08	Hydrogen gas can be made by reacting ethanol with steam in the presence of a catalyst.
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{~g})$
	Give an expression for K_{c} for this equilibrium.
	State its units. \quad [2 marks]
	$K_{\text {c }}$
	Units of K_{c}

Hydrogen gas can be made by reacting ethanol with steam in the presence of a

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1}$ Give an expression for K_{c} for this equilibrium.

State its units.
K_{c}

Units of K_{c}

| 0 | 8 | 2 | Table 4 shows the amount of each substance in an equilibrium mixture |
| :--- | :--- | :--- | :--- | in a container of volume $750 \mathrm{~cm}^{3}$

Table 4

Substance	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})$
Amount of substance / mol	0.0750	0.156	0.110	0.220

Calculate K_{c}
\qquad

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{3}$ The pressure of the equilibrium mixture was increased by reducing the volume of the |
| :--- | :--- | :--- | container at constant temperature.

Predict the effect of increasing the pressure on the equilibrium yield of hydrogen. Explain your answer.

Predict the effect of increasing the pressure on the value of K_{c}

Effect on equilibrium yield of hydrogen \qquad
\qquad
Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Effect on value of K_{c} \qquad

