Q	Marking instructions	AO	Mark	Typical solution
12(a)	Uses appropriate trig identity to form quadratic equation in single trigonometrical term. Condone $2(\pm 1\pm \csc^2 x) + 2\csc^2 x = 1 + 4\csc x$	1.1a	M1	$2 \cot^{2} x + 2 \csc^{2} x = 1 + 4 \csc x$ $2(\csc^{2} x - 1) + 2 \csc^{2} x = 1 + 4 \csc x$ $4 \csc^{2} x - 4 \csc x - 3 = 0$
	Completes rigorous argument to show the required result	2.1	R1	
	Solves quadratic and Obtains one of $\csc x = \frac{3}{2}$ or $\csc x = -\frac{1}{2}$ OE	1.1b	B1	$\operatorname{cosec} x = \frac{3}{2}$ or $\operatorname{cosec} x = -\frac{1}{2}$ reject since $ \operatorname{cosec} x \ge 1$
	Explains why their spurious solution(s) is rejected referring to the range of cosec or sine with explicit comparison to ± 1 May accept later rejection for valid reason ie sq root of negative OE	2.4	E1F	$\cot^{2} x = \left(\frac{3}{2}\right)^{2} - 1 = \frac{5}{4}$ $\tan x = -\frac{2\sqrt{5}}{5}$ Since x is obtuse
12(b)	Uses trig identity or right-angled triangle/Pythagoras or given equation with their exact value of cosec <i>x</i> or sin <i>x</i> to obtain an exact value of tan <i>x</i> value used must satisfy $ cosec x \ge 1$ OE	1.1a	M1	
	Completes rigorous argument to find correct exact magnitude of tan <i>x</i> ACF	2.1	R1	
	Deduces tan x is negative. May be seen anywhere without contradiction by a positive final answer.	2.2a	B1	
	Total		7	