Question Number	Acceptable Answer		Additional Guidance			Mark
8(a)(i)	- any 2 correct - all 3 correct	(1) (2)	Example of table			(2)
			$1^{\text {st }}$ IE	$2^{\text {nc }}$ IE	$3^{\text {ra }}$ IE	
			(590)	(1145)	(4912)	
			45	45	3p	
			Accept $3 p_{x} / 3 p_{y} / 3 p_{z}$ for $3^{\text {rd }}$ IE Ignore any superscript numbers by 4 s and $3 p$ Allow (1) for just 's, s, p^{\prime} or 's, s, p ' with one or more incorrect numbers in front			

Question Number	Acceptable Answer	Additional Guidance	Mark
8(a)(ii)	- correct equation	Examples of equations $\mathrm{Ca}^{2+}(\mathrm{g}) \rightarrow \mathrm{Ca}^{3+}(\mathrm{g})+\mathrm{e}^{(-)}$ or $\mathrm{Ca}^{2+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Ca}^{3+}(\mathrm{g})$ Correct state symbols are required Ignore any state symbol for the electron	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
8(a)(iii)	An explanation that makes reference to the following points: - (there is a much larger difference between the $2^{\text {nd }}$ and $3^{\text {rd }}$ ionisation energies because the) $3^{\text {rd }}$ electron is lost from a shell / energy level / subshell / (3p) orbital closer to the nucleus or the 3rd electron is lost from a shell / energy level / sub-shell / (3p) orbital of lower energy - (there is a smaller difference between the $1^{\text {st }}$ and $2^{\text {nd }}$ ionisation energies because the) $1^{\text {st }}$ and $2^{\text {nd }}$ electrons removed from the same shell / energy level / sublevel / orbital or the first two electrons experience similar shielding (from the inner electrons) or there is only a small change in electron-electron repulsion as the first two electrons are removed	Ignore electron is lost from a full (sub-)shell / a full (sub-)shell is more stable Ignore just ' $3^{\text {rd }}$ electron lost is more strongly attracted to the nucleus' Allow the same amount of shielding Allow the 3rd electron (to be lost) experiences less shielding (from inner electrons)	(2)

Question Number	Answer	Mark
$\mathbf{8 (b)}$	The only correct answer is B	(1)
	\boldsymbol{A} is incorrect because $(-1031)+(79+520+159)$ is incorrect	
	\boldsymbol{C} is incorrect because $(-1031)+(79+520)$ is incorrect	
\boldsymbol{D} is incorrect because $(-1031)+79+520+159-616$ is incorrect		

Question Number	Acceptable Answers	Additional Guidance	Mark
8(c)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning.	(6)

Indicative content

- IP1 - Ionic
lithium chloride / LiCl (has very similar theoretical and experimental lattice energy values so) is (almost 100\%) ionic
- IP2-Covalency
magnesium iodide / MgI_{2} (has different theoretical and experimental lattice energy values so) has (some) covalent character
- IP3-Charge on cations magnesium is Mg^{2+} and lithium is Li^{+}
- IP4 - Polarising - what does the polarising magnesium ion/ Mg^{2+} is (more) polarising / has a large(r) polarising power (than lithium ion)
- IP5 - Size of anion
iodide ion / I- is larger (than chloride ion / Cl^{-})
- IP6 - Polarisable - what is polarised iodide ion / I^{-}is (more easily) polarised / distorted

Allow very small amount of / no covalent character in LiCl
Allow assumption that ions act as point charges / are spherical is true for LiCl

Allow MgI_{2} more covalent character than LiCl

Allow magnesium has $2+$ charge and lithium has 1+ charge / magnesium ion has a larger charge than a lithium ion
Allow charge density for charge

Allow iodine ion / I^{-}is a large atom / has a large atomic radius
Ignore size of cation
Do not award iodide has a larger charge density

Allow this shown in a diagram Ignore just 'greater attraction to cation'

