\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Marking instructions \& AO \& Mark \& Typical solution \\
\hline 12(a) \& \begin{tabular}{l}
Uses appropriate trig identity to form quadratic equation in single trigonometrical term. Condone
\[
2\left( \pm 1 \pm \operatorname{cosec}^{2} x\right)+2 \operatorname{cosec}^{2} x=1+4 \operatorname{cosec} x
\] \\
Completes rigorous argument to show the required result
\end{tabular} \& \(1.1 a\)

2.1 \& M1

R1 \& $$
\begin{aligned}
& 2 \cot ^{2} x+2 \operatorname{cosec}^{2} x=1+4 \operatorname{cosec} x \\
& 2\left(\operatorname{cosec}^{2} x-1\right)+2 \operatorname{cosec}^{2} x=1+4 \operatorname{cosec} x \\
& 4 \operatorname{cosec}^{2} x-4 \operatorname{cosec} x-3=0
\end{aligned}
$$ \\

\hline \multirow{6}{*}{12(b)} \& | Solves quadratic and Obtains one of $\operatorname{cosec} x=\frac{3}{2}$ or $\operatorname{cosec} x=-\frac{1}{2}$ |
| :--- |
| OE | \& 1.1b \& B1 \& \multirow[t]{5}{*}{| $\operatorname{cosec} x=\frac{3}{2}$ |
| :--- |
| or $\operatorname{cosec} x=-\frac{1}{2}$ reject since $\|\operatorname{cosec} x\| \geq 1$ |
| $\cot ^{2} x=\left(\frac{3}{2}\right)^{2}-1=\frac{5}{4}$ |
| $\tan x=-\frac{2 \sqrt{5}}{5}$ |
| Since $x$ is obtuse |} \\

\hline \& Explains why their spurious solution(s) is rejected referring to the range of cosec or sine with explicit comparison to $\pm 1$ May accept later rejection for valid reason ie sq root of negative OE \& 2.4 \& E1F \& \\
\hline \& Uses trig identity or right-angled triangle/Pythagoras or given equation with their exact value of $\operatorname{cosec} x$ or $\sin x$ to obtain an exact value of $\tan x$ value used must satisfy $|\operatorname{cosec} x| \geq 1 \quad$ OE \& 1.1a \& M1 \& \\
\hline \& Completes rigorous argument to find correct exact magnitude of $\tan x$ ACF \& 2.1 \& R1 \& \\
\hline \& Deduces $\tan \mathrm{x}$ is negative. May be seen anywhere without contradiction by a positive final answer. \& 2.2a \& B1 \& \\
\hline \& Total \& \& 7 \& \\
\hline
\end{tabular}

