
The Z-Transformation of the Normal Distribution 

Similar to other probability distributions, the area under the normal curve represents the probability of 

occurrence of X.   

To more quickly calculate the area under the normal distribution curve statisticians have given us the Z-

transformation, along with the Z-tables.  

To perform the Z-transformation, you can use the following equation. This will transform your random 

variable X, into a Z-value based on the distributions mean & standard deviation.  

𝑍 =
𝑋 −  𝜇

𝜎
 

For example, let's say you've got a variable X (Grades on the CQE Exam) that follows the normal 

distribution with a mean value μ = 82 and a standard deviation σ = 6.    The Z-score for an exam grade of 

70 can be calculated as: 

𝑍 =
70 − 82

6
= −2.0 

We can interpret this result by saying that the exam score of 70 is 2.0 standard deviations below the mean.  

If you wanted to calculate the proportion of the population which scored less than 70% on the exam, it 

would look like the gray shaded area below on the distribution: 

 

Notice this distribution is not a reflection of the exam score (centered at z=0), but it's a reflection of the 

transformed z-score associated with the exam. 

We can then use the Z-score tables to answer any probability question associated with this value without 

having to use a calculator.   

 

 

 



Z-Transformation Example 

For example, the graph above shows all exam scores less than z = -2.0; however, you could also use the z-

table to find the probability of a Z-score between -2 and 0, which graphically looks like this: 

 

Once you've performed the Z-transformation, you can now calculate the probability associated with 

your Z-value using the table below. 

This Probability Table can be used to take your Z-value and convert it into the probability.   

This table is potentially different from other Z-Probability tables in that it only provides the probability of 

positive Z values.  

Recall though that the Z-value is symmetric around the mean value, so if you were looking for the 

probability from -1.04 to 0, it would be the same probability as that from +1.04 to 0. 

Also, if you wanted to look up the probability between -1 to +1, then you'd double probability of Z=1.0 

(0.34134).  

 

 

 

 

 

 

 

 



The Z-Transformation of the Normal Distribution 

 

 



Reliability Example Using the Normal Distribution 

Let's do another example of the Z-transformation in a real-life situation. 

Within the world of Reliability, the normal distribution curve can be used to model the reliability of a 

system over time.  

Let's say we're dealing with a motor and we've modeled the motors failure over time and it fits the normal 

distribution.  

Your test data indicates that the mean and standard deviation associated with the motor is 6,500 hours 

and 500 hours respectively.  

What is the reliability (the probability that the motor is still operational) of the motor at 7,200 hours?  

𝒁 =  
(𝑿 −  𝝁)

𝝈
=  

(𝟕, 𝟐𝟎𝟎 − 𝟔𝟓𝟎𝟎)

𝟓𝟎𝟎
= 𝟏. 𝟒 

Graphically, this looks like: 

 

Using the Z-Tables, the area under the curve at Z = 1.4 is .4192, and we add to that the 0.500 that 

represents the left half of the normal distribution curve which add up to 0.9192. 

Remember that the Z-Score and the resulting probability represent the area to the left of the time value 

(7,200 hours).  

So the reliability is the area to the right of the curve, which is 1 - .9192 = 0.0802. 

Therefore, there is an 8% probability that the motor has not yet failed after 7,200 hours.  

Or, said differently, 8% of the original population of motors are likely still operational after this amount of 

time.  

 

 



Uniform Distribution 

The uniform distribution is probably the easiest one to spot, and the easiest one to analyze. 

For example, let's say you've got a machining process that is producing part who's length is uniformly 

distributed between 10.5mm & 11.5mm - this distribution is shown below.  

 

As you can see from this distribution, all outcomes (10.5, 10.6, etc.) within this distribution share the same 

probability of occurrence.   

A classic example of the uniform distribution is the dice roll. The probability of each outcome (1, 2, 3. . . . 

) is constant between the 6 possible outcomes.  

Let's use the example of the machining process above to discuss the Mean & Variance associated with 

the uniform distribution. 

For the Uniform distribution, the mean value is simply the middle value which can be calculated as the 

minimum value (a) plus the maximum value (b) divided by 2: 

𝝁 =  
𝒂 + 𝒃

𝟐
             𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 →              𝜇 =  

10.5 + 11.5

2
= 11.0 

For the Variance, that calculation looks like this: 

𝝈𝟐 =  
(𝒃 − 𝒂)𝟐

𝟏𝟐
                   𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 →              𝜎2 =  

(11.5 − 10.5)2

12
=  

1

12
 

 

 

 

 



Probability Example #1 - Uniform Distribution 

Now let's see how we'd calculate probability with the uniform distribution. 

Using the example above of a machining process that is producing part who's length is uniformly 

distributed between 10.5mm & 11.5mm, what proportion of the overall population is produced within 

the lengths of 10.5mm - 11.0mm? 

 

This can be calculated using the following equation:  

𝑷(𝑿𝟏 < 𝑥 < 𝑿𝟐) =  
(𝑿𝟏 − 𝑿𝟐)

(𝒃 − 𝒂)
            𝑊ℎ𝑒𝑟𝑒 →     𝑃(10.5 > 𝑥 > 11.0) =  

(11.0 − 10.5)

(11.5 − 10.5)
=  

. 5

1
=

1

2

= 0.50 

This answer should make sense as 11.0 is the mean value of this distribution and we would expect 50% of 

the population to fall to the left of the mean value. 

 

 



Probability Example #2 - Uniform Distribution 

We could also ask the question, what proportion of the population is less than 10.7mm; let's see what 

that calculation would look like: 

𝑷(𝒙 < 𝑿𝟏) =  
(𝑿𝟏 − 𝒂)

(𝒃 − 𝒂)
            𝑊ℎ𝑒𝑟𝑒 →     𝑃(𝑥 > 11.0) =  

(10.7 − 10.5)

(11.5 − 10.5)
=  

. 2

1
=

1

5
= 0.20 

So we can interpret that to mean that 20% of the population is machined at less than 10.7mm in length. 

We can also interpret this result to mean that there's a 20% chance that any randomly sampling part will 

be measured to have a length less than 10.7mm. 

 

 

 

 

 

 

 

 

 

 



Bivariate Normal Distribution 

The Bivariate Normal Distribution is a spin-off of the normal distribution and it occurs when you have 2 

variables that both are normally distributed.  These variables can be completely independent, or a co-

variance can exist between them. 

Since this distribution is dealing with 2 variables - it's called the bivariate (2 variable)  distribution. 

 

This distribution can be characterized by its mean values, its standard deviations and it's correlation, 

specifically: 

• the Mean of X (μx) & Standard Deviation of X (σx),  

• The Mean of Z (μz) & Standard Deviation of Z (σz), 

• p is the correlation between X & Z. 

Due to the complexity of these calculations, it's unlikely that you'll be asked to use this distribution on the 

CQE Exam. 

 

 



Lognormal Distribution 

Another Distribution that you may run into is the Lognormal Distribution, and it also shares a relationship 

with the Normal Distribution. 

So let's say you've got a data set for a random variable X that is log-normally distribution.    

You can transform that data using the natural log (ln), and create a transformed random variable Y (Y = ln 

X), that is normally distributed.  

This transformation is beneficial because normality is required to use certain statistical operations like 

constructing confidence intervals, and conducting tests of hypothesis, etc.  

 

Similarly, if your data fits the normal distribution then a logarithmic transformation ( y = ex) can be use to 

transform that data to fit the lognormal distribution.  

One common attribute about this distribution is that it only takes on positive real values and the 

distribution is always skewed to the right.  

 

 

 

 



Exponential Distribution 

The Exponential Distribution is used widely in the area of Reliability Engineering and usually models the 

length of time between the occurrence of events.  

This  includes items like the time between repairs, or the time between failures, etc.  

 

The exponential distribution has a unique relationship the Poisson Distribution, which we will discuss 

below. 

The exponential distribution is commonly used to models the time between occurrences of events. This 

is the inverse of the Poisson distribution which models the number of occurrences in a given interval of 

time.  

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 =  
𝑇𝑖𝑚𝑒

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠
                          𝑃𝑜𝑖𝑠𝑠𝑜𝑛 =  

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒

𝑇𝑖𝑚𝑒
 

These two distributions are related in that they are inverses of each other.  

So if you've got a random variable, X, that follows the exponential distribution, then the inverse of x, which 

we will call y = 1/x will follow the Poisson Distribution.  

The inverse of this statement is true; if a random variable follows the Poisson distribution then the 

reciprocal of that variable will follow an exponential distribution.  

 

 

 



Probability Calculations & the Exponential Distribution 

Below are the Probability Equations that you can use when dealing with data that fits the exponential 

distribution.  

𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚: 𝑷(𝑿 = 𝑥):  f(x) = xe−λx 

𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚: 𝑷(𝑿 > 𝑥):  f(x) = e−λx 

𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚: 𝑷(𝑿 < 𝑥):   𝐹(𝑥) = 1 − e−λx 

Where 

𝑴𝒆𝒂𝒏 𝑽𝒂𝒍𝒖𝒆 =  𝜽 =  
𝟏

𝝀
    𝑤ℎ𝑒𝑟𝑒      𝝀 = 𝑶𝒄𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒆 𝑹𝒂𝒕𝒆  

Reliability Example for the Exponential Distribution 

Let's say we're testing a motor who's failure rate follows the exponential distribution and we've found 

that our Mean time to failure (θ) is 2,996 Hours.  

What is the probability that our motor is still operational after at 1,200 hours? 

𝑷(𝑿 > 1,200) =  𝒆−𝝀𝒙 =  𝒆
−𝒙
𝜽 = 𝒆

−𝟏,𝟐𝟎𝟎
𝟐,𝟗𝟔𝟔 = . 𝟔𝟔𝟕𝟑 

So, the probability that our product will perform successfully past the 1,200 hour mark is approximately 

66%.  

This result can also be applicable to the entire population of product; i.e. 66% of the population can be 

expected to surpass the 1,200 hour mark.  The remaining units will have failed by that point.  

 



Reliability Example #2 

Or we could calculate the probability of a failure in the first 1,000 hours.  

                𝑪𝑫𝑭:   𝐹(𝑡) = 1 − e−λt 

                 𝑭(𝟏, 𝟎𝟎𝟎) = 𝟏 − 𝐞
−

𝟏,𝟎𝟎𝟎
𝟐,𝟗𝟔𝟔 =. 𝟐𝟖𝟔 

This result could be interpreted to mean that the 28.6% of motors will fail at or before the 1,000-hour 

mark.  

 


