AS#10 LINEAR MODELLING

AEM questions are taken from past exam papers - they have been carefully chosen to represent a typical exam question at each level of difficulty. If you can do these questions, you're ready to move onto past papers for this topic.

APPRENTICE

The cost of electricity, E_{i} , in pounds and the number of kilowatt hours, h_{i} are shown in the table.

Kilowatt hours, <i>h</i>	0	15	40	60	80	110
Cost of electricity, E	45	46.8	49.8	52.2	54.6	58.2

- a. Draw a graph of the data.
- b. Explain how you know a linear model would be appropriate.
- c. Deduce an equation in the form E = ah + b
- d. Interpret the meaning of the coefficients a and b.
- e. Use the model to find the cost of electricity for 3 days..

EXPERT

The scatter graph shows the height h and foot length f of 8 students. A line of best fit is drawn on the scatter graph.

- a. Explain why the data can be approximated to a linear model.
- b. Use points A and B on the scatter graph to write a linear equation in the form h = af + b.
- c. Calculate the expected height of a person with a foot length of 26.5cm.

MASTER

The average August temperature in Exeter is 20°C or 68°F. The average January temperature in the same place is 9°C or 48.2°F.

- a. Write an equation linking Fahrenheit F and Celsius C in the form F = aC + b
- b. Interpret the values of a and b.
- c. The highest recorded un the UK was 101.3°F. Calculate this temperature in Celsius.

AS#11 QUADRATIC MODELLING

AEM questions are taken from past exam papers - they have been carefully chosen to represent a typical exam question at each level of difficulty. If you can do these questions, you're ready to move onto past papers for this topic.

APPRENTICE

The diagram shows a section of a suspension bridge carrying a road over water.

The height of the cables above water level in metres can be modelled by the function $h(x) = 0.00012x^2 + 200$, where x is the displacement in metres from the centre of the bridge.

- a. Interpret the meaning of the constant term 200 in the model.
- b. Use the model to find the two values of x at which the height is 346m.
- c. Given that the towers at each end are 346m tall, use your answer to part (b) to calculate the length of the bridge to the nearest metre.

EXPERT

A car manufacturer uses a model to predict the fuel consumption, y miles per gallon (mpg), for a specific model of a car travelling at a speed of x mph.

$$y = -0.01x^2 + 0.975x + 16, x > 0$$

- a. Use the model to find two speeds at which the car has a fuel consumption of 32.5mpg.
- b. Rewrite y in the form $A B(x C)^2$, where A, B and C are constants to be found.
- c. Using your answer to part (b), find the speed at which the car has the greatest fuel efficiency.
- d. Use the model to calculate the fuel consumption of a car travelling at 120mph. Comment on the validity of using this model for very high speeds.

MASTER

A fertiliser company uses a quadratic model to determine how the amount of fertiliser used, f kilograms per hectare, affects the grain yield g, measured in tonnes per hectare.

The maximum grain yield possible is $\frac{39}{4}$ tonnes per hectare, which is achieved by using 250 kg of fertiliser. Without any fertiliser, the yield of grain is 6 tonnes per hectare.

- a. Find an equation giving g in terms of f
- b. One farmer currently uses 20 kilograms of fertiliser per hectare. How much more fertiliser would he need to use to increase his grain yield by 1 tonne per hectare?

APPRENTICE

- a. Factorise $9x 4x^3$ completely
- b. Sketch the curve *C* with equation $y = 9x 4x^3$

Show on your sketch the coordinates at which the curve meets the x-axis.

EXPERT

f(x) = (x - 2)(2x + 3)(5 - x)The graph of y = f(x) is translated by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to obtain the graph of y = g(x).

State the equation of y = g(x) and sketch its graph, showing the coordinate intercepts.

MASTER

The sketch shows part of the curve $f(x) = (2x - 5)^2(x + 3), x \in \mathbb{R}$

a. Given that the curve with equation y = f(x) + k passes through the origin, find the value of the constant k,

b. The curve with equation y = f(x + c) passes through the origin. Find the possible values of the constant c.

AS#13 GRAPH TRANSFORMATIONS

AEM questions are taken from past exam papers - they have been carefully chosen to represent a typical exam question at each level of difficulty. If you can do these questions, you're ready to move onto past papers for this topic.

APPRENTICE

The diagram above shows a sketch of the curve with equation y = f(x). The curve has a maximum point A at (-2,3) and a minimum point B at (3, -5).

On separate diagrams sketch the curve with equation

b. y = 2f(x)

a. y = f(x + 3)

On each diagram show clearly the coordinates of the maximum and minimum points.

c. The graph of y = f(x) + a has a minimum at (3,0), where a is a constant. Write down the value of a.

EXPERT

The graph of the function y = f(x) is shown.

It has a horizontal asymptote y = 4 and a minimum point at P(0, -2)

Sketch the graph of 2 - f(3x) showing the equation of the asymptote and the new coordinates of the point *P*

MASTER

A function f(x) is defined by $f(x) = x^2 - 2x$.

The minimum point of the graph of y = kf(x) is the same coordinate as the minimum point of the graph of y = f(x) - c.

Find the relationship between k and c

APPRENTICE

- a. The graph of $f(x) = 2 (x + 3)^2$ is translated left 2 then stretched scale factor 3 parallel to the y axis. What is the equation of this transformed graph?
- b. The graph of f(x) = -2(x-3)(x+5) is translated right 1 then reflected over the x axis.

i. What is the equation of this transformed graph?

ii. What is the equation of the transformed graph if we reflect over the x axis first, then translate right 1?

EXPERT

- a. Factorise completely $x^3 6x^2 + 9x$
- b. Sketch the curve with equation $f(x) = x^3 6x^2 + 9x$ showing the coordinates of the points at which the curve meets the x-axis.
- c. State and fully simplify the equation of f(-2x)
- d. Using your answer to part (b), sketch, on a separate diagram, the curve with equation

$$y = (x - 2)^3 - 6(x - 2)^2 + 9(x - 2)$$

showing the coordinates of the points at which the curve meets the x-axis

MASTER

- a. The graph of $g(x) = 4^x$ is translated right 1 then stretched scale factor 2 parallel to the y axis. Write the equation of the transformed graph in the form 4^k where k is a function of x
- b. Describe fully a single transformation that transforms the curve $y = 2\sqrt{x}$ to $y = 3\sqrt{5x}$.

APPRENTICE

Sketch the following graphs on separate axes:

a.
$$y = (x - 4)^3 + 1$$

b. $y = 4 - (x + 1)^3$

c. $y = 4(x - 1)^4 + 1$ b. $y = 2 - 5(x + 1)^4$

EXPERT

Describe the sequence of transformations which maps

a.
$$y = (x + 1)^4$$
 onto $y = -(x - 2)^4$

b. $y = -2x^3 + 1$ onto $y = -4x^3 + 1$

MASTER

Find the equation of the graph $y = x^3$ after the following transformations:

a. Reflection over the y axis followed by translation $\begin{pmatrix} -4\\ 1 \end{pmatrix}$

b. Translation $\begin{pmatrix} 0\\ -2 \end{pmatrix}$ followed by vertical stretch scale factor 6

APPRENTICE

Sketch the following graphs on separate axes:

a.
$$y = \frac{2}{x-4}$$
 b. $y = 4 - \frac{1}{x+1}$

c.
$$y = \frac{4}{x^2} - 1$$
 d. $y = 2 - \frac{1}{(x+3)^2}$

EXPERT

- a. Describe the transformations which maps the graph of $y = \frac{1}{5x}$ onto the graph of $y = \frac{1+10x}{5x}$
- b. Describe the transformations which maps the graph of $y = \frac{1}{x+1}$ onto the graph of $y = \frac{1}{x-4} + 3$

MASTER

a. Find the equation of the graph $y = \frac{1}{x}$ after the following transformations: Reflection over the y axis followed by translation $\begin{pmatrix} -4\\1 \end{pmatrix}$ b. Find the equation of the graph $y = \frac{1}{x^2}$ after the following transformations: Translation $\begin{pmatrix} 0\\-2 \end{pmatrix}$ followed by vertical stretch scale factor 6

APPRENTICE

State the equations of the asymptotes of the graph of $y = \frac{x-2}{2x+1}$

EXPERT

Write $\frac{x-2}{x+1}$ in the form $A + \frac{B}{x+1}$ where A and B are constants to be found

Sketch $y = \frac{x-2}{x+1}$ showing the axis intercepts and equations of the asymptotes

MASTER

Sketch $y = \frac{2x-1}{x+5}$ showing the axis intercepts and equations of the asymptotes

AS#18 SOLVING INEQUALITIES

AEM questions are taken from past exam papers - they have been carefully chosen to represent a typical exam question at each level of difficulty. If you can do these questions, you're ready to move onto past papers for this topic.

APPRENTICE

A curve has equation $y = 2x^2 + x - 10$.

Determine the set of values of x for which the graph of the curve lies above the x-axis.

EXPERT

Find the set of values of x for which

- a. 3(2x+1) > 5 2x
- b. $2x^2 7x + 3 > 0$
- c. both 3(2x + 1) > 5 2x and $2x^2 7x + 3 > 0$.

MASTER

The width of a rectangular sports pitch is x metres, x > 0. The length of the pitch is 20m more than its width. Given that the perimeter of the pitch must be less than 300m,

a. Form a linear inequality in x

Given that the area of the pitch must be greater than $4800 \mathrm{m}^2$,

- b. Form a quadratic inequality in x.
- c. By solving your inequalities, find the set of possible values of x.

AS#19 SKETCHING INEQUALITIES

AEM questions are taken from past exam papers - they have been carefully chosen to represent a typical exam question at each level of difficulty. If you can do these questions, you're ready to move onto past papers for this topic.

APPRENTICE

The sketch shows the graphs of the lines x = 1, y = x + 1 and y = 7 - x

- a. Find the coordinates of the points of intersection of these lines
- b. Write down a set of inequalities that represent the shaded region R shown in the sketch

EXPERT

On coordinate axes, sketch the region satisfied by the following inequalities:

 $x \ge -1$ y + x < 4 $2x + y \le 5$ y > -2

MASTER

a. On coordinate axes, shade the region satisfying the inequalities

 $x \ge -1$ y + x < 4 $2x + y \le 5$ y > -2

b. Which of the vertices of the shaded region lie inside the region identified by the inequalities?

c. Find the area of the shaded region