

a
a
a

b
b
b

a b a b
a b a b
a b a b

a b
1

2

3

1

2

3

2 3 3 2

3 1 1 3

1 2 2 1

× = × =
−
−
−

















































gives

( )
× = × − =

× − × −
× − ×

× − − ×
= −

−

































































a b
3
2
5

1
4
2

2 2 5 ( 4)
5 1 3 2

3 4 2 1

24
1

14

1 2 3

1 2 3

    a a a

b b b

a b

i j k

× =

Note this sign.

Example 7.12
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 How can you use the scalar product to check that the answer to 
Example 7.12 is correct?

?

Technology note
Investigate whether a calculator will find the vector product of two vectors. 
If so, use a calculator to check the vector product calculated in Example 7.12.

Properties of the vector product
1 The vector product is anti-commutative

 The vector products a × b and b × a have the same magnitude but are in 
opposite directions, so a × b = − b × a.  
This is known as the anti-commutative property.

2  The vector product of parallel vectors is zero

 This is because the angle θ between two parallel vectors is 0° or 180°, so 
sin 0θ = . 

 In particular i × i = j × j = k × k = 0.

3  The vector product is compatible with scalar multiplication

 For scalars m and n, 
m n mna b a b( )( )( ) × = ×

 This is because the vector ma has magnitude |m||a|; ma and a have the 
same direction if m is positive, but opposite directions if m is negative.

4  The vector product is distributive over vector addition

 The result
a b c a b a c( )× + = × + ×

 enables you to change a product into the sum of two simpler products 
– in doing so the multiplication is ‘distributed’ over the two terms of the 
original sum. 

(ii)  a b
24

1
14

× = −
−
















 This vector is perpendicular to a and b. 

  a b 24 ( 1) ( 14) 7732 2 2× = + − + − =  
So a unit vector perpendicular to both a and b is n 1

773

24
1

14
= −

−
















.
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Since the equation of a plane involves a vector that is perpendicular to the 
plane, the vector product is very useful in finding the equation of a plane.

Find the Cartesian equation of the plane that contains the points A (3, 4, 2), 
B (2, 0, 5) and C (6, 7, 8).

Solution

A
→

B 
� ���
AB

2
0
5

3
4
2

1
4
3

= − =
−
−
















































 and B

→
C 
� ���
BC

6
7
8

2
0
5

4
7
3

= − =
















































Start by finding 
two vectors in 
the plane, for 
example A

→
B and 

B
→

C.

ACTIVITY 7.2

In this activity you might find it helpful to take the edges of a rectangular 
table to represent the unit vectors i, j and k as shown in Figure 7.13.

i

j

k

▲ Figure 7.13

You could use pens to represent:

i, the unit vector pointing to the right along the x-axis

j, the unit vector pointing away from you along the y-axis

k, the unit vector pointing upwards along the z-axis.

The vector product of a and b is defined as 
× = θ a b a b nsin

where θ is the angle between a and b and n is a unit vector that is 
perpendicular to both a and b such that a, b and n (in that order) form a 
right–handed set of vectors. 

Using this definition, check the truth of each of the following results.
i i i j k i k j0                                             × = × = × = −

Give a further six results for vector products of pairs of i, j and k.

Example 7.13
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You need to find a vector that is perpendicular to AB and BC.

Then A
→

B × B
→

C × =
−
− × =

−















































AB BC
1
4
3

4
7
3

33
15
9

� ��� � ���
 which can be written as − −

−

















3
11
5
3

.

So = −
−

















n
11
5
3

 is a vector perpendicular to the plane containing A, B and C, 

and the equation of the plane is of the form 11x − 5y − 3z = d.

Substituting the coordinates of one of the points, say A, allows you to find 
the value of the constant d:

(11 × 3) − (5 × 4) − (3 × 2) = 7

The plane has equation 11x − 5y − 3z = 7.

You could find 
this result using 
your calculator.

Substituting for 
B and C provides 
a useful check of 
your answer.

  Another way of finding the equation through three given points is to 
form three simultaneous equations and solve them.

 Compare these two methods.

?

Example 7.14 A plane is given parametrically by the equation 

r i j k i j k i j k3 5 5 2 2 3 .λ µ( ) ( )= − + + − + + + −  

Find its Cartesian equation.

Solution

The Cartesian equation can be found from the vector equation r a n 0⋅( )− =  
where n is a normal vector.

Using the vector product to find n i j k i j k5 2 2 3( ) ( )= − + × + −

5 2
2 1

1
3

n

i j k

= −
−

= −
−

−
−

+ − = + +n i j k i j k
2 1
1 3

5 1
2 3

5 2
2 1

5 17 9

The equation of the plane is 
r i j k i j k i j k5 17 9 3 5 5 17 9( ) ( ) ( )⋅ + + = − + ⋅ + +
x y z5 17 9 43+ + =

This could also be 
written. 

= −
−

n

k

5 2
2 1

1 3

i
j

The determinant 
of the transpose of 
a matrix is equal 
to the determinant 
of the original 
matrix.
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In this exercise you should calculate the vector products by hand. You could 
check your answers using the vector product facility on a calculator.

1 Calculate each of the following vector products:

(i) ×
−

































3
5
2

2
4
3

 (ii) 
7
4
5

4
5
3

−
−

×
−

−

































(iii) i j k i j k5 2 4 5 6( ) ( )− + × + −  (iv) i k i j k3 7 2 3 5( )( )− × + +

2 Find a vector perpendicular to each of the following pairs of vectors:

(i) = = −
−

































a b
2
0
5

,
3
1
2

(ii) =
−















=














a b

12

3

2

,

7

1

4
(iii) a i j k b i j k2 3 4 , 3 6 7= + + = + +
(iv) a i j k b i j k3 4 6 , 8 5 3= − + = + −

3 Three points A, B and C have coordinates (1, 4, −2), (2, 0, 1) and (5, 3, −2) 
respectively.

(i) Find the vectors A
→

B and A
→

C.

(ii) Use the vector product to find a vector that is perpendicular to A
→

B 
and A

→
C.

(iii) Hence find the equation of the plane containing points A, B and C.

4 Find a unit vector perpendicular to both a b
1
2
7

  and 
3
1
6

= = −































. 

5 Find the magnitude of 
3
1
4

1
1
1−

× −































.

6 Find the Cartesian equations of the planes containing the three points 
given:

(i) A(1, 4, 2), B(5, 1, 3) and C(1, 0, 0)

(ii) D(5, −3, 4), E(0, 1, 0) and F(6, 2, 5)

(iii) G(6, 2, −2), H(1, 4, 3) and L(−5, 7, 1)

(iv) M(4, 2, −1), N(8, 2, 4) and P(5, 8, −7)

7 Simplify the following:

(i) i k4 2×  (ii) i i j k2 (5 2 3 )× − −
(iii) i j k k(6 ) 2+ − ×   (iv) i j k i j k(3 2 ) ( 4 )− + × − −  

8 Prove algebraically that for two vectors a a aa i j k 1 2 3= + +  and 
b b bb i j k 1 2 3= + +

a b a b
a b a b
a b a b

a b
2 3 3 2

3 1 1 3

1 2 2 1

× =
−
−
−

















CP

Exercise 7C
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9 Two points A and B have position vectors a = 3i + 5j + 2k and b = 2i – j + 4k 
respectively.

(i) Find the lengths of each of the sides of the triangle OAB, and 
hence find the area of the triangle.

(ii) Find |a × b|.

(iii) How does the definition θ× =a b a b nsin ˆ  explain the 

relationship between your answers to (i) and (ii)?

10 The plane Π1 has equation =
−

+ −
−

































+

















s tr
2
3
1

1
0
1

1
1
2

. Find a Cartesian 

equation of Π1. 

 The plane Π2 has equation 2x − y + z = 10. Find the acute angle 
between Π1 and Π2.

 Find an equation of the line of intersection of Π1 and Π2, giving your 
answer in the form r = a + λb.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q8 November 2013

7.8 Finding distances
Sometimes you need to find the distance between points, lines and planes. In 
this section you will look at how to find:

» the distance from a point to a line, in two or three dimensions;

» the distance from a point to a plane;

» the distance between parallel or skew lines.

Finding the distance from a point to a line 
Figure 7.14 shows building works at an airport that require the use of a crane 
near the end of the runway. How far is it from the top of the crane to the 
flight path of the aeroplane?

runway crane

plane
taking off

▲ Figure 7.14

To answer this question you need to know the flight path and the position of 
the top of the crane. 

CP
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Working in metres, suppose the position of the top of the crane is at P (70, 30, 22) 

and the aeroplanes take off along the line λ=
−

+
































l r:
10
20
2

5
4
3

 as illustrated 
in Figure 7.15.

d =
M

P(70, 30, 22)

A
(–10, 20, 2)

5
4
3








θ

l

▲ Figure 7.15

The shortest distance from P to the straight line l is measured along the line 
that is perpendicular to l. It is the distance PM in Figure 7.15. The vector 
product provides a convenient way of calculating such distances. 

Since PM is perpendicular to l
PM AP sin PAM=

Compare this with the formula for the vector product of AP and AM:
� �nAP AM AP AM sinPAM× =  

so AP sinPAM
AP AM

AM
=

×

AM is the direction vector d for the line l, so 

d
d

PM
AP

=
×

Returning to calculating the distance from the top of the crane to the flight path:

= =
−































p a
70
30
22

, 
10
20
2

 and =
















d
5
4
3

so that 

= − = −
−

= =
































































p aAP
70
30
22

10
20
2

80
10
20

10
8
1
2

and

× = × =
× − ×
× − ×
× − ×

=
−

−
































































dAP 10
8
1
2

5
4
3

10
1 3 2 4
2 5 8 3
8 4 1 5

10
5

14
27
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Therefore, dAP 10 5 ( 14) 27 50 382 2 2( )× = − + − + =  and 

d 5 4 3 5 22 2 2= + + = .

So the shortest distance from P to l is:

PM 50 38
5 2

10 19 43.6= = ≈  metres

You might also need to find the point on l that is closest to P.  The following 
example shows how you can do this for the scenario above.

The line l has equation =
−

+ λ

































r
10
20
2

5
4
3

 and the point P has coordinates 

(70, 30, 22).

The point M is the point on l that is closest to P.

(i) Express the position vector m of point M in terms of the parameter λ.

 Hence find an expression for the vector 
� ���
PM in terms of the parameter λ.

(ii)  By finding the scalar product of the vector 
� ���
PM with the direction 

vector d, show that 10=λ  and hence find the coordinates of point M.

(iii) Verify that PM 10 19=  as found earlier.

Solution

(i) m
10 5
20 4
2 3

=
− +

+
+

λ
λ

λ

















 

=
− + −

+ −
+ −

=
− +
− +
− +

λ

λ

λ

λ
λ
λ

































PM
10 5 70
20 4 30
2 3 22

80 5
10 4
20 3

(ii) =
− +
− +
− +

=
λ
λ
λ

































.d

.

PM 0

80 5
10 4
20 3

5
4
3

0

 

5( 80 5 ) 4( 10 4 ) 3( 20 3 ) 0

400 25 40 16 60 9 0

− + + − + + − + =
− + − + − + =

λ λ λ

λ λ λ

 

50 500

10

=
=

λ

λ

 

m
10 5
20 4
2 3

40
60
32

=
− +

+
+

=
λ
λ

λ

































Example 7.15

Since M is the point on l closest to  
P, PM is perpendicular to l and so 
PM is perpendicular to d.

➜
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(iii) 

PM
30
30
10

=
−















 = − + + =PM 10 ( 3) 3 1 10 192 2 2

As the vector product of vectors a and b is a vector perpendicular to both a 

and b the result 
d

d
AP ×

 assumes that you are working in three dimensions. 

When you are working in two dimensions, in which case the vectors have 
only two components, you can use the following result, which you can prove 
in Activity 7.3, which follows.

The distance between a point x yP( , )1 1  and the line ax by c 0+ + =  is:

ax by c

a b
1 1

2 2

+ +
+

ACTIVITY 7.3

In this activity, think of points x yR( , ) in two dimensional space as 
corresponding to the point x yR ( , , 0)′  in three dimensional space. 

Use the following steps to show that the distance between a point 
x yP( , )1 1  and the line ax by c 0+ + =  is:

ax by c

a b
1 1

2 2

+ +
+

(i) Write down the coordinates x y( , ) of the point A where the line 
ax by c 0+ + =  meets the y-axis. Write down the corresponding 
coordinates of A' in three dimensional space.

(ii) Write ax by c 0+ + =  in the form y mx c= + . Find d, e, f so that 
d e fi j k+ +  is parallel to the line in three dimensional space, which 
corresponds to the line ax by c 0+ + =  in two dimensional space. 

(iii) Use the formula 
p a d

d
( )− ×

 to show that the distance between a 

point x yP( , )1 1  and the line ax by c 0+ + =  is:

ax by c

a b
1 1

2 2

+ +
+
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The distance from a point to a plane
The distance from the point x y zP( , , )1 1 1  to the plane π with equation 
ax by cz d 0+ + + =  is PM, where M is the foot of the perpendicular from P 
to the plane (see Figure 7.16).

Notice that since PM is normal to the plane, it is parallel to the vector 
a b cn i j k= + + . 

Take any point, other than M, on the plane and call it R, with position vector r.

P(x1, y1, z1)

R
M

p – r n =
a
b
c







π

▲ Figure 7.16

If the angle between the vectors p − r and n is acute (as shown in Figure 7.16):







.n

p r .n

PM RPcosRPM RP

( )

= =

= −

If the angle between p − r and n is obtuse, cosRPM is negative and 
p r .nPM ( )= − −

Now you want to choose coordinates for the point R that will keep your 

working simple. A suitable point is 
d
c0, 0,( )− . For this point, 

d
c

r

0
0 .=

−





















 

Then ( )− =
+

= + + +



































x
y

z d
c

a
b
c

ax by cz dp r .n .

1

1

1

1 1 1  

Using the scalar product 
a.b = |a||b|cos θ.

d
c0,0,( )−  lies on 

the plane  
ax + by + cz = d.

Find the shortest distance from the point P(3, 5) to the line x y5 3 4 0− + = . 

Solution

In this case x y3,  51 1= =  and a b c5,   3,   4= = − =  so the shortest 
distance from the point P to the line is

ax by c

a b

5 3 3 5 4

5 ( 3)
4
34

1 1

2 2 2 2

( ) ( )+ +
+

= × + − × +
+ −

=

Example 7.16
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and 

ax by cz d

a b c

p r .n

p r .n
n

PM ( )

1 1 1

2 2 2

( )

= −

= − =
+ + +

+ +  

Notice how this formula for the distance from a point to a plane in three 
dimensions resembles the distance from a point to a line in two dimensions. 

Find the shortest distance from the point (2, 4, −2) to the plane 
x y z6 3 1 0− − + = .

Solution

The shortest distance from the point x y z( , , )1 1 1  to the plane 
ax by cz d 0+ + + =  is:

ax by cz d

a b c
1 1 1

2 2 2

+ + +
+ +

In this case, x y z2,  4,   21 1 1= = = −  and a b c d6,   1,   3,   1= = − = − =  

so the shortest distance from the point to the plane is

ax by cz d

a b c
6 2 1 4 3 2 1

6 1 3
15
46

2.21

1 1 1

2 2 2

2 2 2

( ) ( ) ( )
( ) ( )

+ + +
+ +

= × + − × + − × − +
+ − + −

= ≈

Example 7.17

Finding the distance between two parallel lines
The distance between two parallel lines l1 and l2 is measured along a line PQ, 
which is perpendicular to both l1 and l2, as shown in Figure 7.17.

You can find this distance by simply choosing a point P on l1, say, and then 
finding the shortest distance from P to the line l2.

Two straight lines in three dimensions are given by the equations:

− + −λ
































l :
2
3
0

1
3
2

1  and µ+
−

−

































l :
4
2
1

2
6
4

2

(i)  Show that the two lines are parallel.

(ii)  Find the shortest distance between the two lines.

Example 7.18

P

Q

l1

l2

▲ Figure 7.17
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Solution

(i) The direction vectors of the two lines are d
1
3
2

1 = −
















 and =
−

−

















d
2
6
4

2 . 

 Since d d22 1= −  the two lines are parallel.

(ii) Choose a point P on l2 by setting =µ 0, which gives =
















p
4
2
1

.

 To find the shortest distance of P from l1, use a
2
3
0

= −















 and = −

















d
1
3
2

.

=
















AP
2
5
1

 and so dAP
2
5
1

1
3
2

13
3

11
× = × − = −

−
















































.

dAP 13 ( 3) ( 11) 2992 2 2× = + − + − =

d 1 ( 3) 2 142 2 2= + − + =

 The shortest distance is 
d

d
AP 299

14
4.62.

×
= ≈

You could use any 
value for µ.

Finding the distance between skew lines
Two lines are skew if they do not intersect and are not parallel. 

Figure 7.18 shows two skew lines l1 and l2. The shortest distance between the 
two lines is measured along a line that is perpendicular to both l1 and l2. 

Q

P
P1

Q1

1

′1

2π
π is the plane containing 
l′
1
 parallel to l

1
.

Drop perpendiculars 
from the points on l

1
 to 

π to form l′
1
, which is the 

projection of l
1
 on π.

▲ Figure 7.18

Figure 7.19 shows the lines l1 and l2 and two parallel planes. Then l1 and l2 
have equations r a d1 1= + λ  and r a d2 2= + µ  respectively. A1 and A2 are 
points on the lines l1 and l2 with position vectors a1 and a2 respectively. 

π1 contains l1 and is parallel to l2
π2 contains l2 and is parallel to l1

The common 
perpendicular 
of l1 and l2 is the 
perpendicular from l1 
that passes through 
the point Q, the point 
of intersection of  
l2 and l′1.
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A2

N

n

d1

d2

A1P

Q

π1

π2

1

2

θ

▲ Figure 7.19

Then PQ, the common perpendicular of l1 and l2 has the same length as any 
other perpendicular between the planes such as A2N. If angle A1A2N = θ then 

.nPQ A N A A cos A A2 2 1 2 1= = =θ

where n is a unit vector parallel to A2N, i.e. perpendicular to both planes.

ACTIVITY 7.4

Explain why PQ is shorter than any other line, such as P1Q1 joining lines 
l1 and l2.

Notice that the modulus function is used to ensure a positive answer: the 
vector n may be directed from π1 to π2 making .nA A2 1  negative. 

Since π1 and π2 are parallel to l1 and l2, which are parallel to d1 and d2 

respectively, you can take d d1 2×  as n with n
d d
d d

( )1 2

1 2

= ×
×

.

Then:

.n
. d d

d d
a a . d d

d d
PQ A N |A A |

A A ( ) ( )
2 2 1

2 1 1 2

1 2

1 2 1 2

1 2

( )= = = ×
×

= − ×
×

So, the distance between two skew lines is given by: 

d d
d d

. a a
( )

( )1 2

1 2
1 2

×
×

−

where a1 is the position vector of a point on the first line and d1 is parallel to 
the first line, and similarly a2 is the position vector of a point on the second 
line and d2 is parallel to the second line.
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Find the shortest distance between the lines l r:
8
9
2

1
2
3

1 =
−

+
−

λ
































 and 

l r:
6
0
2

1
1
2

.2 =
−

+ −
−

µ

































Solution

Line l1 contains the point A (8, 9,  2)1 −  and is parallel to the vector 
d i j k2 31 = + − .

Line l2 contains the point A (6, 0, 2)2 −  and is parallel to the vector 
d i j k22 = − − .

a a
8
9
2

6
0
2

2
9
0

1 2− =
−

−
−

=
















































and d d
1
2
3

1
1
2

4 3
3 2
1 2

7
1
3

1 2× =
−

× −
−

=
− −
− +
− −

=
−
−
−
































































 

Then ( ) ( )× − =
−
−
−

= − − = −
































d d . a a
7
1
3

.
2
9
0

14 9 231 2 1 2  

Also d d ( 7) ( 1) ( 3) 591 2
2 2 2× = − + − + − =  

Therefore the shortest distance between the skew lines is:

d d
d d

. a a
( )

( ) 23
59

2.991 2

1 2
1 2

×
×

− = ≈  units

Example 7.19

1 Calculate the distance from the point P to the line l:

(i)  P(1, −2, 3) l x y z: 1
2

5
2

1
1

− = − = +
−

(ii)  P(2, 3, −5) l r:
4
3
4

6
7
6

= + −λ

































(iii)  P(8, 9, 1) l x y z:  6
12

5
9

11
8

− = −
− = −

−
2 Find the distance from the point P to the line l:

(i)  P(8, 9) l x y: 3 4 5 0+ + =
(ii)  P(5, −4) l x y: 6 3 3 0− + =
(iii)  P(4, −4) l x y: 8 15 11 0+ + =

Exercise 7D
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3 Find the distance from the point P to the plane π:

(i)  P(5, 4, 0) π x y z: 6 6 7 1 0+ + + =
(ii)  P(7, 2, −2) π x y z: 12 9 8 3 0− − + =
(iii)  P(−4, −5, 3) π x y z: 8 5 3 4 0+ − − =  

4 A line l1 has equation r
2
0
1

1
2
1

λ=
−

+ −
−
































.

(i) Write down the equation of a line parallel to l1 passing through the 
point (3, 1, 0).

(ii) Find the distance between these two lines.

5 (i) Show that the lines = + λ
































r
1
2
4

3
0
2

 and r
2
1
0

1
1
1

= +
−

µ
































 are skew.

(ii) Find the shortest distance between these two lines.

6 Find the shortest distance between the lines l1 and l2.

 In each case, state whether the lines are skew, parallel or intersect.

(i) l x y z:  2
1

3
2

4
21

− = − = −   and   l x y z:  2
2

9
2

1
12

− = −
− = −  

(ii) l x y z:  8
4

2
3

7
51

− = + = −   and   l x y z:  2
2

6
6

1
92

− = +
− = −

−  

(iii) l r:
5
6
1

8
6
3

1 =
−

+ λ
































  and  = + µ

































l r:
5
8
3

5
1
1

2  

(iv) l r:
2
3
1

1
1
2

1 =
−

+ λ
































  and  =

−
+

−
−
−

µ

































l r:
4
0
1

2
2
4

2  

7 (i) Find the shortest distance from the point P(13, 4, 2) to the line l:

= −
−

+ −λ
































r
2
8

21

1
2
3

.

(ii) Find the coordinates of the point M, which is the foot of the 
perpendicular from P to the line l.

P

M

l

8 (i) Find the exact distance from the point A (2, 0, −5) to the plane 
π x y z: 4 5 2 4 0− + + = .

(ii)  Write down the equation of the line l through the point A that is 
perpendicular to the plane π.

(iii)  Find the exact coordinates of the point M where the perpendicular 
from the point A meets the plane π.
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9 In a school production some pieces of the stage set are held in place by 
steel cables. The location of points on the cables can be measured, in 
metres, from an origin O at the side of the stage. 

Cable 1 passes through the points A(2, −3, 4) and B(1, −3, 5) whilst  
cable 2 passes through the points C(0, 3, −2) and D(2, 3, 5).

(i) Find the vector equations of the lines AB and CD and determine 
the shortest distance between these two cables. 

One piece of the stage set, with corner at E(1, 6, −1), needs to be more 
firmly secured with an additional cable. It is decided that the additional 
cable should be attached to cable 2.

(ii) If the additional cable available is three metres long, determine 
whether it will be long enough to attach point E to cable 2.

10 The point P has coordinates (4, k, 5) where k is a constant.

 The line L has equation r
1
0
4

1
2
2

.=
−

+
−

λ
































 

 The line M has equation kr
4

5

7
3
4

.= +
−

µ
































 

(i)  Show that the shortest distance from the point P to the line L is 
k k1

3 5( 12 117).2 + +
(ii)  Find, in terms of k, the shortest distance between the lines L and M.

(iii)  Find the value of k for which the lines L and M intersect.

(iv)  When k = 12, show that the distances in parts (i) and (ii) are equal. 
In this case, find the equation of the line that is perpendicular to, 
and intersects, both L and M.

11 The line l1 passes through the points A (2, 3, −5) and B (8, 7, −13). The 
line l2 passes through the points C (−2, 1, 8) and D (3, −1, 4). 

 Find the shortest distance between the lines l1 and l2. 

 The plane 
1Π  passes through the points A, B and D. The plane

2Π  passes 
though the points A, C and D. 

 Find the acute angle between 
1Π  and 

2Π , giving your answer in 
degrees.

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q11 May/June 2014

M
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12 The position vectors of the points A, B, C, D are

+ − − + − + + + + mi j k i j k i j k i j k2 4 3 , 2 5 4 , 4 , 5 ,

 respectively, where m is an integer. It is given that the shortest distance 
between the line through A and B and the line through C and D is 3. 
Show that the only possible value of m is 2.

 Find the shortest distance of D from the line through A and C.

 Show that the acute angle between the planes ACD and BCD is 

cos 1
3

1 ( )− .

Cambridge International AS & A Level Further Mathematics  
9231 Paper 11 Q11 May/June 2012

KEY POINTS

1 The Cartesian equation of a plane perpendicular to the vector n = 
1

2

3

n
n
n













  is

 n1x + n2y + n3z = d.

2 The vector equation of the plane through the points A, B and C is

 r = OA + λAB + µAC.

3 The equation of the plane through the point with position vector a, 
and perpendicular to n, is given by (r – a). n = 0.

4 The distance of the point (α, β, γ ) from the plane n1x + n2y + n3z = d is

 –
.

1 2 3

1
2

2
2

3
2

n n n d

n n n

α β γ+ +

+ +
 If the plane is written ax + by + cz = d, the formula for the distance is

 
–

2 2 2

a b c d

a b c

α β γ+ +

+ +
 5 The angle between a line and a plane is found by first considering the 

angle between the line and a normal to the plane.

 6 The vector product a × b of a and b is a vector perpendicular to both 
a and b 

 θ× = a b a b nsin

 where θ is the angle between a and b and n is a unit vector that is 
perpendicular to both a and b such that a, b and n (in that order) 
form a right-handed set of vectors. 

 7 × = − +
a a

b b

a a

b b

a a

b b
2 3

2 3

1 3

1 3

1 2

1 2

a b i j k
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 8 In three dimensions, the shortest distance from  
a point P with position vector p to a line with  
direction vector d and passing through the  
point A, with position vector a, is given by:

 

� ���
d

d

AP ×

 

 9 The shortest distance from a point x y zP( , , )1 1 1  to the plane 
ax by cz d 0+ + + =  is given by:

 

ax by cz d

a b c
1 1 1

2 2 2

+ + +
+ +

10 In three dimensions there are three possibilities for the arrangement 
of the lines. They are either parallel, intersecting or skew.

11 The shortest distance between two parallel lines can be found by 
choosing any point on one of the lines and finding the shortest 
distance from that point to the second line.

P

A d

12 The distance between two skew lines is given by:

 

d d
d d

. a a
( )

( )1 2

1 2
1 2

×
×

−

 where a1 is the position vector of a point on the first line and d1  is 
parallel to the first line, similarly for the second line.

a1

d1

a1

d2

P

A d
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7 LEARNING OUTCOMES

Now that you have finished this chapter, you should be able to
■ use the equation of the plane in the form

■ ax by cz d+ + =
■ pr n. =
■ r a b cλ µ= + +

■ convert the equations of planes from one form to anther as necessary in 
problem solving

■ recall that the vector product a b×  can be expressed as:

■ a b nsin ˆθ  where n̂  is a unit vector

■ a b a b a b a b a b a bi j k2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) ( )− + − + −

■ 1 2 3

1 2 3

    a a a

b b b

a b

i j k

× =

■ use

■ equations of lines

■ equations of planes

■ scalar product of vectors

■ vector product

to solve problems, including
■ determining whether a line lies in a plane

■ determining whether a line is parallel to a plane or intersects a plane

■ finding the point of intersection of a line and a plane when it exists

■ finding the foot of the perpendicular from a point to a plane

■ finding the angle between a line and a plane

■ finding the angle between two planes

■ finding an equation for the line of intersection of two planes

■ calculating the shortest distance between two skew lines

■ finding an equation for the common perpendicular to two skew 
lines.
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adjugate (adjoint) of a matrix 150
anti-commutative property, vector 

product 179
associativity of matrices 4, 10, 38
asymptotes

horizontal 91, 93–4
oblique 98–100
vertical 91, 92–3

Cartesian coordinates, conversion 
to and from polar 
coordinates 118–19

Cartesian equation of a plane 158–9
Cartesian equations, conversion to and 

from polar equations 120–1
cofactors 148, 154
command words ix
communication x
commutativity of matrices 4, 10, 38
composition of transformations 27–8
conjectures 57
convergent sequences 41
cosecant (cosec) 123
counter-examples 57
cubes, sum of 47
cubic equations 76–9, 87

forming new equations 79–81
curve sketching 92–7

polar equations 124–30
y = | f(x) | 102

1
f ( )

y
x

=  104–8

y = f(| x |) 103–4
y2 = f(x) 108–11

decreasing sequences 41
deductive (position-to-term) 

definition of a sequence 42
determinant of a matrix 154

2 × 2 matrices 136–9
3 × 3 matrices 147–9
zero value 139, 143

discriminants, finding the range of a 
function 95

distance from a point to a line 183–7, 
195

distance from a point to a plane  
187–8, 195

double angle formulae 123
elements of a matrix 2
enlargements 14

matrix representation 16–17, 18, 24

equiangular spiral 116, 133
even functions 96
expansion of the determinant by the 

first column 147–8

Fermat numbers 65

graphs of rational functions 90, 
113–14

asymptotes 91
graph sketching 92–7
oblique asymptotes 98–100
y = | f(x) | 102

1
f ( )

y
x

=  104–8

y = f(| x |) 103–4
y2 = f(x) 108–11

horizontal asymptotes 91, 93–4

identity matrices (unit matrices) 3, 
141–3

image, definition 14
increasing sequences 41
induction, proof by 56–64, 67
inductive (term-to-term) definition 

 of a sequence 42
infinity, sums to 51–3
invariant lines 34–5
invariant points 33–4
inverse of a matrix 154

2 x 2 143–4
3 x 3 147–52

inverse of a product of matrices 145

lemniscate curve 131
linear transformations 24
lines of invariant points 34

mappings 14
mathematical induction 57–64, 67
matrices 2, 37–8, 154–5

addition and subtraction 3
associativity 4, 10, 38
commutativity 4, 10, 38
determinant of a 2 × 2 

matrix 136–9
determinant of a 3 × 3 

matrix 147–9
with determinant zero 139
equal 3
identity matrix 141–3

inverse of a 2 × 2 matrix 143–4
inverse of a 3 × 3 matrix 147–52
inverse of a product of 

matrices 145
proofs by induction 63–4
scalar multiplication 3
singular and non-singular 143
special types 3
see also transformation matrices

matrix multiplication 7–9, 37–8
properties of 10

method of differences 50–3
minors 148, 154
modelling x

non-conformable matrices 3
non-singular matrices 143, 155
normal to a plane 159

angle between a line and a 
plane 165–6

object, definition 14
oblique asymptotes 98–100
odd functions 96
order of a matrix 2
order of a polynomial 68, 69–70
oscillating sequences 41

parallel lines, distance between 188–9, 
195

parallel lines and planes 163–4
parallel vectors 179
perpendiculars to a plane 159–61
perpendicular vectors 163
planes

angle between a line and a 
plane 165–6

angle between two planes 172–4
distance of a point from 164–5
intersection of 170–1
intersection with a line 162–4
lines parallel to 163–4
sheaf of 172
vector equations of 157–61

polar coordinates 116–18, 134
conversion to and from Cartesian 

coordinates 118–19
polar equations

area enclosed by a curve 131–3
conversion to and from Cartesian 

equations 120–1
curve sketching 124–30

Index
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polynomials 68–70, 87
cubic equations 76–81
quadratic equations 71–5
quartic equations 83–5
shorthand notation 77

position-to-term (deductive) 
definition of a sequence 42

position vectors 14–15
positive integers, sum of 42–4
principal polar coordinates 118
problem solving x
proof by induction 56–64, 67

quadratic equations 87
forming new equations 73–4
roots of 71–2
symmetric functions of the 

roots 74–5
quartic equations 83–5, 87

range of a function 95
rational functions 90, 113–14

asymptotes 91, 92–4
even and odd 96
graph sketching 92–7
graphs of 90–1
oblique asymptotes 98–100
range of 95
stationary points 94
y = | f(x) | 102

1
f ( )

y
x

=  104–8

y = f(| x |) 103–4
y2 = f(x) 108–11

rational numbers 90
reflections 14

matrix representation 16, 17, 24
rhodonea curve 130
roots of a polynomial 68–70
roots of a quadratic equation 71–2

symmetric functions 74–5
rotations 14

matrix representation 16, 19, 24

secant (sec) 123
sequences 41, 66

definition 41–2
notation 41
positive integers 42–4
proofs by induction 62

series 41, 66
method of differences 50–3
proofs by induction 59–60
sum of cubes 47
sum of positive integers 42–4
sum of squares 47

sheaf of planes 172
shear factors 22
shears 20–3

matrix representation 24
Sierpinsky triangle 135
sigma (Σ) notation 42–3
singular matrices 143, 155
skew lines, distance between 189–91, 

195
square matrices 3
squares, sum of 47
stationary points 94, 96–7
stretches, matrix representation 20, 24
sum, Σ notation 42–3
sum to infinity 51–3
symmetric functions of the roots  

74–5, 77

telescoping sums 51–3
term-to-term (inductive) definition of 

a sequence 42
transformation matrices 38

determinant 136–9
finding the matrix representing a 

given transformation 17–20
finding the transformation 

represented by a given 
matrix 15–17

proving results in 
trigonometry 29–30

shears 20–3
stretches 20

summary 24
see also matrices

transformations 14–15
invariant lines 34–5
invariant points 33–4
notation 28
successive 27–8

turning points
polynomials 69–70
rational functions 100

unit matrices (identity matrices) see 
identity matrices

unit vectors 15

vector equation of a plane 194
angle between a line and a 

plane 165–6
angle between two planes 172–4
conversion to Cartesian form 158
determination from the direction 

perpendicular to it 159–61
determination from three 

points 157–8
distance of a point from a 

plane 164–5
intersection of a line and a 

plane 162–4
intersection of two planes 170–1

vector product 177–81, 194
vectors

distance between skew lines  
189–91

distance between two parallel 
lines 188–9

distance from a point to a 
line 183–7

distance from a point to a 
plane 187–8

vertical asymptotes 91, 92–3
Vieta’s formulae 83

zero matrices 3, 143
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