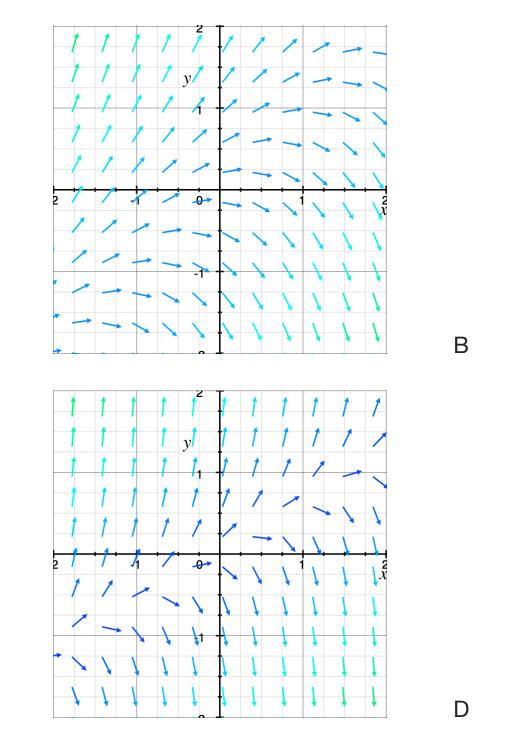
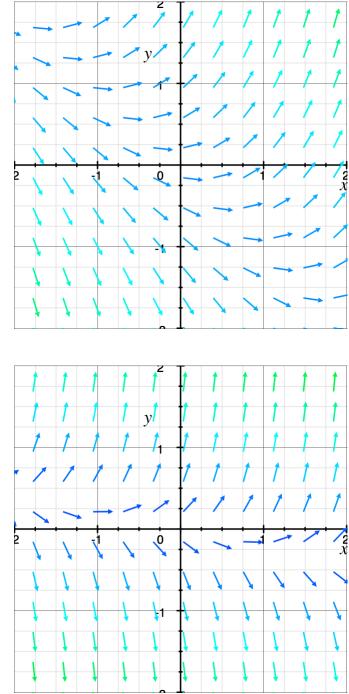
Topic: Sketching direction fields


Question: Sketch the direction field.


$$y' = y + x$$

Answer choices:

А

С

Solution: B

Before you try to sketch the direction field, you want to make sure your equation is solved for y'.

y' = y + x

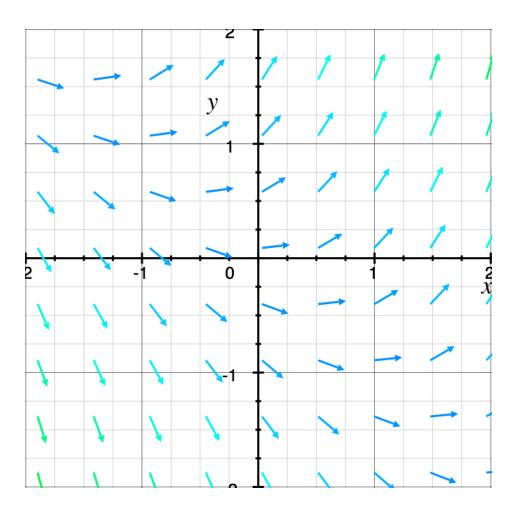
We'll need to make several tables, and our strategy will be to keep *x* constant in each table. So our first table will be for x = -2. We'll explore *y*-values on the interval [-2,2], and then pairing those *x* and *y* values together, we'll solve for values of *y*'.

The table for x = -2 is

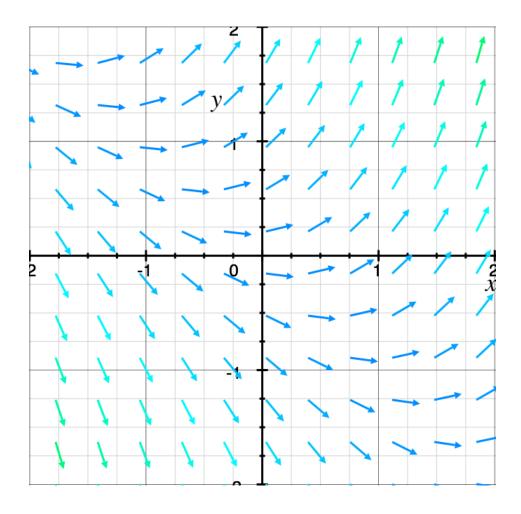
<i>y</i> ′	-4	-3	-2	-1	0
x	-2	-2	-2	-2	-2
У	-2	-1	0	1	2

The table for x = -1 is

У′	-3	-2	-1	0	1
X	-1	-1	-1	-1	-1
у	-2	-1	0	1	2

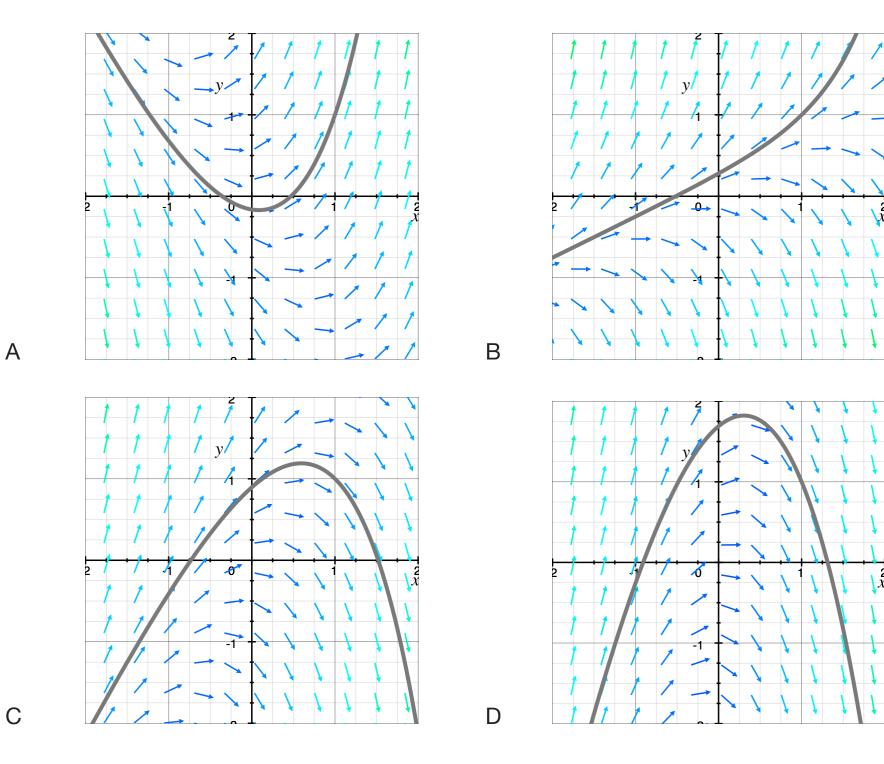

The table for x = 0 is

<i>y</i> ′	-2	-1	0	1	2
x	0	0	0	0	0
у	-2	-1	0	1	2


The table for x = 1 is

	y'	-1	0	1	2	3
	X	1	1	1	1	1
	У	-2	-1	0	1	2
The table for $x = 2$ is						
	<i>Y</i> ′	0	1	2	3	4
	X	2	2	2	2	2
	У	-2	-1	0	1	2

The values of y' that we found represent the slope of the function at the corresponding point (x, y). For example, in this last table, we see the point (2, -2), and the corresponding value of y' = 0. This means that the slope of the function at (2, -2) is 0, so we'd draw a small, short horizontal line right at (2, -2). Plotting all of the other point-slope pairs, the direction field starts to look something like this:


If we add more points, maybe ones that are half-way between those that we already found, a more complete direction field should look something like this:

Question: Sketch the direction field and the solution curve at the given point.

$$y' = y - 2x$$

at (1,1)

Answer choices:

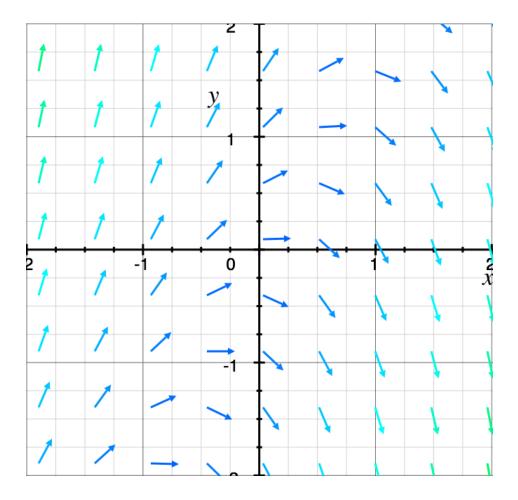
Solution: C

Before you try to sketch the direction field, you want to make sure your equation is solved for y'.

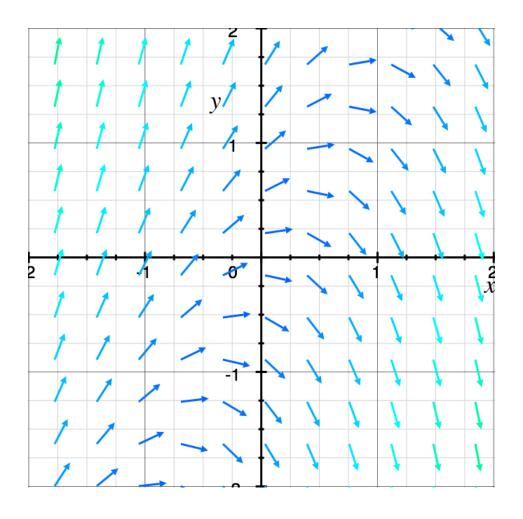
$$y' = y - 2x$$

We'll need to make several tables, and our strategy will be to keep *x* constant in each table. So our first table will be for x = -2. We'll explore *y*-values on the interval [-2,2], and then pairing those *x* and *y* values together, we'll solve for values of *y*'.

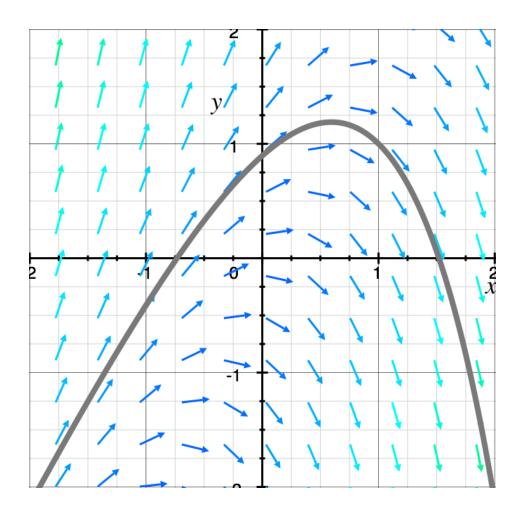
The table for x = -2 is


	y'	2	3	4	5	6	
	X	-2	-2	-2	-2	-2	
	У	-2	-1	0	1	2	
The table for $x = -1$ is							
	<i>y</i> ′	0	1	2	3	4	
	X	-1	-1	-1	-1	-1	
	у	-2	-1	0	1	2	
The table for $x = 0$ is							
	<i>y</i> ′	-2	-1	0	1	2	
	X	0	0	0	0	0	
	у	-2	-1	0	1	2	
The table for $x = 1$ is							

y -2 -1 0 1 2


The table for x = 2 is

У′	-6	-5	-4	-3	-2
x	2	2	2	2	2
у	-2	-1	0	1	2


The values of y' that we found represent the slope of the function at the corresponding point (x, y). For example, in this last table, we see the point (2, -2), and the corresponding value of y' = 6. This means that the slope of the function at (2, -2) is 6, so we'd draw a small, short line with slope 6 right at (2, -2). Plotting all of the other point-slope pairs, the direction field starts to look something like this:

If we add more points, maybe ones that are half-way between those that we already found, a more complete direction field should look something like this:

Sketching the solution curve through (1,1) gives

