
Mastering DSP in VHDL

Fixed point arithmetic

complex VHDL design using Digital signal processing

- Digital filtering
- **C++**
- Matlab
- Signal Theory

Mastering DSP in VHDL

Start Learning VHDL using FPGA

Write to: info@surf-vhdl.com

- continuous-time signal
- discrete-time signal
- Time domain and Frequency domain representation
- Function $\delta(n)$ and u(n)
- Analog to Digital and Digital to Analog Conversion
- Quantization error, SRN, SINAD

- Introduction to Digital Filter Design
- Example of Mobile Average Filter
- FIR general architecture
- Frequency response
- Impulse response
- Step response
- MATLAB/C++ implementation
 - Symmetric FIR
 - Antisymmetric FIR
 - **™** Half-Band FIR

- Introduction to Fixed point arithmetic
- Floating point -> Fixed point
- Fixed point representation
- Add, Sub, Mult, Acc

Filter synthesis using Matlab/Octave

Filter design example using the Matlab Remez function to synthesize a digital filter

Fixed point verification Matlab/Octave/C++

- VHDL implementation of Mobile Average Filter
- VHDL implementation of classic FIR
- VHDL implementation of a symmetric FIR
- VHDL implementation of an antisymmetric FIR

- Introduction to multi-rate filter
- Interpolation
- FIR Interpolator
- Decimation
- FIR Decimation
- Fractional interpolation/Decimation

