ALGEBRAIC TECHNIQUES

Algebraic Fractions

Partial Fractions

\square Decompose rational functions into partial fractions

SEQUENCES \& SERIES

Binomial Expansion

\square Use the binomial expansion $(a+b x)^{n}$ for fractional and negative values of n
\square Be aware that the expansion is valid for $\left|\frac{b x}{a}\right|<1$

Notation \& Language of Series

\square Work with sequences given by a formula for the nth term
\square Work with sequences generated by a simple relation of the form $x_{n+1}=f\left(x_{n}\right)$
\square Identify increasing sequences, decreasing sequences and periodic sequences
\square Understand and use sigma notation for sums of series

Arithmetic Series \& Geometric Series

\square Use the formula for the nth term and the sum to n terms of an arithmetic sequence
\square Use the formula for the nth term and the sum to n terms of a finite geometric sequence

Use the formula for the sum to infinity of a convergent geometric series where $|r|<1$
\square Use sequences and series in modelling, eg amounts paid into saving schemes

NUMERICAL METHODS

Change of Sign Argument

\square Locate roots of $f(x)=0$ by considering changes of sign of $f(x)$ in an interval of xUnderstand that change of sign methods can fail if $f(x)$ is not continuous or roots >1

Simple Iterative Methods

\square Use an iteration in the form $x_{n+1}=f\left(x_{n}\right)$ to find a root to the equation $x=f(x)$
\square Know that the iteration $x_{n+1}=g\left(x_{n}\right)$ converges to a root at $x=a$ if $\left|g^{\prime}(a)\right|<1$
\square Draw cobweb and staircase diagrams to illustrate simple iterative methods

Newton-Raphson

\square Solve equations using the Newton-Raphson method and other recurrence relations
\square Understand the Newton-Raphson fails if the initial value coincides with a stationary point

Small Angle Approximations

\square Understand and use the small angle approximations for $\operatorname{sine}: \sin \theta \approx \theta$
\square Understand and use the small angle approximation for cosine: $\cos \theta \approx 1-\frac{\theta^{2}}{2}$
\square Understand and use the small angle approximation for $\operatorname{tangent:~} \tan \theta \approx \theta$

FUNCTIONS \& GRAPHS

Functions

\square Understand and use composite functions, inverse functions and their graphs
\square Understand that a function is a one-one or many-one mapping
\square Understand and find the domain and range of functions
\square Understand that $y=f^{-1}(x)$ is a reflection of the graph $y=f(x)$ in the line $y=x$

Use functions in modelling, understanding the limitations and refinements

Modulus Equations \& Inequalities

\square Sketch the graphs of $y=|a x+b|$

Use the graph to solve modulus equations and inequalities, eg $y=|2 x-1|$Use relations such as $|a|=|b| \Leftrightarrow a^{2}=b^{2}$ and $|x-a|<b \Leftrightarrow a-b<x<a+b$

Graph Transformations

\square Apply multiple transformations to functions of $x^{2}, x^{3}, x^{4}, \frac{1}{x} \frac{1}{x^{2}}|x|, \sin x, \cos x, \tan x, e^{x}, a^{x}$
\square Sketch the graphs of $y=|f(x)|$ and $y=|f(-x)|$ given $y=|f(x)|$

Parametrically Defined Functions

Understand and use the parametric equations of curvesConvert between Cartesian and parametric forms
\square Use parametric equations in modelling in a variety of contexts

VECTORS \& TRIANGLES

Vectors in 3 Dimensions

\square Use vectors in 3 dimensions, in the form of column vectors and as \mathbf{i}, \mathbf{j} and \mathbf{k} unit vectors
\square Find the magnitude and direction of 3D vectors

Use scalar multiplication and vector addition for 3D vectors

Formulae for Sectors

\square Work with radian measure, including arc length $(s=r \theta)$ and area of sector $\left(\frac{1}{2} r^{2} \theta\right)$

TRIGONOMETRY

Reciprocal Trig Functions

\square Know and use exact values of \sin , \cos and \tan for $0, \frac{\pi}{6} \frac{\pi}{4} \frac{\pi}{3} \frac{\pi}{2} \pi$ and multiples
\square Understand and use the definitions of secant, cosecant and cotangent
\square Understand the graphs, ranges and domains of the reciprocal trig functions

Pythagorean Identities

\square Understand and use $\sec ^{2} \theta=1+\tan ^{2} \theta$ and $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$

Addition Formulae

\square Understand and use the formulae $\sin (A \pm B), \cos (A \pm B)$ and $\tan (A \pm B)$Understand the geometrical proofs for these formulae

Double/Half Angle Formulae

Understand and use double angle formulae for \sin , \cos and \tan
Harmonic Form $R \cos (x+a)$
\square Convert the expression $a \cos \theta+b \sin \theta$ into the form $r \cos (\theta \pm \alpha)$ or $r \sin (\theta \pm \alpha)$Solve equations such as $a \cos \theta+b \sin \theta=c$ in a given interval

Inverse Trig Functions

\square Understand and use the definitions of \arcsin , \arccos and \arctan
\square Understand the graphs, ranges and domains of the inverse trig functions

DIFFERENTIATION

Increasing, Decreasing, Concave \& Convex Graphs
\square Use the second derivative to determine if a graph is convex or concave over an interval

\squareUse the second derivative to find point(s) of inflection of a graph

The Derivatives

\square Differentiate $e^{k x}, a^{k x}, \ln x, \sin k x, \cos k x, \tan k x$ and related multiples
\square Show differentiation from first principles for $\sin x$ and $\cos x$

The Chain Rule

\square Use connected rates of changes in models
\square Differentiate parametric functions to find the equations of tangents and/or normals

The Product \& Quotient Rules

\square Differentiate $\operatorname{cosec} x, \cot x$ and $\sec x$
\square Differentiate functions such as $2 x^{4} \sin x, \frac{e^{3 x}}{x}, \cos ^{2} x$ and $\tan ^{2} 2 x$

Implicit Differentiate and Parametric Differentiation

Differentiate functions in the form $x=f(y)$, eg $x=\sin y$, then use $\frac{d y}{d x}=1 \div\left(\frac{d x}{d y}\right)$
\square Differentiate simple parametrically defined functions

Integrate Fractions, Exponentials and Trig

Integration by Substitution
\square Carry out simple cases of integration by substitution
\square Understand that integration by substitution is the inverse of the chain rule
\square Find and use an appropriate substitution for integration by substitution
\square Recognise an integrand of the form $\frac{k f^{\prime}(x)}{f(x)}$

Parametric Integration

\square Evaluate the area of a region bounded by a parametrically defined curve

Integration by Parts

\square Carry out simple cases of integration by partsUnderstand that integration by parts is the inverse of the product ruleUse more than one application of integration by parts, eg for $x^{2} \sin x$
\square Apply integration by parts to the integral $\ln x$ and related functions

Form \& Solve Differential Equations

Evaluate the solution of simple first order differential equations with separate variablesInterpret the solution of a differential equation in context, eg kinematics

PROOF

 Tutors
Proof by Contradiction

\square Use proof by contradiction to prove the irrationality of $\sqrt{2}$
\square Use proof by contradiction to prove the infinity of primes
\square Apply proof by contradiction to unfamiliar proofs

CORRELATION \& REGRESSION

Product Moment Correlation Coefficient

\square Know that the product moment correlation coefficient r satisfies $|r| \leqslant 1$
\square Know that if $r= \pm 1$ all of the data points lie on a straight line
\square Calculate r using a calculator (Edexcel)

Independent Events

\square Use set notation to describe events
\square Use $\mathrm{P}(B \mid A)=\mathrm{P}(B), \mathrm{P}(A \mid B)=\mathrm{P}(A)$ when A and B are independent events
\square Use $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$ when A and B are independent events

Conditional Probability

\square Understand and use conditional probability and the conditional probability formula
\square Use conditional probability in tree diagrams, Venn diagrams and two-way tables
\square Understand and use $\mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)$

Understand and use $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$Understand and use $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)$
\square Model with probability, including critiquing assumptions made and their effect

NORMAL DISTRIBUTION

Key Features of a Normal Distribution

\square Know the shape and symmetry of the normal distribution
\square Know that the points of inflection are at $x=\mu \pm \sigma$

Understand and use the notation $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
\square Know approximately two-thirds of the data lies in the range $\mu \pm \sigma$

Know approximately 95% of the data lies in the range $\mu \pm 2 \sigma$
\square Know almost all data lies in the range $\mu \pm 3 \sigma$

Using the Normal Distribution

\square Be able to recognise when the binomial or normal model may not be appropriate
\square Be able to link the normal distribution to histograms

Using the Normal to Approximate the Binomial

Hypothesis Testing for the Mean of a Population

Hypothesis Testing for Zero Correlation

\square Be able to interpret a correlation coefficient given a p-value or critical value

CONSTANT ACCELERATION

Projectiles

\square Model motion under gravity in a vertical plane using vectors
\square Derive formulae for time of flight, range, and greatest height

VARIABLE ACCELERATION

2D Variable Acceleration

\square Differentiation and integration of vectors with respect to time

Friction

\square Understand and use the coefficient of friction, μ
\square Understand that, for a body in motion, $F=\mu R$
\square Understand that, for a body at equilibrium, $F \leqslant \mu R$
\square Solve problems involving a body on a rough surface

Resolving Forces

\square Understand and use the term resultant as applied to $2+$ forces acting at a point
\square Understand and use Newton's second law when forces need to be resolved

Understand and use Newton's third law when forces need to be resolved

Motion on an Inclined Plane

MOMENTS

Moments

\square Calculate the moment of a force about an axis through a point in the plane of the body
\square Understand that when a rigid body is in equilibrium the resultant moment is zero
\square Apply moments to simple static problems, eg ladders, uniform/non-uniform rods, laminas

